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A Kenmotsu metric as a conformal η-Einstein soliton

Roy S.1, , Dey S.2, Bhattacharyya A.1

The object of the present paper is to study some properties of Kenmotsu manifold whose metric

is conformal η-Einstein soliton. We have studied certain properties of Kenmotsu manifold admit-

ting conformal η-Einstein soliton. We have also constructed a 3-dimensional Kenmotsu manifold

satisfying conformal η-Einstein soliton.
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Introduction

The notion of Einstein soliton was introduced by G. Catino and L. Mazzieri [3] in 2016,

which generates self-similar solutions to Einstein flow

∂g

∂t
= −2

(

S −
r

2
g
)

,

where S is Ricci tensor, g is Riemannian metric and r is the scalar curvature.

The equation of the η-Einstein soliton [2] is given by,

£ξ g + 2S + (2λ − r)g + 2µη ⊗ η = 0,

where £ξ is the Lie derivative along the vector field ξ, S is the Ricci tensor, r is the scalar

curvature of the Riemannian metric g, and λ and µ are real constants. For µ = 0, the data

(g, ξ, λ) is called Einstein soliton.

In 2018, M.D. Siddiqi [6] introduced the notion of conformal η-Ricci soliton [8] as

£ξ g + 2S +

[

2λ −

(

p +
2

n

)]

g + 2µη ⊗ η = 0,

where £ξ is the Lie derivative along the vector field ξ, S is the Ricci tensor, λ, µ are constants, p

is a scalar non-dynamical field (time dependent scalar field) and n is the dimension of mani-

fold. For µ = 0, conformal η-Ricci soliton becomes conformal Ricci soliton [7].
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In [9], S. Roy, S. Dey and A. Bhattacharyya have defined conformal Einstein soliton, which

can be written as

£V g + 2S +

[

2λ − r +

(

p +
2

n

)]

g = 0, (1)

where £V is the Lie derivative along the vector field V, S is the Ricci tensor, r is the scalar

curvature of the Riemannian metric g, λ is real constant, p is a scalar non-dynamical field

(time dependent scalar field) and n is the dimension of manifold.

So we introduce the notion of conformal η-Einstein soliton as follows.

Definition 1. A Riemannian manifold (M, g) of dimension n is said to admit conformal

η-Einstein soliton if

£ξ g + 2S +

[

2λ − r +

(

p +
2

n

)]

g + 2µη ⊗ η = 0, (2)

where £ξ is the Lie derivative along the vector field ξ, λ, µ are real contants and S, r, p, n are

same as defined in (1).

In the present paper, we study conformal η-Einstein soliton on Kenmotsu manifold. The

paper is organized as follows.

After introduction, section 2 is devoted for preliminaries on (2n+1)-dimensional Kenmotsu

manifold. In section 3, we have studied conformal η-Einstein soliton on Kenmotsu manifold.

Here we proved that if a (2n+1)-dimensional Kenmotsu manifold admits conformal η-Einstein

soliton then the manifold becomes η-Einstein. We have also characterized the nature of the

manifold if the manifold is Ricci symmetric and the Ricci tensor is η-recurrent. Also we have

discussed the condition, when the manifold has cyclic Ricci tensor. Then we have obtained the

conditons in a (2n+1)-dimensional Kenmotsu manifold admitting conformal η-Einstein soliton,

when a vector field V is pointwise co-linear with ξ and a (0,2)-tensor field h is parallel with

respect to the Levi-Civita connection associated to g. We have also examined the nature of a

Ricci-recurrent Kenmotsu manifold admitting conformal η-Einstein soliton.

In last section, we have given an example of a 3-dimensional Kenmotsu manifold satisfying

conformal η-Einstein soliton.

1 Preliminaries

Let M be a (2n+1)-dimensional connected almost contact metric manifold with an almost

contact metric structure (φ, ξ, η, g), where φ is a (1, 1)-tensor field, ξ is a vector field, η is a

1-form and g is the compatible Riemannian metric such that

φ2(X) = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, (3)

g(φX, φY) = g(X, Y) − η(X)η(Y), (4)

g(X, φY) = −g(φX, Y),

g(X, ξ) = η(X), (5)

for all vector fields X, Y ∈ χ(M).

The fundamental 2-form Φ on an almost contact metric manifold M2n+1 is defined by

Φ(X, Y) = g(X, φY) for any vector fields X and Y on M2n+1. In an almost contact metric

manifold, we have η ∧ Φ
n 6= 0.
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When Φ = dη, an almost contact metric manifold becomes contact metric manifold.

An almost contact metric manifold satisfying dη = 0 and dΦ = 2η ∧ Φ is said to be an

almost Kenmotsu manifold [4].

An almost contact metric manifold is said to be a Kenmotsu manifold [5] if

(∇Xφ)Y = −g(X, φY)ξ − η(Y)φX,

∇Xξ = X − η(X)ξ, (6)

where ∇ denotes the Riemannian connection of g.

In a Kenmotsu manifold the following relations hold [1]:

η(R(X, Y)Z) = g(X, Z)η(Y) − g(Y, Z)η(X),

R(X, Y)ξ = η(X)Y − η(Y)X, (7)

R(X, ξ)Y = g(X, Y)ξ − η(Y)X,

where R is the Riemannian curvature tensor,

S(X, ξ) = −2nη(X), (8)

S(φX, φY) = S(X, Y) + 2nη(X)η(Y),

(∇Xη)Y = g(X, Y) − η(X)η(Y), (9)

for all vector fields X, Y, Z ∈ χ(M).

Now we know,

(£ξ g)(X, Y) = g(∇Xξ, Y) + g(X,∇Yξ), (10)

for all vector fields X, Y,∈ χ(M). Then using (6) and (10), we get,

(£ξ g)(X, Y) = 2[g(X, Y) − η(X)η(Y)]. (11)

2 Conformal η-Einstein soliton on Kenmotsu manifold

Let M be a (2n+1)-dimensional Kenmotsu manifold. Consider the conformal η-Einstein

soliton (2) on M as

(£ξ g)(X, Y) + 2S(X, Y) +

[

2λ − r +

(

p +
2

2n + 1

)]

g(X, Y) + 2µη(X)η(Y) = 0

for all vector fields X, Y,∈ χ(M).

Theorem 1. If the metric of a (2n+1)-dimensional Kenmotsu manifold is a conformal η-Einstein

soliton, then the manifold becomes η-Einstein and the scalar curvature is

(

p +
2

2n + 1

)

− 4n + 2λ + 2µ.
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Proof. First, using (11), the above equation becomes,

S(X, Y) = −

[

λ −
r

2
+

(

p + 2
2n+1

)

2
+ 1

]

g(X, Y) − (µ − 1)η(X)η(Y). (12)

Taking Y = ξ in the above equation and using (8), we get,

r =

(

p +
2

2n + 1

)

− 4n + 2λ + 2µ, (13)

since η(X) 6= 0, for all X ∈ χ(M).

Also from (12), it follows that the manifold is η-Einstein and this completes the proof.

Theorem 2. If the metric of a (2n+1)-dimensional Ricci symmteric Kenmotsu manifold is a

conformal η-Einstein soliton, then µ = 1 and the scalar curvature is
(

p + 2
2n+1

)

− 4n + 2λ + 2.

Proof. We know, that (∇XS)(Y, Z) = X(S(Y, Z)) − S(∇XY, Z) − S(Y,∇X Z), for all vector

fields X, Y, Z on M and ∇ is the Levi-Civita connection associated with g.

Now replacing the expression of S from (12), we obtain

(∇XS)(Y, Z) = −(µ − 1)[η(Z)(∇X η)Y + η(Y)(∇X η)Z] (14)

for all vector fields X, Y, Z on M.

As the manifold M is Ricci symmetric, i.e ∇S = 0.

Then from (14), we get

−(µ − 1)[η(Z)(∇X η)Y + η(Y)(∇X η)Z] = 0

for all vector fields X, Y, Z ∈ χ(M).

Taking Z = ξ in the above equation and using (9), (3), we obtain, µ = 1.

Then from (13), we get

r =

(

p +
2

2n + 1

)

− 4n + 2λ + 2.

Hence, we complete the proof.

Theorem 3. If the metric of a (2n+1)-dimensional Kenmotsu manifold is a conformal η-Einstein

soliton and the Ricci tensor S is η-recurrent, then the scalar curvature is

2λ + 2µ +

(

p +
2

2n + 1

)

.

Proof. If the Ricci tensor S is η-recurrent, then we have ∇S = η ⊗ S, which implies

(∇XS)(Y, Z) = η(X)S(Y, Z)

for all vector fields X, Y, Z on M. Using (14), the above equation reduces to

−(µ − 1)[η(Z)(∇X η)Y + η(Y)(∇X η)Z] = η(X)S(Y, Z).

Taking Y = ξ, Z = ξ in the above equation and using (9), (12), we get
[

λ + µ −
r

2
+

p + 2
2n+1

2

]

η(X) = 0,

which implies

r = 2λ + 2µ +

(

p +
2

2n + 1

)

.

This completes the proof.
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Theorem 4. Let the metric of a (2n+1)-dimensional Kenmotsu manifold M is a conformal

η-Einstein soliton. Then M has cyclic Ricci tensor if µ = 1.

Proof. Similarly from (14), we get

(∇YS)(Z, X) = −(µ − 1)[η(X)(∇Y η)Z + η(Z)(∇X η)Y], (15)

and

(∇ZS)(X, Y) = −(µ − 1)[η(Y)(∇Z η)X + η(X)(∇Z η)Y] (16)

for all vector fields X, Y, Z on M.

Then adding (14), (15), (16) and using (9), (4), we obtain

(∇XS)(Y, Z) + (∇YS)(Z, X) + (∇ZS)(X, Y) =− 2(µ − 1)[η(X)g(φY, φZ)

+ η(Y)g(φZ, φX) + η(Z)g(φX, φY)].
(17)

Now, as the manifold M has cyclic Ricci tensor, i.e

(∇XS)(Y, Z) + (∇YS)(Z, X) + (∇ZS)(X, Y) = 0,

then from (17), we have

(µ − 1)[η(X)g(φY, φZ) + η(Y)g(φZ, φX) + η(Z)g(φX, φY)] = 0.

Taking X = ξ in the above equation and using (3), we get µ = 1.

Again, if we take µ = 1 in (17), we obtaion (∇XS)(Y, Z)+ (∇YS)(Z, X)+ (∇ZS)(X, Y) = 0,

i.e the manifold M has cyclic Ricci tensor and this completes the proof.

Corollary 1. If a (2n+1)-dimensional Kenmotsu manifold M has a cyclic Ricci tensor and the

metric is a conformal η-Einstein soliton, then the scalar curvature is (p + 2
2n+1)− 4n + 2λ + 2.

Proof. If µ = 1, then from (13) we obtain r =
(

p + 2
2n+1

)

− 4n + 2λ + 2.

Theorem 5. Let M be a (2n+1)-dimensional Kenmotsu manifold admitting a conformal

η-Einstein soliton (g, V), V being a vector field on M. If V is pointwise co-linear with ξ, a

vector field on M, then V is a constant multiple of ξ, provided the scalar curvature is

2λ + 2µ +

(

p +
2

2n + 1

)

− 4n.

Proof. A conformal η-Einstein soliton is defined on a (2n+1)-dimensional Kenmotsu manifold

M as

£V g + 2S +

[

2λ − r +

(

p +
2

2n + 1

)]

g + 2µη ⊗ η = 0, (18)

where £V is the Lie derivative along the vector field V, S is the Ricci tensor, r is the scalar

curvature of the Riemannian metric g, λ, µ are real contants, p is a scalar non-dynamical field

(time dependent scalar field).

Since, V is pointwise co-linear with ξ, let V = bξ, where b is a function on M.

Then (18) becomes

(£bξ g)(X, Y) + 2S(X, Y) +

[

2λ − r +

(

p +
2

2n + 1

)]

g(X, Y) + 2µη(X)η(Y) = 0
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for all vector fields X, Y on M. Applying the property of Lie derivative and Levi-Civita con-

nection, we have

bg(∇Xξ, Y) + (Xb)η(Y) + bg(∇Yξ, X) + (Yb)η(X) + 2S(X, Y)

+

[

2λ − r +

(

p +
2

2n + 1

)]

g(X, Y) + 2µη(X)η(Y) = 0.

Now using (6), we get

2bg(X, Y) − 2bη(X)η(Y) + (Xb)η(Y) + (Yb)η(X) + 2S(X, Y)

+

[

2λ − r +

(

p +
2

2n + 1

)]

g(X, Y) + 2µη(X)η(Y) = 0.

Taking Y = ξ in the above equation and using (3), (5), (8), we obtain

(Xb) + (ξb)η(X) − 4nη(X) +

[

2λ − r +

(

p +
2

2n + 1

)]

η(X) + 2µη(X) = 0. (19)

Then by putting X = ξ, the above equation reduces to

ξb = 2n +
r

2
− λ − µ −

(p + 2
2n+1)

2
. (20)

Using (20), equation (19) becomes

(Xb) +

[

λ + µ +

(

p + 2
2n+1

)

2
− 2n −

r

2

]

η(X) = 0. (21)

Applying exterior differentiation in (21), we have

[

λ + µ +

(

p + 2
2n+1

)

2
− 2n −

r

2

]

dη = 0. (22)

Now we know

dη
(

X, Y
)

=
1

2

[

(

∇Xη
)

Y −
(

∇Yη
)

X
]

for all vector fields X, Y on M. Using (9), the above equation becomes dη = 0. Hence the

1-form η is closed.

So from (22), either r = 2λ + 2µ +
(

p + 2
2n+1

)

− 4n or r 6= 2λ + 2µ +
(

p + 2
2n+1

)

− 4n. If

r = 2λ + 2µ +
(

p + 2
2n+1

)

− 4n, (21) reduces to (Xb) = 0. This implies that b is constant and

this completes the proof.

Theorem 6. In a (2n+1)-dimensional Kenmotsu manifold assume that a symmetric (0,2)-tensor

field h = £ξ g + 2S + 2µη ⊗ η is parallel with respect to the Levi-Civita connection associated

to g. Then (g, ξ) yields a conformal η-Einstein soliton.

Proof. Note that h is a symmetric tensor field of (0,2)-type, which we suppose to be parallel

with respect to the Levi-Civita connection ∇, i.e ∇h = 0. Applying the Ricci commutation

identity, we have

∇2h(X, Y; Z, W) −∇2h(X, Y; W, Z) = 0
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for all vector fields X, Y, Z, W on M. From the above equation we obtain the relation

h(R(X, Y)Z, W) + h(Z, R(X, Y)W) = 0.

Replacing Z = W = ξ in the above equation and using (7), we get

η(X)h(Y, ξ) − η(Y)h(X, ξ) = 0.

Replacing X = ξ and using (3), the above equation reduces to

h(Y, ξ) = η(Y)h(ξ, ξ) (23)

for all vector fields Y on M. Differentiating the above equation covariantly with respect to X,

we get

∇X(h(Y, ξ)) = ∇X(η(Y)h(ξ, ξ)).

Now expanding the above eqution by using (23), (6), (9) and the property ∇h = 0, we obtain

h(X, Y) = h(ξ, ξ)g(X, Y) (24)

for all vector fields X, Y on M.

Let us take

h = £ξ g + 2S + 2µη ⊗ η. (25)

Then from (11), (12), we get

h(ξ, ξ) = −2λ −

(

p +
2

2n + 1

)

+ r.

Then using (25), equation (24) becomes

(£ξ g)(X, Y) + 2S(X, Y) +

[

2λ − r +

(

p +
2

2n + 1

)]

g(X, Y) + 2µη(X)η(Y) = 0,

which is the conformal η-Einstein soliton. Hence, we complete the proof.

Definition 2. A Kenmotsu manifold is said to be Ricci-recurrent manifold if there exists a non-

zero 1-form A such that

(∇WS)(Y, Z) = A(W)S(Y, Z) (26)

for any vector fields W, Y, Z on M.

Theorem 7. If the metric of a (2n+1)-dimensional Ricci-recurrent Kenmotsu manifold is a con-

formal η-Einstein soliton with the 1-form A, then the scalar curvature becomes

2λ + 2µ +

(

p +
2

2n + 1

)

+ 4n(A(ξ) − 1).

Proof. Replacing Z by ξ in the equation (26) and using (8), we get

(∇WS)(Y, ξ) = −2nA(W)η(Y),

which implies that

WS(Y, ξ) − S(∇WY, ξ)− S(Y,∇W ξ) = −2nA(W)η(Y).
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Using (8) and (6), the above equation becomes

2n(∇Wη)Y + 2nη(W)η(Y) + S(Y, W) = 2nA(W)η(Y).

Again using (9), the above equation reduces to

2ng(W, Y) + S(Y, W) = 2nA(W)η(Y).

Taking W = ξ in the above equation and using (12), we obtain

r = 2λ + 2µ +

(

p +
2

2n + 1

)

+ 4n(A(ξ) − 1).

This completes the proof.

Example 1. Here, we consider the three-dimensional manifold M = {(x, y, z) ∈ R
3, (x, y, z) 6=

(0, 0, 0)}, where (x, y, z) are standard coordinates in R
3. The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z

∂

∂z

are linearly independent at each point of M. Let g be the Riemannian metric defined by

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any vector field Z in R
3 and φ be the

(1,1)-tensor field defined by φe1 = −e2, φe2 = e1, φe3 = 0. Then using the linearity of φ and g,

we have

η(e3) = 1, φ2Z = −Z + η(Z)e3, g(φZ, φW) = g(Z, W) − η(Z)η(W)

for any Z, W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric structure

on M.

Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g. Then we have

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2. The connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z, X) − Zg(X, Y) − g(X, [Y, Z]) − g(Y, [X, Z]) + g(Z, [X, Y]),

which is known as Koszul’s formula.

Using Koszul’s formula, we can easily calculate

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

From the above it follows that the manifold satisfies ∇Xξ = X − η(X)ξ for ξ = e3. Hence

the manifold is a Kenmotsu manifold. So, here we have considered R
3 as an almost contact

manifold, which turns out to be a 3-dimensional Kenmotsu manifold.

Also, the Riemannian curvature tensor R is given by

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z.
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Hence,

R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1, R(e2, e1)e1 = −e2,

R(e2, e3)e3 = −e2, R(e3, e1)e1 = −e3, R(e3, e2)e2 = −e3,

R(e1, e2)e3 = 0, R(e2, e3)e1 = 0, R(e3, e1)e2 = 0.

Then, the Ricci tensor S is given by S(e1, e1) = −2, S(e2, e2) = −2, S(e3, e3) = −2. From (12),

we have

S(e3, e3) = −

[

λ + µ −
r

2
+

(

p + 2
3

)

2

]

,

which implies that

r = 2λ + 2µ − 4 +

(

p +
2

3

)

.

Hence λ and µ satisfies equation (13) and so g defines a conformal η-Einstein soliton on the

3-dimensional Kenmotsu manifold M.

References

[1] Bagewadi C.S., Prasad V.S. Notes on Kenmotsu manifolds. Bull. Calcutta Math. Soc. 1999, 91 (5), 379–384.

[2] Blaga A.M. On Gradient η-Einstein Solitons. Kragujevac J. Math. 2018, 42 (2), 229–237.

doi:10.5937/KgJMath1802229B

[3] Catino G., Mazzieri L. Gradient Einstein solitons. Nonlinear Anal. 2016, 132, 66–94. doi:10.1016/j.na.2015.10.021

[4] Janssens D., Vanhecke L. Almost contact structures and curvature tensors. Kodai Math. J. 1981, 4 (1), 1–27.

doi:10.2996/kmj/1138036310

[5] Kenmotsu K. A class of almost contact Riemannian manifolds. Tohoku Math. J. (2) 1972, 24 (1), 93–103.

doi:10.2748/tmj/1178241594

[6] Siddiqi M.D. Conformal η-Ricci solitons in δ-Lorentzian Trans Sasakian manifolds. Intern. J. Maps in Math. 2018,

1 (1), 15–34.

[7] Roy S., Bhattacharyya A. Conformal Ricci solitons on 3-dimensional trans-Sasakian manifold. Jordan J. Math. Stat.

2020, 13 (1), 89–109.

[8] Roy S., Dey S., Bhattacharyya A., Hui S.K. ∗-Conformal η-Ricci Soliton on Sasakian manifold. Asian-Eur. J. Math.

doi: 10.1142/S1793557122500358

[9] Roy S., Dey S., Bhattacharyya A. Conformal Einstein soliton within the framework of para-Kähler manifold.

arXiv:2005.05616v1 [math.DG].

Received 22.04.2020

Revised 01.08.2020

Рой С., Дей С., Бхаттачарiя А. Метрика Кенмоцу як конформний η-солiтон Айнштайна // Кар-

патськi матем. публ. — 2021. — Т.13, №1. — C. 110–118.
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