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A Kenmotsu metric as a conformal 77-Einstein soliton
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The object of the present paper is to study some properties of Kenmotsu manifold whose metric
is conformal #-Einstein soliton. We have studied certain properties of Kenmotsu manifold admit-
ting conformal #-Einstein soliton. We have also constructed a 3-dimensional Kenmotsu manifold
satisfying conformal #-Einstein soliton.
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Introduction

The notion of Einstein soliton was introduced by G. Catino and L. Mazzieri [3] in 2016,
which generates self-similar solutions to Einstein flow

og r
%25 5s).
ot 2
where S is Ricci tensor, g is Riemannian metric and 7 is the scalar curvature.
The equation of the y-Einstein soliton [2] is given by,

£:8+25+ (A —r)g+2un®@1n =0,

where £z is the Lie derivative along the vector field ¢, S is the Ricci tensor, r is the scalar
curvature of the Riemannian metric g, and A and y are real constants. For y = 0, the data
(g,G,A) is called Einstein soliton.

In 2018, M.D. Siddigqi [6] introduced the notion of conformal 7-Ricci soliton [8] as

2
£eg +25 + [2)»— <p+a>]g+2w®n =0,

where £; is the Lie derivative along the vector field ¢, S is the Ricci tensor, A, p are constants, p
is a scalar non-dynamical field (time dependent scalar field) and # is the dimension of mani-
fold. For u = 0, conformal #-Ricci soliton becomes conformal Ricci soliton [7].
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In [9], S. Roy, S. Dey and A. Bhattacharyya have defined conformal Einstein soliton, which
can be written as

2
£Vg+25+[2)»—r+<p+ﬁ>]g:0, (1)

where £y is the Lie derivative along the vector field V, S is the Ricci tensor, r is the scalar
curvature of the Riemannian metric g, A is real constant, p is a scalar non-dynamical field
(time dependent scalar field) and # is the dimension of manifold.

So we introduce the notion of conformal 77-Einstein soliton as follows.

Definition 1. A Riemannian manifold (M, g) of dimension n is said to admit conformal
n-Einstein soliton if

2
£§g+25+[2A—r+<p+ﬁ>]g+2y17®1720, (2)

where £¢ is the Lie derivative along the vector field {, A, y are real contants and S, r, p, n are
same as defined in (1).

In the present paper, we study conformal #-Einstein soliton on Kenmotsu manifold. The
paper is organized as follows.

After introduction, section 2 is devoted for preliminaries on (2n+1)-dimensional Kenmotsu
manifold. In section 3, we have studied conformal 7-Einstein soliton on Kenmotsu manifold.
Here we proved that if a (2n+1)-dimensional Kenmotsu manifold admits conformal #-Einstein
soliton then the manifold becomes #-Einstein. We have also characterized the nature of the
manifold if the manifold is Ricci symmetric and the Ricci tensor is #-recurrent. Also we have
discussed the condition, when the manifold has cyclic Ricci tensor. Then we have obtained the
conditons in a (2n+1)-dimensional Kenmotsu manifold admitting conformal #-Einstein soliton,
when a vector field V is pointwise co-linear with ¢ and a (0,2)-tensor field / is parallel with
respect to the Levi-Civita connection associated to g. We have also examined the nature of a
Ricci-recurrent Kenmotsu manifold admitting conformal #-Einstein soliton.

In last section, we have given an example of a 3-dimensional Kenmotsu manifold satisfying
conformal 77-Einstein soliton.

1 Preliminaries

Let M be a (2n+1)-dimensional connected almost contact metric manifold with an almost
contact metric structure (¢,¢,7,g), where ¢ is a (1,1)-tensor field, ¢ is a vector field, 7 is a
1-form and g is the compatible Riemannian metric such that

$*(X) = =X+7(X)E 7)) =1, op=0, & =0, (3)
8(PX, ¢Y) =g(X,Y) —n(X)n(Y), (4)

8(X, 9Y) = —g(¢X,Y),
8(X,¢) =n(X), (5)

for all vector fields X, Y € x(M).

The fundamental 2-form @ on an almost contact metric manifold M?**! is defined by
d(X,Y) = g(X,pY) for any vector fields X and Y on M?**1. In an almost contact metric
manifold, we have 1 A ®" # 0.
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When ® = dy, an almost contact metric manifold becomes contact metric manifold.

An almost contact metric manifold satistying dy = 0 and d® = 25 A @ is said to be an
almost Kenmotsu manifold [4].

An almost contact metric manifold is said to be a Kenmotsu manifold [5] if

(Vx@)Y = —g(X,¢Y)¢ —n(Y)$X,

Vx¢ =X -n(X)g, (6)

where V denotes the Riemannian connection of g.
In a Kenmotsu manifold the following relations hold [1]:

N(R(X,Y)Z) = g(X, Z)n(Y) = g(Y, Z)n(X),
R(X,Y)¢ = n(X)Y —n(Y)X, (7)
R(X, Q)Y =g(X,Y)d —n(Y)X,
where R is the Riemannian curvature tensor,
$(X,¢) = —2n1(X), (®)
S(¢X, ¢Y) = S(X,Y) +2ny(X)y(Y),

(Vxn)Y =g(X,Y) —n(X)n(Y), )

for all vector fields X, Y, Z € x(M).
Now we know,

for all vector fields X, Y, € x(M). Then using (6) and (10), we get,

(£8)(X,Y) = 2[g(X,Y) — n(X)n(Y)]. (11)

2 Conformal #-Einstein soliton on Kenmotsu manifold

Let M be a (2n+1)-dimensional Kenmotsu manifold. Consider the conformal #-Einstein
soliton (2) on M as

2

(£¢8)(X,Y) +25(X,Y) + [ZA —r+ (p + m)] XY)+2un(X)n(Y) =0

for all vector fields X, Y, € x(M).

Theorem 1. If the metric of a (2n+1)-dimensional Kenmotsu manifold is a conformal n-Einstein
soliton, then the manifold becomes 1-Einstein and the scalar curvature is

2
—4n + 21 +2p.
<p+2n+1> n—+2A+2u
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Proof. First, using (11), the above equation becomes,

(X, Y) = (u—Dn(X)n(Y). (12)

4+ 2 2

Taking Y = ¢ in the above equation and using (8), we get,

2
r—<p+2n+1>—4n+2}\+2y, (13)

since 7(X) # 0, for all X € x(M).
Also from (12), it follows that the manifold is #-Einstein and this completes the proof. [

Theorem 2. If the metric of a (2n+1)-dimensional Ricci symmteric Kenmotsu manifold is a
conformal yj-Einstein soliton, then y = 1 and the scalar curvature is (p + 52q) — 4n +2A + 2.
Proof. We know, that (VxS)(Y,Z) = X(S(Y,Z)) — S(VxY,Z) — S(Y,VxZ), for all vector
tields X, Y, Z on M and V is the Levi-Civita connection associated with g.

Now replacing the expression of S from (12), we obtain

(VxS)(Y,Z) = =(u = D)[n(Z2)(Vxn)Y + n(Y)(Vxn)Z] (14)
for all vector fields X, Y, Z on M.

As the manifold M is Ricci symmetric, i.e VS = 0.
Then from (14), we get

—(=D(2)(Vxm)Y +n(Y)(Vxy)Z] =0
for all vector fields X, Y, Z € x(M).
Taking Z = ¢ in the above equation and using (9), (3), we obtain, y = 1.
Then from (13), we get

2
= —— | —4n+2A +2.
<p + T 1) n—+2A +
Hence, we complete the proof. O

Theorem 3. If the metric of a (2n+1)-dimensional Kenmotsu manifold is a conformal nj-Einstein
soliton and the Ricci tensor S is 1j-recurrent, then the scalar curvature is

2
2N +2u + <p+2 _|_1>

Proof. If the Ricci tensor S is r7-recurrent, then we have VS = 1 ® S, which implies
(VxS)(Y, Z) = n(X)S(Y, Z)
for all vector fields X, Y, Z on M. Using (14), the above equation reduces to

— (=D (Z)(Vxn)Y + (V) (Vxn)Z] = n(X)S(Y, Z).

Taking Y = ¢, Z = ¢ in the above equation and using (9), (12), we get
2
RN TTES|

A+y——+ >

n(X) =0,

which implies

2
r—2A+2y—|—<p+2 +1>

This completes the proof. O
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Theorem 4. Let the metric of a (2n+1)-dimensional Kenmotsu manifold M is a conformal
1-Einstein soliton. Then M has cyclic Ricci tensor if y = 1.

Proof. Similarly from (14), we get

(VySI(Z, X) = =(u = D) [n(X)(Vyn)Z +5(Z)(Vxn)Y], (15)
and
(Vz8)(X,Y) = =(u = D) [n(V)(Vz) X +3(X)(Vzn)Y] (16)
for all vector fields X, Y, Z on M.
Then adding (14), (15), (16) and using (9), (4), we obtain
(VxS)(Y,Z) + (VyS)(Z,X) + (VzS)(X,Y) = = 2(u — 1) [n(X)g (Y, $Z)
+1(YV)(pZ, ¢X) +1(Z)g(¢pX, ¢Y)].

Now, as the manifold M has cyclic Ricci tensor, i.e

(17)

(VxS)(Y,Z) + (VyS)(Z,X) + (Vz5)(X,Y) =0,
then from (17), we have

(n = Dn(X)g(dY,9Z) +1(Y)g(¢pZ, ¢X) +1(Z)g(¢X, $Y)] = 0.

Taking X = ¢ in the above equation and using (3), we get u = 1.
Again, if we take y = 1in (17), we obtaion (VxS)(Y, Z) + (VyS)(Z,X) + (VzS)(X,Y) =0,
i.e the manifold M has cyclic Ricci tensor and this completes the proof. O

Corollary 1. If a (2n+1)-dimensional Kenmotsu manifold M has a cyclic Ricci tensor and the
metric is a conformal n-Einstein soliton, then the scalar curvature is (p + ﬁ) —4n+ 21 +2.

Proof. If u = 1, then from (13) we obtain r = (p + 52q) — 4n +2A + 2. O

Theorem 5. Let M be a (2n+1)-dimensional Kenmotsu manifold admitting a conformal
n-Einstein soliton (g,V), V being a vector field on M. If V is pointwise co-linear with §, a
vector field on M, then V is a constant multiple of ¢, provided the scalar curvature is

2
2\ + 2+ <p+2n+1> — 4n.

Proof. A conformal 7-Einstein soliton is defined on a (2n+1)-dimensional Kenmotsu manifold
M as

2
£Vg—|—25+[2A—r+<p+2n+1>]g+2y17®11—0, (18)

where £y is the Lie derivative along the vector field V, S is the Ricci tensor, r is the scalar
curvature of the Riemannian metric g, A, u are real contants, p is a scalar non-dynamical field
(time dependent scalar field).

Since, V is pointwise co-linear with ¢, let V = b, where b is a function on M.

Then (18) becomes

(£428) (X, Y) +25(X,Y) + [m 4 <p + ﬁ)] $(X,Y) + 20 (X)n(Y) =0
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for all vector fields X, Y on M. Applying the property of Lie derivative and Levi-Civita con-
nection, we have

bg(VxC,Y) + (Xb)n(Y) +bg(VyE, X) + (Y0)7(X) +25(X,Y)

+ [2)\ —r+ (p—l— 2n2—|— 1)} (X, Y) +2un(X)n(Y) = 0.

Now using (6), we get
2bg(X,Y) = 2bn(X)n(Y) + (Xb)n(Y) + (YO)n(X) +2S5(X,Y)

)] g0 1)+ 2m 00800 0.

+ [2A—r+<p+2n+1

Taking Y = ¢ in the above equation and using (3), (5), (8), we obtain

(Xb) + (¢b)n(X) —4ny(X) + [ZA —r+ (p + >] n(X) +2un(X) =0. (19)

2n+1

Then by putting X = ¢, the above equation reduces to

o2
bt Ay P (20)
2 2
Using (20), equation (19) becomes
42
(Xb) + A+y+w—2n—g n(X) =0. (21)
Applying exterior differentiation in (21), we have
42
A+y—l—w—2n—£]dqzo. (22)

Now we know .
an(X,Y) = 5| (Vxn)Y = (Vyn)X]

for all vector fields X, Y on M. Using (9), the above equation becomes dy = 0. Hence the
1-form 7 is closed.

So from (22), either r = 2A 4+ 2u + (p+ 52q) —4norr # 2A +2u+ (p+ 527) — 4n. If
r=2A+2u+ (p+ 527) — 4n, (21) reduces to (Xb) = 0. This implies that b is constant and
this completes the proof. O

Theorem 6. In a (2n+1)-dimensional Kenmotsu manifold assume that a symmetric (0,2)-tensor
tield h = £z + 25 + 2un @ n is parallel with respect to the Levi-Civita connection associated
to g. Then (g, ¢) yields a conformal y-Einstein soliton.

Proof. Note that h is a symmetric tensor field of (0,2)-type, which we suppose to be parallel
with respect to the Levi-Civita connection V, i.e Vi = 0. Applying the Ricci commutation
identity, we have

V2h(X,Y;Z,W) = Vh(X,Y;W,Z) =0
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for all vector fields X, Y, Z, W on M. From the above equation we obtain the relation
h(R(X,Y)Z,W) +h(Z,R(X,Y)W) = 0.
Replacing Z = W = ¢ in the above equation and using (7), we get
n(X)h(Y,¢) =n(Y)h(X,§) = 0.
Replacing X = ¢ and using (3), the above equation reduces to
h(Y, ) = n(Y)h(S,¢) (23)

for all vector fields Y on M. Differentiating the above equation covariantly with respect to X,
we get
Now expanding the above eqution by using (23), (6), (9) and the property Vi = 0, we obtain

h(X,Y) = h(¢,§)g(X,Y) (24)

for all vector fields X, Y on M.
Let us take
h = £:8+25+2un @1. (25)

Then from (11), (12), we get

h(g,g) = -2\ — <p+ ﬁ) + 7.

Then using (25), equation (24) becomes

(£:8)(X,Y) +25(X,Y) + {2)\ —r+ <p * 5T

)] sty -+ 2 =0
which is the conformal 7-Einstein soliton. Hence, we complete the proof. O

Definition 2. A Kenmotsu manifold is said to be Ricci-recurrent manifold if there exists a non-
zero 1-form A such that
(VwS)(Y,Z) = A(W)S(Y, Z2) (26)

for any vector tields W, Y, Z on M.

Theorem 7. If the metric of a (2n+1)-dimensional Ricci-recurrent Kenmotsu manifold is a con-
formal nj-Einstein soliton with the 1-form A, then the scalar curvature becomes

2A 4 2p + <p—|— ) +4n(A(G) —1).

2n+1
Proof. Replacing Z by ¢ in the equation (26) and using (8), we get

(VwS)(Y, &) = —2nAW)y(Y),
which implies that

WS(Y,8) = S(ViY, &) — S(Y, V&) = —2nA(W)y(Y).
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Using (8) and (6), the above equation becomes
2n(Vwn)Y +2np(W)n(Y) + S(Y, W) = 2nA(W)5(Y).
Again using (9), the above equation reduces to
2ng(W,Y) +S(Y, W) = 2nA(W)5(Y).

Taking W = ¢ in the above equation and using (12), we obtain

r:2)t—|—2;t+<p+ >+4n(A(C)—1)-

2n+1
This completes the proof.

Example 1. Here, we consider the three-dimensional manifold M = {(x,y,z) € R?, (x,y,z) #
(0,0,0)}, where (x,vy,z) are standard coordinates in R3. The vector fields

e—zi e—zi e——zi

are linearly independent at each point of M. Let g be the Riemannian metric defined by

gler,e2) = g(ez,e3) = gles,e1) =0,  gler,e1) = glez,e2) = g(es, e3) = 1.

Let 17 be the 1-form defined by 1(Z) = g¢(Z,e3) for any vector field Z in R® and ¢ be the
(11)-tensor field defined by ¢e; = —ey, pey = e1, pes = 0. Then using the linearity of ¢ and g,
we have

n(es) =1, ¢*’Z=—-Z+n(Z)es, PZ,¢W) =g(Z, W) —n(Z)n(W)

forany Z,W € x(M). Thus fore; = ¢, (¢,,1,g) defines an almost contact metric structure
on M.

Let V be the Levi-Civita connection with respect to the Riemannian metric §. Then we have
le1,e2] = 0, [e1,e3] = e1, [e2, €3] = €. The connection V of the metric g is given by

28(VxY,Z2) = Xg(Y, Z) +Yg(Z,X) — Zg(X,Y) — g(X, [Y, Z]) — (Y, [X, Z]) + 8(Z, [X,Y]),

which is known as Koszul’s formula.
Using Koszul’s formula, we can easily calculate

Velel = —¢€3, velez = 0/ vele3 = e1,

vezel = 0/ VEZeZ = —é€s3, v6263 = ey,

Vg3€1 = 0, Vg3€2 = 0, Ve3€3 =0.
From the above it follows that the manifold satisties Vx{ = X — n(X)¢ for = es. Hence
the manifold is a Kenmotsu manifold. So, here we have considered R® as an almost contact

manifold, which turns out to be a 3-dimensional Kenmotsu manifold.
Also, the Riemannian curvature tensor R is given by

R(X,Y)Z = VxVyZ — VyVxZ — Vix y|Z.
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Hence,
R(e1,e2)er = —e1,  R(er,ea)es = —e1,  Rlep,e1)er = —ep,
R(ey,e3)e3 = —ep, R(es,e1)er = —e3, R(es, e2)er = —e3,
R(e1, e2)es =0, R(ez,e3)e1 =0, R(e3,e1)ep = 0.

Then, the Ricci tensor S is given by S(e1,e1) = —2, S(ez,e2) = —2, S(e3, e3) = —2. From (12),
we have

S(es, e3) = A+y——+7

which implies that
r=2A+2u—4+ <p+§> .

Hence A and p satisties equation (13) and so g defines a conformal 11-Einstein soliton on the
3-dimensional Kenmotsu manifold M.
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Mertoro paHOI po60TH € BUBUEHHST AesIKMX BAACTMBOCTel MHOTOBMAA KeHMoIly, MeTpuKa SIKOTO
€ KOH(pOpMHIM 7J-COAITOHOM AJHINITaliHA. MM AOCAIAVIAM ITEBHI BAACTMBOCTI MHOTOBMAA KerMony,
IO AOTTyCKae KOHOPMHIMI #-COAITOH ATtHIIITalHa. TakoX M 36yAyBaAy TPVMBMMIPHIIT MHOTOBYA
Kenmorry, 1110 3a AOBOABHSIE KOH(OPMHII #]-COAITOH AVHIIITalHA.

Kontouosi cnosa i ¢ppasu: COAiTOH AMHINTalHA, 1/-COAITOH AVMHINTalHa, KOH(OPMHIIA 1-COAITOH
ArvtHITITalHAa, 1]-MHOTOBMA AVHINTalHa, MHOrosua Keamony.



