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SOME PROPERTIES OF THE POLYNOMIALLY BOUNDED O-MINIMAL
EXPANSIONS OF THE REAL FIELD AND OF SOME QUASIANALYTIC LOCAL
RINGS
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In this paper, we study the Weierstrass division theorem over the rings of smooth germs that
are definable in an arbitrary polynomially bounded o-minimal expansion of the real field by giving
some criteria for satisfying this theorem. Afterwards, we study some topological properties of some
quasianalytic subrings of the ring of smooth germs for the (x;)-adic topology by showing that these
rings are separable metric spaces. Also, we cite a criterion for their completeness with respect to the
(x1)-adic topology.
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1 INTRODUCTION

In this paper, we will study the Weierstrass division theorem over some polynomially
bounded o-minimal structures in order to tackle a question asked by L. Van den Dries in [18]:
does the Weierstrass division theorem hold over the ring of real analytic germs that are defin-
able in an o-minimal structure (not necessarily polynomially bounded), extending the struc-
ture of real numbers? In [9], there is a positive answer to this question for the semialgebraic
setting and also for the structure of globally subanalytic sets and functions, but, a negative an-
swer for the structure (R, +, —, .,0,1, <, exp). The Weierstrass division theorem is the key tool
for local complex analytic geometry (see, for example, [8, Chapter II and III]). It is also used
e.g. in the proof of the important Oka’s coherence theorem (see [8, Chapter IV]). So, V. Thelliez
have shown in [17] that over the ring of germs of smooth functions in some fixed quasiana-
lytic Carleman class that is closed under derivation, this theorem holds only for hyperbolic
polymomials (see also [6]). In [7], it has been shown that for the ring of smooth germs that
are definable in a polynomially bounded o-minimal expansion of the real field, this theorem
holds just for the hyperbolic polymomials. Also in [14], it has been shown in particular that the
Weierstrass division theorem does not hold for the ring of the smooth germs that are definable
in a polynomially bounded o-minimal expansion of the real field that contains strictly the ring
of real analytic germs. So, in the third section, we try to generalize the result given in [7] by
studying the Weierstrass division theorem over a polynomially bounded o-minimal expansion
of the real field for arbitrary functions that are regular of an order p with respect to the last
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variable, so we give a negative answer to this problem and thanks to the result proved in [13],
we will form some criterions for satisfying this theorem.

In commutative algebra, the filtration on a commutative ring R by the powers of a proper
ideal I determines the Krull topology (after Wolfgang Krull) or the I-adic topology on R. The
case of a maximal ideal I = m is especially important, for example the distinguished maximal
ideal of a valuation ring. The basis of open neighbourhoods of 0 in R is given by the powers
(I")en- In the last section, we are going to study some (x;)-adic topological properties over
some quasianalytic subrings of the ring of smooth germs, we endow these rings with a metric
which turns them into a separable metric spaces, also we study their completeness for the
(x1)-adic topology.

2 NOTATIONS AND DEFINITIONS

Thoughout this paper, R denotes a fixed (but arbitrary) expansion of the structure R =
(R,<,0,1,+,—, .). Definable means first order definable in R with parameters from R. A
function f : X — R is said to be definable if its graph is definable. We say that R is o-minimal
if every definable subset of R is just a finite union of intervals and points. We say that R is
polynomially bounded if for every definable function f : R — R there exists N € IN such that
|f(t)| < tN for all sufficiently large positive t.

Example 1. The structure R := (R,+,—,.,0,1, <) is polynomially bounded and o-minimal

(by Tarski-Seidenberg); the sets definable in this structure are exactly the semialgebraic sets.
The structure of the ordered real field with restricted analytic functions R;,, whose de-

finable sets are the finitely subanalytic sets, is a polynomially bounded o-minimal structure

by [10].

For each n € IN, we denote by &, the ring of smooth germs at the origin of R” and by
R[[x1, ..., x4]] the ring of formal power series with coefficients in R.

For every f € &,, we denote by f € R[[xy,...,x,]] its (infinite) Taylor expansion at the
origin. The mapping &, > f + f € R[[xy, ..., xy]] is called the Borel mapping.

Let f = Y aux1" € R[[x1]] be a formal power series. We denote by Suppf ={n € N:

nelN
an # 0}.

Definition 1. Foreachn € IN, letC,, C &, be a subring of the ring of germs of smooth functions
at the origin of R". We say that C, is a quasianalytic ring if the Borel mapping " : C, —
R[[x1, ..., x4]] is injective. In other words, if the ring C,, does not contain any nonzero smooth
flat germ at 0.

Example 2. a) The rings A,, n € IN, of germs of the real analytic functions at 0 € IR" are
quasianalytic rings.

b) The ring of smooth germs &; is not a quasianalytic ring as it contains some nonzero
smooth germs that vanish at 0 together with all their derivatives.

By quasianaliticity, we have that Cy C R[[x1,...,x,]] foreachn € N.
A germ f € C, is called regular in x,, of order p with respect to the variable x; if there exists
a formal power series 1 € R[[xy, ..., x,]] such that f = x/h(0, x,,) with 1(0) # 0.
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Let {C, : n € IN} be a system of quasianalytic rings, we say that this system satisfies
Weierstrass division theorem if f, ¢ € C,, such that the germ g is regular of order p with respect
to the variable x;, there exist g € C;, and rq,...,r, € C,_1 such that

p .
f=gq9+ Z ri(x, .. L Xp_1)xh .
=1

Example 3. The system of the rings of real analytic germs at the origin { A, : n € IN} satisfies
the Weierstrass division theorem.

3 WEIERSTRASS DIVISION THEOREM OVER SOME POLYNOMIALLY BOUNDED O-MINIMAL
STRUCTURES

Fix a polynomially bounded o-minimal structure R that is an expansion of the structure
R = (R,<,0,1,+,—, .) and denote by (D,), cn the rings of those smooth functions germs at
0 which are definable in R. We recall that if R = (R, <,0,1,+, —, . ), then the rings (Dy),,cin
are exactly the rings of algebraic smooth functions germs called Nash germs (see [5] for a
thorough treatment of Nash germs).

It is well known thanks to [11], that the rings (D;),,cp are also a famous example of quasi-
analytic local rings.

We recall that in every polynomially bounded o-minimal structure R, the family (Dy), o
satisfies the following assertions:

(C1) the rings (Dy),cn are closed under monomial division, so each D is a principal ideal
domain;

(C2) the closedness under inverse implies that each D, is a local ring. The unique maximal
ideal of each ring D,, is generated by the coordinates x1, ..., x,;

(C3) the rings (D), o are closed under partial differentiation.

We know thanks to [5, theorem 8.2.2] that the ring of smooth germs that are definable in the
structure R (called Nash germs) satisfies the Weierstrass division theorem, but unfortunately,
there are some rings D, which don't satisfy the Weierstrass division theorem even if we take
them to be the rings of real analytic functions that are definable in a polynomially bounded
o-minimal structure R, which is the aim of the following proposition.

We recall that the o-minimal structure R = (IR, sin [[0,1]) (where sin [[0, 1] denotes the
restriction of the sin function to the interval [0, 1]) is polynomially bounded as a reduct (in the
sense of definability) of the polynomially bounded o-minimal structure IR, (the definable sets
in R, are exactly the finitely subanalytic sets).

Remark 1. By [3, Proposition 3.1], if the system (D,,), . Satisfies the Weierstrass division the-
orem, then so does the system of the rings of real analytic definable germs in such structures.
But the reciprocal does not hold true by [3, Remark 3.3].

Proposition 1. Let R = (R, sin [[0,1]), then the Weierstrass division theorem does not hold in
the ring D;.
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Proof. Suppose that the Weierstrass division theorem holds in D, the function cos is also de-
finable in this structure R as it is closed under partial differentiation. So, we deduce the
existence of Q1, Q> in Dy, and R;, T; in Dy, i = 0,1, such that:

sin(y) = (x> + y*)Q1(x,y) + Ri(x)y + Ro(x), (1)

cos(y) = (x* + ¥*)Qa(x,y) + Ta(x)y + To(x). 2)

It is well known that exp(x) = cos(ix) — isin(ix) for all x € R. By taking y = ix in (1) and
(2), we have that

exp(x) = To +ixTy —i(Ro + ixRy) = (To + xRq) +i(xT; — Ro).

So, exp = Tp + xR;.

Therefore, the restriction of the function exp to the interval [0, 1] is definable in the struc-
ture R = (IR, sin [[0,1]), which contradicts Bianconi’s theorem in [4]. Hence, the Weierstrass
division theorem does not hold in the ring D;. O

So, under what conditions this system of the rings (Dj),,c satisfies the Weierstrass divi-
sion theorem? That is why, we will give some criteria for satisfying this theorem.

Foreachn € NN, let f,¢ € D, be such that g is regular of order p with respect to x;,, by
the Weierstrass division theorem in the ring of formal power series R[[x1, ..., X,]|, there exist
g€ Rl[x1,...,xn]], P1,...,7p € R[[x1,...x,_1]] such that

p

f=8i+ ?j(xb---,xn_l)x,’fj. 3)
=1

p .
PutR =) #i(x,..., Xp_1)xh .
=1

Theorem 1. For eachn € IN, let f and g be elements of the ring D, and the division as in the
equation (3), so, if there exists R € D,, such that R = R, then this division holds in the ring Dj,.

P .
Proof. We have that R = Z Fi(x, ..., Xn—1)xh ', hence we have

=1
P~ 1R ~
axp—l = (p - ]‘)!rl (xll ... /xn_l).
n
But we have -
oP~IR or—1R
= — _ |
<ax5_1 ) axZ_l (p 1).1’1(.7(1,. . '/xn—l).

As the rings (D), are closed under partial differentiation, we deduce that there exists
r1 such that A4 = 7.

2R
We have 2 = (p—1)!7(x1,..., xp-1)xn + (p — 2)!72(x1,...,x,-1), for the same rea-
Xn
son we deduce that there exists 1, € D,_1 such that 7, = 7. By continuing this process, we

prove that there exist

A~

r,--.,7p € Dy_1 such that fi =7, Vi=1,...,p.



SOME PROPERTIES OF THE POLYNOMIALLY BOUNDED O-MINIMAL EXPANSIONS OF THE REAL FIELD 487

By (3), we have

T
<f - Zr]-xﬁ*]) = ¢, wherej € R[[x1,...x,-1]].
j=1

By a result of Krzysztof Jan Nowak [13], Criterion of Divisibility, there exists g € D, such
that
S
f=Y ' =ag
j=1
which proves the theorem. O

We know that the quasianalytic rings (Dj),, o contain the polynomial ring and are closed
under composition and partial differentiation. So, they satisfy the assertions of Definition 1.1
in [16], by [16, Corollary 2.4], the Borel mapping " : D, — R][[x1,...,x4]] is not surjective if
n > 2, that is why we must restrict the following two propositions just to the case when n = 1.

Recall that a polynomial azx§ +a;_1x5 1 + ... + a9 € R[[x1]][x2] is a distinguished polyno-
mial if gy = 1and ap(0) = ... = a;,_1(0) = 0.

Proposition 2. If the Borel mapping " : D1 — R|[[x1]] is surjective, then the Weierstrass prepa-
ration theorem holds in the ring D;.

Proof. Let f € D, such that f is regular of order p with respect to x», so, by the Weier-
strass preparation theorem in the ring of formal power series R[[x1, x3]], there exists a dis-
tinguished polynomial P € R[[x;]][x2] of degree p with respect to x,, such that f = gP, where

g € R[[x1,x2]], and g(0) # 0,and P = x} + ﬁp_l(xl)ngl + ... Fdp(x1).
As the Borel mapping is surjective, there exist ay, ..., 4,1 € Dy such that

d; = d; witha;(0) =0, Vj=0,...,p—1.

Put Py = x} + a, 1(x1)xh L ag(x), so, f = gPs.
By the result of Krzysztof Jan Nowak in [13], Criterion of Divisibility, there exists g € D,
such that f = qPf, as § = ¢ we deduce that (0) # 0, which proves the proposition. O

Proposition 3. If the Borel mapping " : D; — R[[x1]] is surjective, then the Weierstrass divi-
sion theorem holds in the ring D>.

Proof. Let f,¢ € D, be such that ¢ is regular of order p with respect to x;, by the Weierstrass
division theorem in the ring of formal power series R[[x1, xp]], there exist § € R[[x1, x2]],
1,...,7p € R[[x1]] such that

f=8a+ Y Filn)x . (4)
By assumption, the Borel mapping is surjective, so there exist 71, ...,r, € Dj such that
fi =17, Vi=1,...,p,

so (4) implies that

p .
(f — er(xl)xgﬂ) = ¢4, where § € R[[x1, x2]].
=1
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By the result of Krzysztof Jan Nowak in [13], Criterion of Divisibility, there exists g4 € D, such
that

p .
f=Yra)xy = gq,
j=1
which proves the proposition. O

Remark 2. Proposition 2 is an immediate consequence of Proposition 3, therefore, it suffices
to prove Proposition 3 to obtain the Proposition 2.

Remark 3. By imitating the classical proof of the noetherianity of the ring of convergent power
series as a consequence of the satisfaction of the Weierstrass division theorem, we deduce that
if the Borel mapping " : D1 — R[[x1]] is surjective, then the ring D, is noetherian.

We end this section by another application of the result of Krzysztof Jan Nowak. For this
aim, let us recall the following theorem proved in [15, Theorem 10.1].

—+00
Put f = Y fux] € R[[x1]], let g1, ..., gs be elements of R[[x1]]. Set
n=0

e(f) :=min{n € N : f, # 0} = inf Supp(f),
Al = e(gl) +N,

and
A =re(gi) + N\ U A; forall 2 <i<s.
1<j<i
Finally, set Ag := IN \ U A;.

1<i<s
Theorem 2. Let f € R[[x1]]. Then there exist some unique power series g1, . ..,qs,* € R[[x1]]
such that
f=gq1+...+gsqs+7,
and
e(gi) + Supp(g;) C A;, and Supp(r) C Ap.

The power series r is called the remainder of the division of f by g1, ...,&s.

Proposition 4. Let I be an ideal of the ring D;, then every element of this ring is equivalent
modulo I to a polynomial.

Proof. Let I be a nonzero ideal of the ring D, where D is a principal ideal domain and this
ideal I is generated by a single element g. Let f be an arbitrary element of the ring D; and
e(g) = a. By applying Theorem 2 above, there exist 1,7 € R[[x{]] such that f = ¢h +7, as
Supp(r) is finite. We deduce that r is a polynomial and therefore r € D;, so

f—r=3gh
By applying of the result of Krzysztof Jan Nowak [13], Criterion of Divisibility, there exists
q € D, such that

f-r=gq.

Therefore, f is equivalent to r modulo the ideal I. O
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4 THE (x1)-ADIC TOPOLOGY OVER SOME QUASIANALYTIC LOCAL RINGS

In the sequel, our work will be restricted just to the case of one variable. Firstly, let us recall
some basic facts about the (x)-adic topology.

Let m be an ideal of a ring A, the m-adic topology is a linear topology of the ring A in which
the fundamental system of neighbourhoods of zero consists of the powers m", where n € IN.

If the m-adic topology is separated (i. e. ;>om’ = {0}), then this topology is metrizable.
Indeed, for all x,y € A, let n be the largest integer such that x — y € m", where mY = A. Then
we define the metric d(x,y) = 5= when 7 exists and 0 otherwise.

Alocal ring (A, m) is called complete when it is complete with respect to the above metric,
that is, when all its Cauchy sequences converge.

The m-adic completion of a ring A is equal to the projective limit of the factor rings
(A/m"),en. For example, the (x7)-adic completion of the polynomial ring R[x1] is the ring of
formal power series R[[x1]] up to isomorphism.

The interested reader will find more information about this in a very readable form in
[1, Chapter 10]. Let C; C &; be a quasianalytic subring of the ring £ which contains the
polynomial ring R[x;]. Assume that the ring C; satisfies the following property, called the
stability under monomial division.

Let f € C; and f = x1$, where ¢ € R[[x1]], then ¢ € C;.

Remark 4. By the property of the stability under monomial division, the ring C; is a principal
ideal domain (see [2, Remark 3.1]).

Remark 5. As the polynomial ring R[x1] is included in the ring C; and by quasianalyticity,
we may also assume that C; C R[[x1]], and as the (x1)-adic completion of the ring R[x1] is
isomorphic to R|[[x1]], we deduce that the (x1)-adic completion of the ring C; is also the ring
of formal power series R|[[x1]] up to isomorphism.

Proposition 5. The polynomial ring R[x1] is dense in the ring & for the (x1)-adic topology.

Proof. Let f be a smooth germ and n € IN. We need to find a polynomial g, such that the
germ of f — g, at 0 is in (x})&;. Thanks to Hadamard’s Lemma 2.8 in [12], we deduce that
there exists a smooth function #; such that f — f(0) = x1h1, and by the same way, there exists
hy € & such that hy — hy(0) = x1hy.

By iterated application of the same Lemma, we can write

f(x1) = gn(x1) + x7hn(x1),
f1(0)

where gu(x1) = f(0) + ' 01 +... + " —5
the germ of f — g, isin (x1")&;. O

xT’l, and h,, is a smooth function germ. Then

Remark 6. Proposition 5 still holds true if we replace the ring of smooth germs &; by the
subring C; C & as it is closed under monomial division.
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Remark 7. From the above properties and thanks to the quasianalyticity, we deduce that the
ring C; is a metrizable separable metric space for the (x1)-adic topology.

We end this paper by giving a criterion that allows us to test the non surjectivity of the
Borel mapping over the ring C;.

Proposition 6. If the Borel mapping " : C; — R[[x1]] is surjective, then the ring C; is complete
for the (x1)-adic topology.

Proof. Suppose that the mapping ” is surjective, and let us take f € C; such that f = x'H,
where n € IN and H € R[[x;]], so by the property of the stability under monomial di-
vision, there exists i € Cj such that i = H and by quasianalyticity, we have f = x!h.
It is clear that if f € (x7)C; then f € (x)R[[x1]], consequently, we have the equivalence
fe e & fe (¥)R[[x]] forall n € N, therefore, the mapping ” is a homeomorphism
for the (x1)-adic topology. As the mapping " is a linear homeomorphism and the ring R[[x1]]
is complete, we deduce that the ring C; is also complete for the (x1)-adic topology. O

Remark 8. Proposition 6 still holds if we skip the assumption of stability under monomial divi-
sion and by assuming just that C; is a quasianalytic local ring which is closed under derivation.
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Y witt poboTi MU AOCAIAXKyeMO Teopemy BeliepiiTpacca Ipo HMOAIABHICTD HaA KiABIISIMI TAAA-
KMX POCTKiB, sIKi MOXHa BU3HAUNTHU Y AOBIABHOMY IOAIHOMiaABHO O6MeEXeHOMY O-MiHiMaAbHOMY
PO3ILIPEHH] AIICHOrO MOASI, AABIIM AeSIKi KpUTepii, IO 3aA0BOABHSIOTH 10 TeopeMy. IloTiM ao-
CAIAXKY€EMO AeSIKi TOMOAOTIYUHI BAQCTMBOCTI AeSIKMX KBadiaHAAITWMUHMX MiAKiA€Ib KiABLST TAaAKMX
POCTKIB AAsT (X1)-aAMUHOI TOMOAOTII TOKA3yIOuy, IO I KiABLSI € cemapabeAbHMMI MEeTPUUHUMM
mpocTopamut. TakoXX HABOAMMO KPUTEPIli IX TIOBHOTH IOAO (X1 )-aAMUHOI TOIIOAOTII.

Kntouosi cnoea i ppasu: Teopema BeliepiTpacca Mpo MOAIABHICTD, TOAIHOMIaABHO O6MeXeHa O-
MiHIMaABHA CTPYKTypa, KBa3iaHaAITHUHe Kiablle, (X )-aAMIHA TOIIOAOTISL



