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SOME PROPERTIES OF THE POLYNOMIALLY BOUNDED O-MINIMAL

EXPANSIONS OF THE REAL FIELD AND OF SOME QUASIANALYTIC LOCAL

RINGS
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In this paper, we study the Weierstrass division theorem over the rings of smooth germs that

are definable in an arbitrary polynomially bounded o-minimal expansion of the real field by giving

some criteria for satisfying this theorem. Afterwards, we study some topological properties of some

quasianalytic subrings of the ring of smooth germs for the (x1)-adic topology by showing that these

rings are separable metric spaces. Also, we cite a criterion for their completeness with respect to the

(x1)-adic topology.
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1 INTRODUCTION

In this paper, we will study the Weierstrass division theorem over some polynomially

bounded o-minimal structures in order to tackle a question asked by L. Van den Dries in [18]:

does the Weierstrass division theorem hold over the ring of real analytic germs that are defin-

able in an o-minimal structure (not necessarily polynomially bounded), extending the struc-

ture of real numbers? In [9], there is a positive answer to this question for the semialgebraic

setting and also for the structure of globally subanalytic sets and functions, but, a negative an-

swer for the structure (R,+,−, . , 0, 1,<, exp). The Weierstrass division theorem is the key tool

for local complex analytic geometry (see, for example, [8, Chapter II and III]). It is also used

e.g. in the proof of the important Oka’s coherence theorem (see [8, Chapter IV]). So, V. Thelliez

have shown in [17] that over the ring of germs of smooth functions in some fixed quasiana-

lytic Carleman class that is closed under derivation, this theorem holds only for hyperbolic

polymomials (see also [6]). In [7], it has been shown that for the ring of smooth germs that

are definable in a polynomially bounded o-minimal expansion of the real field, this theorem

holds just for the hyperbolic polymomials. Also in [14], it has been shown in particular that the

Weierstrass division theorem does not hold for the ring of the smooth germs that are definable

in a polynomially bounded o-minimal expansion of the real field that contains strictly the ring

of real analytic germs. So, in the third section, we try to generalize the result given in [7] by

studying the Weierstrass division theorem over a polynomially bounded o-minimal expansion

of the real field for arbitrary functions that are regular of an order p with respect to the last
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variable, so we give a negative answer to this problem and thanks to the result proved in [13],

we will form some criterions for satisfying this theorem.

In commutative algebra, the filtration on a commutative ring R by the powers of a proper

ideal I determines the Krull topology (after Wolfgang Krull) or the I-adic topology on R. The

case of a maximal ideal I = m is especially important, for example the distinguished maximal

ideal of a valuation ring. The basis of open neighbourhoods of 0 in R is given by the powers

(In)n∈N. In the last section, we are going to study some (x1)-adic topological properties over

some quasianalytic subrings of the ring of smooth germs, we endow these rings with a metric

which turns them into a separable metric spaces, also we study their completeness for the

(x1)-adic topology.

2 NOTATIONS AND DEFINITIONS

Thoughout this paper, R denotes a fixed (but arbitrary) expansion of the structure R =

(R,<, 0, 1,+,−, . ). Definable means first order definable in R with parameters from R. A

function f : X → R is said to be definable if its graph is definable. We say that R is o-minimal

if every definable subset of R is just a finite union of intervals and points. We say that R is

polynomially bounded if for every definable function f : R → R there exists N ∈ N such that

| f (t)| ≤ tN for all sufficiently large positive t.

Example 1. The structure R := (R,+,−, . , 0, 1,<) is polynomially bounded and o-minimal

(by Tarski-Seidenberg); the sets definable in this structure are exactly the semialgebraic sets.

The structure of the ordered real field with restricted analytic functions Ran, whose de-

finable sets are the finitely subanalytic sets, is a polynomially bounded o-minimal structure

by [10].

For each n ∈ N, we denote by En the ring of smooth germs at the origin of R
n and by

R[[x1, . . . , xn]] the ring of formal power series with coefficients in R.

For every f ∈ En, we denote by f̂ ∈ R[[x1, . . . , xn]] its (infinite) Taylor expansion at the

origin. The mapping En ∋ f 7→ f̂ ∈ R[[x1, . . . , xn]] is called the Borel mapping.

Let f̂ = ∑
n∈N

anx1
n ∈ R[[x1]] be a formal power series. We denote by Supp f̂ = {n ∈ N :

an 6= 0}.

Definition 1. For each n ∈ N, let Cn ⊂ En be a subring of the ring of germs of smooth functions

at the origin of R
n. We say that Cn is a quasianalytic ring if the Borel mapping ∧ : Cn →

R[[x1, . . . , xn]] is injective. In other words, if the ring Cn does not contain any nonzero smooth

flat germ at 0.

Example 2. a) The rings An, n ∈ N, of germs of the real analytic functions at 0 ∈ R
n are

quasianalytic rings.

b) The ring of smooth germs E1 is not a quasianalytic ring as it contains some nonzero

smooth germs that vanish at 0 together with all their derivatives.

By quasianaliticity, we have that Ĉn ⊂ R[[x1, . . . , xn]] for each n ∈ N.

A germ f ∈ Cn is called regular in xn of order p with respect to the variable xn if there exists

a formal power series h ∈ R[[x1, . . . , xn]] such that f̂ = x
p
nh(0, xn) with h(0) 6= 0.
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Let {Cn : n ∈ N} be a system of quasianalytic rings, we say that this system satisfies

Weierstrass division theorem if f , g ∈ Cn such that the germ g is regular of order p with respect

to the variable xn, there exist q ∈ Cn and r1, . . . , rp ∈ Cn−1 such that

f = gq +
p

∑
j=1

rj(x1, . . . , xn−1)x
p−j
n .

Example 3. The system of the rings of real analytic germs at the origin {An : n ∈ N} satisfies

the Weierstrass division theorem.

3 WEIERSTRASS DIVISION THEOREM OVER SOME POLYNOMIALLY BOUNDED O-MINIMAL

STRUCTURES

Fix a polynomially bounded o-minimal structure R that is an expansion of the structure

R = (R,<, 0, 1,+,−, . ) and denote by (Dn)n∈N
the rings of those smooth functions germs at

0 which are definable in R. We recall that if R = (R,<, 0, 1,+,−, . ), then the rings (Dn)n∈N

are exactly the rings of algebraic smooth functions germs called Nash germs (see [5] for a

thorough treatment of Nash germs).

It is well known thanks to [11], that the rings (Dn)n∈N
are also a famous example of quasi-

analytic local rings.

We recall that in every polynomially bounded o-minimal structure R, the family (Dn)n∈N

satisfies the following assertions:

(C1) the rings (Dn)n∈N
are closed under monomial division, so each D1 is a principal ideal

domain;

(C2) the closedness under inverse implies that each Dn is a local ring. The unique maximal

ideal of each ring Dn is generated by the coordinates x1, . . . , xn;

(C3) the rings (Dn)n∈N
are closed under partial differentiation.

We know thanks to [5, theorem 8.2.2] that the ring of smooth germs that are definable in the

structure R (called Nash germs) satisfies the Weierstrass division theorem, but unfortunately,

there are some rings Dn which don’t satisfy the Weierstrass division theorem even if we take

them to be the rings of real analytic functions that are definable in a polynomially bounded

o-minimal structure R, which is the aim of the following proposition.

We recall that the o-minimal structure R = (R, sin ⌈[0, 1]) (where sin ⌈[0, 1] denotes the

restriction of the sin function to the interval [0, 1]) is polynomially bounded as a reduct (in the

sense of definability) of the polynomially bounded o-minimal structure Ran (the definable sets

in Ran are exactly the finitely subanalytic sets).

Remark 1. By [3, Proposition 3.1], if the system (Dn)n∈N
satisfies the Weierstrass division the-

orem, then so does the system of the rings of real analytic definable germs in such structures.

But the reciprocal does not hold true by [3, Remark 3.3].

Proposition 1. Let R = (R, sin ⌈[0, 1]), then the Weierstrass division theorem does not hold in

the ring D2.
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Proof. Suppose that the Weierstrass division theorem holds in D2, the function cos is also de-

finable in this structure R as it is closed under partial differentiation. So, we deduce the

existence of Q1, Q2 in D2, and Ri, Ti in D1, i = 0, 1, such that:

sin(y) = (x2 + y2)Q1(x, y) + R1(x)y + R0(x), (1)

cos(y) = (x2 + y2)Q2(x, y) + T1(x)y + T0(x). (2)

It is well known that exp(x) = cos(ix)− i sin(ix) for all x ∈ R. By taking y = ix in (1) and

(2), we have that

exp(x) = T0 + ixT1 − i(R0 + ixR1) = (T0 + xR1) + i(xT1 − R0).

So, exp = T0 + xR1.

Therefore, the restriction of the function exp to the interval [0, 1] is definable in the struc-

ture R = (R, sin ⌈[0, 1]), which contradicts Bianconi’s theorem in [4]. Hence, the Weierstrass

division theorem does not hold in the ring D2.

So, under what conditions this system of the rings (Dn)n∈N
satisfies the Weierstrass divi-

sion theorem? That is why, we will give some criteria for satisfying this theorem.

For each n ∈ N, let f , g ∈ Dn be such that g is regular of order p with respect to xn, by

the Weierstrass division theorem in the ring of formal power series R[[x1, . . . , xn]], there exist

q̃ ∈ R[[x1, . . . , xn]], r̃1, . . . , r̃p ∈ R[[x1, . . . xn−1]] such that

f̂ = ĝq̃ +
p

∑
j=1

r̃j(x1, . . . , xn−1)x
p−j
n . (3)

Put R̃ =
p

∑
j=1

r̃j(x1, . . . , xn−1)x
p−j
n .

Theorem 1. For each n ∈ N, let f and g be elements of the ring Dn and the division as in the

equation (3), so, if there exists R ∈ Dn such that R̂ = R̃, then this division holds in the ring Dn.

Proof. We have that R̃ =
p

∑
j=1

r̃j(x1, . . . , xn−1)x
p−j
n , hence we have

∂p−1R̃

∂x
p−1
n

= (p − 1)!r̃1(x1, . . . , xn−1).

But we have
̂(∂p−1R

∂x
p−1
n

)
=

∂p−1R̃

∂x
p−1
n

= (p − 1)! r̃1(x1, . . . , xn−1).

As the rings (Dn)n∈N
are closed under partial differentiation, we deduce that there exists

r1 such that r̂1 = r̃1.

We have
∂̂p−2R

∂x
p−2
n

= (p − 1)! r̃1(x1, . . . , xn−1)xn + (p − 2)! r̃2(x1, . . . , xn−1), for the same rea-

son we deduce that there exists r2 ∈ Dn−1 such that r̂2 = r̃2. By continuing this process, we

prove that there exist

r1, . . . , rp ∈ Dn−1 such that r̂j = r̃j, ∀j = 1, . . . , p.
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By (3), we have

̂(
f −

p

∑
j=1

rjx
p−j
n

)
= q̃ĝ, where q̃ ∈ R[[x1, . . . xn−1]].

By a result of Krzysztof Jan Nowak [13], Criterion of Divisibility, there exists q ∈ Dn such

that

f −
p

∑
j=1

rjx
p−j
n = qg,

which proves the theorem.

We know that the quasianalytic rings (Dn)n∈N
contain the polynomial ring and are closed

under composition and partial differentiation. So, they satisfy the assertions of Definition 1.1

in [16], by [16, Corollary 2.4], the Borel mapping ∧ : Dn → R[[x1, . . . , xn]] is not surjective if

n ≥ 2, that is why we must restrict the following two propositions just to the case when n = 1.

Recall that a polynomial akxk
2 + ak−1xk−1

2 + . . . + a0 ∈ R[[x1]][x2] is a distinguished polyno-

mial if ak = 1 and a0(0) = . . . = ak−1(0) = 0.

Proposition 2. If the Borel mapping ∧ : D1 → R[[x1]] is surjective, then the Weierstrass prepa-

ration theorem holds in the ring D2.

Proof. Let f ∈ D2 such that f̂ is regular of order p with respect to x2, so, by the Weier-

strass preparation theorem in the ring of formal power series R[[x1, x2]], there exists a dis-

tinguished polynomial P ∈ R[[x1]][x2] of degree p with respect to x2, such that f̂ = gP, where

g ∈ R[[x1, x2]], and g(0) 6= 0, and P = x
p
2 + ãp−1(x1)x

p−1
2 + . . . + ã0(x1).

As the Borel mapping is surjective, there exist a0, . . . , ap−1 ∈ D1 such that

âj = ãj with aj(0) = 0, ∀j = 0, . . . , p − 1.

Put Pf = x
p
2 + ap−1(x1)x

p−1
2 + . . . + a0(x1), so, f̂ = gP̂f .

By the result of Krzysztof Jan Nowak in [13], Criterion of Divisibility, there exists q ∈ D2

such that f = qPf , as q̂ = g we deduce that q(0) 6= 0, which proves the proposition.

Proposition 3. If the Borel mapping ∧ : D1 → R[[x1]] is surjective, then the Weierstrass divi-

sion theorem holds in the ring D2.

Proof. Let f , g ∈ D2 be such that ĝ is regular of order p with respect to x2, by the Weierstrass

division theorem in the ring of formal power series R[[x1, x2]], there exist q̃ ∈ R[[x1, x2]],

r̃1, . . . , r̃p ∈ R[[x1]] such that

f̂ = ĝq̃ +
p

∑
j=1

r̃j(x1)x
p−j
2 . (4)

By assumption, the Borel mapping is surjective, so there exist r1, . . . , rp ∈ D1 such that

r̂j = r̃j, ∀j = 1, . . . , p,

so (4) implies that
̂(

f −
p

∑
j=1

rj(x1)x
p−j
2

)
= ĝq̃, where q̃ ∈ R[[x1, x2]].
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By the result of Krzysztof Jan Nowak in [13], Criterion of Divisibility, there exists q ∈ D2 such

that

f −
p

∑
j=1

rj(x1)x
p−j
2 = gq,

which proves the proposition.

Remark 2. Proposition 2 is an immediate consequence of Proposition 3, therefore, it suffices

to prove Proposition 3 to obtain the Proposition 2.

Remark 3. By imitating the classical proof of the noetherianity of the ring of convergent power

series as a consequence of the satisfaction of the Weierstrass division theorem, we deduce that

if the Borel mapping ∧ : D1 → R[[x1]] is surjective, then the ring D2 is noetherian.

We end this section by another application of the result of Krzysztof Jan Nowak. For this

aim, let us recall the following theorem proved in [15, Theorem 10.1].

Put f =
+∞

∑
n=0

fnxn
1 ∈ R[[x1]], let g1, . . . , gs be elements of R[[x1]]. Set

e( f ) := min{n ∈ N : fn 6= 0} = inf Supp( f ),

∆1 = e(g1) + N,

and

∆i = e(gi) + N \
⋃

1≤j<i

∆j for all 2 ≤ i ≤ s.

Finally, set ∆0 := N \
⋃

1≤i≤s

∆i.

Theorem 2. Let f ∈ R[[x1]]. Then there exist some unique power series q1, . . . , qs, r ∈ R[[x1]]

such that

f = g1q1 + . . . + gsqs + r,

and

e(gi) + Supp(qi) ⊂ ∆i, and Supp(r) ⊂ ∆0.

The power series r is called the remainder of the division of f by g1, . . . , gs.

Proposition 4. Let I be an ideal of the ring D1, then every element of this ring is equivalent

modulo I to a polynomial.

Proof. Let I be a nonzero ideal of the ring D1, where D1 is a principal ideal domain and this

ideal I is generated by a single element g. Let f be an arbitrary element of the ring D1 and

e(g) = α. By applying Theorem 2 above, there exist h, r ∈ R[[x1]] such that f̂ = ĝh + r, as

Supp(r) is finite. We deduce that r is a polynomial and therefore r ∈ D1, so

f̂ − r = ĝh.

By applying of the result of Krzysztof Jan Nowak [13], Criterion of Divisibility, there exists

q ∈ D2 such that

f − r = gq.

Therefore, f is equivalent to r modulo the ideal I.
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4 THE (x1)-ADIC TOPOLOGY OVER SOME QUASIANALYTIC LOCAL RINGS

In the sequel, our work will be restricted just to the case of one variable. Firstly, let us recall

some basic facts about the (x1)-adic topology.

Let m be an ideal of a ring A, the m-adic topology is a linear topology of the ring A in which

the fundamental system of neighbourhoods of zero consists of the powers mn, where n ∈ N.

If the m-adic topology is separated (i. e.
⋂

i≥0 mi = {0}), then this topology is metrizable.

Indeed, for all x, y ∈ A, let n be the largest integer such that x − y ∈ mn, where m0 = A. Then

we define the metric d(x, y) = 1
2n when n exists and 0 otherwise.

A local ring (A, m) is called complete when it is complete with respect to the above metric,

that is, when all its Cauchy sequences converge.

The m-adic completion of a ring A is equal to the projective limit of the factor rings

(A/mn)n∈N. For example, the (x1)-adic completion of the polynomial ring R[x1] is the ring of

formal power series R[[x1]] up to isomorphism.

The interested reader will find more information about this in a very readable form in

[1, Chapter 10]. Let C1 ⊂ E1 be a quasianalytic subring of the ring E1 which contains the

polynomial ring R[x1]. Assume that the ring C1 satisfies the following property, called the

stability under monomial division.

Let f̂ ∈ Ĉ1 and f̂ = x1 ϕ̂, where ϕ̂ ∈ R[[x1]], then ϕ ∈ C1.

Remark 4. By the property of the stability under monomial division, the ring C1 is a principal

ideal domain (see [2, Remark 3.1]).

Remark 5. As the polynomial ring R[x1] is included in the ring C1 and by quasianalyticity,

we may also assume that C1 ⊂ R[[x1]], and as the (x1)-adic completion of the ring R[x1] is

isomorphic to R[[x1]], we deduce that the (x1)-adic completion of the ring C1 is also the ring

of formal power series R[[x1]] up to isomorphism.

Proposition 5. The polynomial ring R[x1] is dense in the ring E1 for the (x1)-adic topology.

Proof. Let f be a smooth germ and n ∈ N. We need to find a polynomial gn such that the

germ of f − gn at 0 is in (xn
1 )E1. Thanks to Hadamard’s Lemma 2.8 in [12], we deduce that

there exists a smooth function h1 such that f − f (0) = x1h1, and by the same way, there exists

h2 ∈ E1 such that h1 − h1(0) = x1h2.

By iterated application of the same Lemma, we can write

f (x1) = gn(x1) + xn
1 hn(x1),

where gn(x1) = f (0) + f ′(0)x1 + . . . +
f (n−1)(0)

(n − 1)!
xn−1

1 , and hn is a smooth function germ. Then

the germ of f − gn is in (x1
n)E1.

Remark 6. Proposition 5 still holds true if we replace the ring of smooth germs E1 by the

subring C1 ⊂ E1 as it is closed under monomial division.
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Remark 7. From the above properties and thanks to the quasianalyticity, we deduce that the

ring C1 is a metrizable separable metric space for the (x1)-adic topology.

We end this paper by giving a criterion that allows us to test the non surjectivity of the

Borel mapping over the ring C1.

Proposition 6. If the Borel mapping ∧ : C1 → R[[x1]] is surjective, then the ring C1 is complete

for the (x1)-adic topology.

Proof. Suppose that the mapping ∧ is surjective, and let us take f ∈ C1 such that f̂ = xn
1 H,

where n ∈ N and H ∈ R[[x1]], so by the property of the stability under monomial di-

vision, there exists h ∈ C1 such that ĥ = H and by quasianalyticity, we have f = xn
1 h.

It is clear that if f ∈ (xn
1 )C1 then f̂ ∈ (xn

1 )R[[x1]], consequently, we have the equivalence

f ∈ (xn
1 )C1 ⇔ f̂ ∈ (xn

1 )R[[x1]] for all n ∈ N, therefore, the mapping ∧ is a homeomorphism

for the (x1)-adic topology. As the mapping ∧ is a linear homeomorphism and the ring R[[x1]]

is complete, we deduce that the ring C1 is also complete for the (x1)-adic topology.

Remark 8. Proposition 6 still holds if we skip the assumption of stability under monomial divi-

sion and by assuming just that C1 is a quasianalytic local ring which is closed under derivation.
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Беррахо М. Деякi властивостi полiномiальоно обмежених о-мiнiмальних продовжень дiйсного поля

i деяких квазiаналiтичних локальних кiлець // Карпатськi матем. публ. — 2020. — Т.12, №2. — C.

483–491.

У цiй роботi ми дослiджуємо теорему Вейєрштрасса про подiльнiсть над кiльцями глад-

ких росткiв, якi можна визначити у довiльному полiномiально обмеженому о-мiнiмальному

розширеннi дiйсного поля, давши деякi критерiї, що задовольняють цю теорему. Потiм до-

слiджуємо деякi топологiчнi властивостi деяких квазiаналiтичних пiдкiлець кiльця гладких

росткiв для (x1)-адичної топологiї показуючи, що цi кiльця є сепарабельними метричними

просторами. Також наводимо критерiй їх повноти щодо (x1)-адичної топологiї.

Ключовi слова i фрази: теорема Вейєрштрасса про подiльнiсть, полiномiально обмежена о-

мiнiмальна структура, квазiаналiтичне кiльце, (x1)-адична топологiя.


