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On hereditary irreducibility of some monomial matrices over
local rings

Tylyshchak A.A.}, 2

We consider monomial matrices over a commutative local principal ideal ring R of type
M(t,k,n) = ® (é" Hoik), 0 < k < n, where t is a generating element of Jacobson radical J(R) of

R, ® is the companion matrix to A" — 1 and Ij is the identity k x k matrix. In this paper, we indicate
k-(n—k)

a criterion of the hereditary irreducibility of M(t, k, n) in the case t[ E ]H £ 0.
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Introduction

We say that n X n matrices A and B over a commutative ring R with identity are similar
over R if there exists an invertible 7 x n matrix P such that B = P~ 1 AP. It is well known [10, p.
238] that two square matrices over a field are similar if and only if their canonical rational
forms are equal. The problem of classifying, up to similarity, all matrices over a commutative
ring (which is not a field) is usually very difficult; in most cases it is “unsolvable” (wild), as
in the case of rings of residue classes [3]. It has been solved only for square matrices of small
degree over some principle ideal rings (for example, see [2,11,12]). The ring of rational integers
is one of the most important cases. Let Z, Z,, and I, be the ring of integers, ring of residues
modulo m > 2 and the ring of p-adic integers, respectively. Let A, B be n x n matrices over
the ring Z. Denote their images under the reduction homomorphism modulo m by A, and
By, respectively. It is well known (see [13]) that the similarity (over Z,,) of A;; and B, for all
m > 2 not implies the similarity of A and B over Z. However, H. Applegate and H. Onishi [1]
proved that n X n matrices A and B over I, are similar over I, if and only if Ay, B,r are similar
over Z, for all » > 1. In such situation, an important place is occupied by matrices over
commutative local principle ideals rings (like Zr).

The knowledge of all, up to similarity, irreducible matrices of any degree over a commu-
tative ring with identity is also still far from complete. It is well known that if characteristic
polynomial of a square matrix over a commutative ring with identity is irreducible, then the
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matrix is irreducible. Converse is true for fields [10, p. 243, Ex. 20] but, in general, it is not true

for commutative rings. This paper is devoted to one class of square monomial matrices of any
size over commutative rings, which first arose in studying indecomposable representations
of finite p-groups over commutative local rings [9].They were studied more extensively (and
more generally) in [4-6].

Let R be a commutative ring with Jacobson radical J(R) # 0 and ¢ be a non-zero element
from J(R). Consider an n x n matrix over R of the following form

0 ..00..0t
1..00..00
L 0 RN
M(t k,n) := ® =1o. 0.
(r rn) Tl< 0 tInk) 8 (1)? 88 ’

0,000 . 10
where 0 < k < n, ®, is the companion matrix to the polynomial x" — 1 and I is the identity
s x s matrix. Let (1, k) denotes the greatest common divisor of n and k. In [7] it was shown
that if (n,k) > 1, then for any positive divisor 4 > 1 of the number (1, k) the matrix M(t, k, n)

M(tk'n') B 1k I _n
5 A ,where k' = Z and n’ = 4.

is similar over R to a matrix of the following form (
The matrix M(t, k, n) is said to be hereditary reducible if it is similar to a matrix

( M(t,k',n") B

0 A

and hereditary irreducible if otherwise.

>, o<k <n,0<n <n,

1 On irreduciblity of M(t,k,n) over discrete valuation domain

Let R be a discrete valuation domain. This mean that R is a local principal ideal domain,
which are not a field. A nonconstant polynomial f(x) over R is said to be reducible over R if
it can be written as a product of two nonconstant polynomials over R, otherwise f(x) is called
irreducible over R. One of the oldest sufficient condition of irreducibility for polynomials with
coefficients in a discrete valuation domain was given by G. Dumas [8].

Theorem 1. Let f(x) = apx" + mx" '+ ... +a, 1x+a, be a polynomial over a discrete
valuation domain R with valued field (F;v). If the following conditions are fulfilled

1) v(ap) =0,
(an (a;) + _
2) Y o) g, 1,

3) (v(an);n) =1,
then the polynomial f(x) is irreducible over F (and also over R).

In particular, if  is a generator element of J(R) and k is a positive integer relatively prime
to n, then f(x) = x" — t* is irreducible over R. Obviously, (—1)"f(x) is the characteristic
polynomial |[M(t, k, n) — xI,,| of the matrix M(t, k, n).

Theorem 2. Let n and k be positive integers, k < n. Let R be a discrete valuation domain, t be
a generator element of ] (R). The matrix M(t, k, n) is reducible (over R) if and only if (n, k) > 1.

Proof. Sufficiency follows from [7, p. 2, Thm. 1]. Assume now that (n,k) = 1 and the matrix
M(t, k, n) is reducible. Then M(t, k, n) is similar to a matrix (§ &) for some n’ x n’ matrix C,
0 < n’ < n. Then the characteristic polynomial (—1)"(x" — t*) of the matrix M(t,k,n) is
reducible, which is impossible. O
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2 On hereditary irreduciblity of M(t, k,n) over commutative local princi-
pal ideal rings

Now we will assume that R is a commutative local principal ideal ring (not necessary do-
main), which is not a field.
Theorem 3. Let n and k be positive integers, k < n. Let R be a commutative local principal

k-(n—k)
ideal ring, t be a generator element of J(R), t[ n ]H # 0. The matrix M(t,k,n) is similar

(over R) to a matrix of the form
/ !/
N — < M(t,k',n") B )

0 A

for some integers k' and n’, 0 < k' <n’,0 < n’ <n,ifand only if (n,k) > 1,k' = 5, n' =L for

some common divisor d > 1 of integers k, n.

Proof. Sufficiency follows from [7, p. 2, Thm. 1]. Assume now that there exists an invertible
n X n matrix C = (Cij)ijl over R such that C"'M(t,k,n)C = N, or equivalently, M(t,k,n)C =
CN, i.e.

k

NN

0..00..0t

1..00..00

Ll M@K, ) B

00t 00 C_C< 0 Al M

0 .00 . i0
Fori,j € {1,...,n}, the scalar equality (M(t, k,n)C);; = (CN); is denoted by (1,1j).
Put ¢; = (ci1, ..., Cinr). We write the equalities (1, 1f), (1,2j),..., (1, nj), where, in all cases,
j runs from 1 to #’, respectively in the form

tey = ciM(t, k', 1), c1 = coM(t, K, 1), ..., e = critM(t, K, 1),
tcpir = ckoM(t, K1), ..., tey_1 = cnM(t, K, 1n).
If K = 0, then M(t, k', n") = tD for some n’ x n’ matrix D over R and
tcy = tc1D, ¢1 = teaD, ..., ¢ = teg1 D, tegyr = texyoD, ..., tey—1 = teyD.
Since t # 0, we have

cp =c1D  (mod J(R)), ¢c1 € J(R), ..., ¢k € J(R),
Ckie1 = 2D (mod J(R)),..., cp1 =cyD (mod J(R)).

Then ¢, = D = 0 (mod J(R)), ¢,_1 = ¢;D?> = 0 (mod J(R)), ..., cky1 = c1D"F =0
(mod J(R)). This implies that det C € J(R), which is impossible.

If ¥ = n’, then the n’ x n/ matrix M(t, k', ') is invertible over R. But M(t,k,n)Kisan n x n
matrix over ¢R. This implies that M(t, k', n')¥ is an n’ x n’ matrix over tR = J(R), which is also
impossible.

Finally, assume that 0 < k' < n’. Let ¢(i,x) =i (mod x) and ¢(i,x) € {1,...,x}, where i
and x are integers, x > 1. Put

[0, ifp(in) <k, [0, ifg(jn') <K,
"‘l_{L ifp(in) >k 2 ﬁf—{l, if p(j,n') > K
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for all integers i, j. Let us rewrite (1) in the form

0..01
0..01 1..00 .
, (100~ c oY) diag[thr, ..., tPw] | B
diag [t%0, "1, .. #* 11(;~..;;)C—C (o...‘m) @)
0..10 0 ‘A
It follows from (2) that for integersi = 0,...,n —1,j =1,...,1n/, we have
i) plinr) = HICo(1m) (1) 3

Obviously, last equation holds for any integers i, ;.
Since k' < n/, we deduce that ¢(k' +1,n") =k +1, By 1 = 1. Using (3), for j = k' + 1 we
obtain
FiCo (a4t = PV (i1, gk 2m) = ECp(itin) p(k+2,0)-
Thus, cjpr1 = teip1p(k4omw)y i =1,..., k and ¢jpyq € J(R),i=1,...,k.Since 0 < k' < n’, we
deduce that ¢(k',n") = k/, B = 0. Using (3), for j = k' we obtain

tlxicip(i,n)k’ = fﬁk’c¢(i+1,n)k’+1 = Co(i+1,n)k'+1-
Thus, tc;jp = ciy1py1, 1 = k+1,...,n—1,and ¢, 1p41 € J(R), i = k+1,...,n—1, or
Cikg1 € J(R), i =k+2,...,n.1fi #k+1,thencijpiq € J(R), i =1,...,n. Amatrix C = (c;;)
is invertible, therefore é; = ¢y 111 € R*.
Let 6; = Cyp(k-+in)p(k'+in) for any integer i. It follows from (3) that

plkis; = tﬁk’+i5i+1_ (4)

Any element § € R can be written in the form 6 = 76, where d is a nonnegative integer,
6 € R* and if t70 = 90’ # 0 for a nonnegative integer d’ and ' € R*, thend = d’ and 6 = ¢’
(mod J(R)) (see [14, p. 245]). For any integer i, let J; = t4i9;, where d, is a nonnegative integer
and 0; € R*. Since ¢ is invertible in R, we must have d; = 0. It follows from (4) that

(it — tPusitding, (5)

Letd| =d; =0and d] , = Z;-Zl Oy j— Z;-Zl Br -+ for any positive integer i.

If %+ Td] #0,j=1,...,i, from (5) we conclude that Wy +di=Bpjtdi,j=1,...,4
and dj , = 2;-:1 Npyj — Z}:l Br4j = 2;-:1 diy1 — 2;-:1 di = dj;1 —d1 = d;;1. This also means
that d} = dj, j = 1,...,i+ 1. So, if £ £ 0,j = 1,... i thend} = dj, j = 1,...,i + 1.
But arj = 1, agyj — Br4j € {0,1},j =1,...,n—k and ayyj = 0, apy; — Br4j € {—1,0},
j=n—k+1,...,n. So, for any integer 0 < i < n we have

|
=~

i i i n
1= 2 Wk — ) B = ) (ke — Brag) < ) (ks — By
=1 =1 '

j=1

:\
[
=

n—k n—k
=) k= ) Buyj=n—k—) Pu
1 =1 =1

~.
Il

Letn —k =n'g+rforsomeg > 0,0 <r < n'. Then
nq r r
dio<n—k- = po=n—k—gn' —K)+1+---+140+---4+0
i+1 ];ﬁkﬂ ];ﬁkﬂ ‘7( ) < ~— ,
=n—k—q(n' —k') —min(r,n — k).
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Since n’ — k' > 0, we conclude that if r > 0, then

I I r_ k!
min(r,n’ — k') = r x min <1’n ; > > rmin <1’n > — )

n' n’

If r = 0, then min(r,n’ — k') =0 =0 x wok _ r";k/. So,

i’l,

n—k’ n—k =K
di, <n—k—g(n' —k)— = =n—k—qn P
1/ Iyt
:n—k—(qn’+r)n :n—k—(n—k)nn,k
r_¥ Kk
= > . Then
n—k n—(n—k) k(n—k)

iy <n—k—(n—k) » = (n—k) " ==

So, ayyj+d! < 1+ Knh), R+ df < [@] +1and £+ £ 0,j =2,...,i+1 But

dy = dy, ttd = (140 £ dy = dy, tuke2td2 oL () dy, = ds, and so on. Thus, d} = dj,
j=1,...,i4+2.Since 0 < i < n, we conclude that

n n
dpy1 = Z prj— ) Posj=n—k=) Buij
=

j=1

Letn:n’q—{—rforsomeq20,0§r<n.Then

nq r
dnpr=n—k—=Y Bryj— Y Bwrj=n—k—q(n' —k') —min(r,n’ — k).
=1 =1

If > 0or X n’ > "=k then at least one of the following two inequalities is strong
! k _ k/
n—k—qn' —k)—min(r,n —K)<n-—k-— qn'n . —rn .
r Ik
:n—k—(qn’+r)n :n—k—nnn/
gn—k—nn_k =0.
n
Thus, d,+1 < 0, which is impossible. So, n’ divides n and ”’};k/ = ”T_k

Thus, & = n’tlli’ and in the case % > ”T_k the theorem holds.

Now assume # < ”T_k Letd . = ;‘—0 Br—j — Z§—0 a_; for any nonnegative inte-
ger i. If tPK-itd-jn 7é 0, ] 1, from (5) we conclude that ay_; +d_; = Bu_j +d_j1,
j =0,...,i,and d/ = ] Oﬁk' P — ] —0 Kk— -j = Z] Od*] Z]—O d,]Jrl = d, — dl = d,l'. This
also means that d’_j = d,],] = -1,0,...,i. So, if (Pt #0,7=0,...,i, then d’_j = d,]-,
j = —-1,0,...,i. But Rg—j = 0, ﬁk/,]- — R—j € {0,1}, ] =0,...,k—1, and Kf—j = 1,

Br—j— ax_j € {-1,0},j =k,...,n—1. So, for any integer 0 < i < n we have

i i i
dj=Y Poj— ) = Z Br—j — )
=0 =0

=

k-1 k-1 k-1 k-1
<Y Br—j— i) =Y Br—j— Y k=Y Br—j
j=0 =0 =0 =0
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Letk =n'g+rforsomeq > 0,0 <r < n'. Then

n'qg—1 7
i S Z Pr- ;+Zﬁk/ =g —K)+0 4+ 0T+ 1
j= k",
=g(n’ — k') + max(0,r — k).

Since k' > 0, we conclude that if » > 0, then

—K K
max (0,7 — k') = rmax (O,r p ) = rmax <0,1—7

K n —K n —K
) = rmax (O, > =r .
n n

If r = 0, then max (0,7 — k') = max(0,—k') =0 = 0u=K — r”/’;k/. So,

< rmax (O,l —

n n n
d ;< qgn +r ” = (n'g+r) ” =k

Thus, Br_j1 +d; < 1+ g +d; < [@} +1 and Pty £ g
j=0,...,iButd, =dy =0, thetd =070 £ 0,4 = dy, thv1th £ 0,d | =d_ 4, and
so on. So, d’ d,],] =0,...,i+ 1. Since 0 < i < n, we conclude that

d_pi1 = Zﬁk/ ' Z“k] Zﬁk/ i — (n—k).

Letn =n'g+rforsomeq > 0,0 <r < n'. Then

n'qg—1
—nt1 = Z Br— ]+25k/ i — (n—k) = q(n = k') + max(0,r — k') — (n — k)
j=
i I —
< gt 4 — (= K) = (g0 4 1) — (k)
_ 1/
:nnnlk—(n—k)<nn k—(n—k):O.
Thus, d_,, 11 < 0, which is impossible. O

In [5, p. 186], it was shown that the matrix M(t,4,7) over a commutative local principal
ideal ring R, where f is a generating element of J(R), is hereditary reducible if t* = 0. It follows

from Theorem 3 that M(t,4,7) over the ring R is heredltary irreducible if {7111 = 2 # 0.
Moreover, if > = 0, then the characteristic polynomial —x 7 of the matrix M (t,4,7) is reducible.
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Po3rasiaaroThCSI MOHOMiaAbHI MaTpMII Haj AOKAABHMM KiAblleM R rOAOBHMX iAeaAiB BUTASIAY
M(t,k,n) = @ (é" ; I,?,k ), 0 < k < n, Ae t — TBipHWIT eAeMeHT paAnKary AxxekobcoHa J(R) kinb-
st R, @ — cymposiana mMarpumst mHorouaeHa A" — 11 Iy — oauemuna k X k Marpus. B poboti

k-(n—k)

. . . . +1
BCTaHOBAEHO KPUTepili caaKoBol He3BiaHOCTI M(t, k, 1) y BUITAAKY, KOAK t{ " } #0.

Kntouosi cno6a i ppasu: AoKarbHe Kinblle, papukan AXeKkobcoHa, He3BiAHA MATPUIIS, MOHOMiaAb-
Ha MaTpMIIsl, CIIAAKOBO He3BiAHA MaTpMIIS.



