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MATHEMATICAL MODELING OF FINITE TOPOLOGIES

MONABBATI S.E.!, TOrRABI H.2

Integer programming is a tool for solving some combinatorial optimization problems. In this
paper, we deal with combinatorial optimization problems on finite topologies. We use the binary
representation of the sets to characterize finite topologies as the solutions of a Boolean quadratic
system. This system is used as a basic model for formulating other types of topologies (e.g. door
topology and Ty-topology) and some combinatorial optimization problems on finite topologies. As
an example of the proposed model, we found that the smallest number m (k) for which the topology
exists on an m(k)-elements set containing exactly k open sets, for k = 8 and k = 15 is 3 and 5,
respectively.
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1 INTRODUCTION

Integer programming is a useful tool for solving combinatorial optimization problems. The
tirst step in this solving process is building a mathematical model from the combinatorial prob-
lem. Some modeling techniques have been discussed in [5,6] and the references therein. There
are some combinatorial optimization problems on finite topological spaces. The most well-
known of them concerns the number of finite topologies on 1 elements, T'(n). K. Ragnarsson
and B.E. Tenner in [4] state that this problem can be refined by counting T'(#, k), the number of
topologies on 1 elements having k open sets. They also point out the number T(n) is asymp-
totically equal to Typ(n), the number of Ty-topologies on 1 elements. Proving the equivalence
between Typ-topologies and cellular complexes, V.A. Kovalevsky [1] solves some contradictions
or paradoxes in image analysis. The other combinatorial problem arises in finite topological
spaces introduced by K. Ragnarsson and B.E. Tenner [4] is to find the smallest positive integer
m(k) such that there exists a topology on m (k) elements having k open sets.
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In this paper, we consider the mathematical modeling of combinatorial problems on finite
topological spaces. As well as modeling problems related to obtaining m(k), To(n), T(n, k),
the mathematical models of other topological concepts such as connected components, door
topologies, connected topologies, etc. are also presented.

In Section 2 we recall some essential definitions and lemmas. In Section 3, first, we propose
a quadratic zero-one system for general finite topological spaces and, then, we use it as the
feasible region of models related to the other types of finite topologies. In Section 4, using the
notion of topological basis we offer some model improvements which reduce the size of the
model in constraints. Then we present an algorithm for the problem of counting the number
of finite topologies on an n-set. In Section 5 we exhibit an example of combinatorial problems,
which are solved by this mathematical programming approach.

2 DEFINITIONS

In this section, some basic definitions are presented. Many of them are well-known in the
literature [3] and presented here for the sake of completeness. We begin by the definition of a

topology.

Definition 1. Let X be a nonempty set. Denote by P(X) the set of all subsets of X. A subset T
of P(X) is called a topology on X if it satisfies the following

(a) 9,X €T,
(b) the intersection of finitely many elements of T isin T,
(c) the arbitrary union of elements of T is in T.

The pair (X, 7) is called a topological space. Obviously, P(X) is itself a topology on X which
is called the discrete topology. A set A C X is said to be open (closed) in X with respect to T if
A € 1T (A° € 7). A set which is open and also closed is called a clopen set. A topological space
(X, T) is called finite if X is a finite set. In this case (c) may be replaced by

(c') finite union of elements of T is in T.
We now introduce some topological concepts which are closely related to our work.
Definition 2. Consider a topological space (X, 7).

(a) A subset  of P(X) is called a topology basis if forany x € X and U,V € pwithx e UNV
there is a set W belonging to B such thatx € Wand W C UNV.

(b) T is called a door topology if each element of P(X) is either open or close.

(c) T has To-property if for each x,y € X there is an open set in X which contains exactly one
of x ory. The topology which has the Ty-property is called Ty-topology.

(d) Let A be a subset of X. The collectionty = {ANG : G € 1} is a topology on A, which is
called the induced topology. With this topology, A is called a subspace of X.
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(e) X is called connected if it is not a union of two nonempty disjoint elements of T. A subset A
of X is called a connected set if it is connected as a subspace of X. It is easy to see that X is
connected if and only if the only its clopen subsets are X and &.

(f) A connected subset A of X is called a connected component if it is not a proper subset of any
connected set.

(g) A function f : X — X is called continuous with respect to T if for any open set G, the set
f~Y(G) is also open.

(h) Let T be a subset of P(X). The intersection of all topologies containing T, denoted by (T),
is called the topology generated by T.

We conclude this section by a simple lemma.

Lemma 1. Let x be an integer in [0, n] and y be a binary number which satisfy 2 < y < x. Then
x > 0ifand only ify = 1.

3 MODELING

In this section, we propose mathematical models of various types of topologies introduced
in Section 2.

Let X = {1,...,n} beann-elementsetand P(X) = {& = Gy, Gy, ..., Gu_1 = X}. Suppose
b; € {0,1}" is the binary representation of G;, i. e. bijj =1if j € G; and b;; = 0 otherwise. There
are some bitwise operations on b;’s: “bitwise or”, “bitwise and” and “negation”. Let b and c
are two binary n-vectors, then bitwise or, bitwise and of b, c and negation of b are denoted by
bV, bAcand b, respectively.

Consider the decision variables as follows: x;, is a binary variable which is equal to 1 if
G; € T and equal to zero otherwise, i = 0,...,2" — 1.

Thereinafter, for convenience, we use i instead of b; if there is no ambiguity. Now, any
solution x = (xp, X1, ..., xpn_1) of the system

i=1,---,2"-1,

Ying ZXiXje o @
—1,...,20 1,

Yivi ZXiXj i on_q @)

xo =1,

x2n_1:1, (3)

x €{01}, i=0,---,2"—1,

corresponds to a general topology on the finite set. We denote this system and its solution set
by GFT(n) and T, respectively. It is easy to see that (1), (2) could be replaced by the following
inequalities

=1,..--,2"—1,

Yivj T Xing Z 2GXj g el
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3.1 Modeling special types of topologies

In this section, we formulate some other types of topologies as a zero-one quadratic system
or as a zero-one quadratic optimization problem by adding appropriate equalities /inequalities
to GFT(n).

3.1.1 Door topology

By definition 7 is a door topology when exactly one of G; or Gf = Gy is in 7. Thus, by adding
the constraints x; + xy = 1, fori = 1,...,2" — 1 to GFT(n), the door topology’s model is at
hand.

3.1.2 Tp-Topology

Let i,j € X. The value of (by; — byj)? is equal to 1 if and only if by # byj. Equivalently
21
(byi — bkj) = 1if and only if either i € Gy or j € Gg. Thus the sum Z Xk (bri — bk]) is the

number of elements of the topology which contains exactly one of i or ] Hence, the inequa-

lities
21

Zxkbkl by)*>1, i=1,...,n-1,j=i+1,...,n, (4)

guarantee Tp-property. We therefore add the inequality (4) to GFT(n) to achieve a Ty-topo-
logy.

3.1.3 Topologies for which the induced topology on a fixed subset A (the subspace topol-
ogy on A) have the Ty-property

Clearly, A has the Tp-property if and only if for any two elements of A, there is an open set in
X, contains exactly one of them. Similar to (4) it suffices to add the following constraints

2"—1

Y xlbi— b)) >1, ije A
k=0

3.1.4 Generated topology by a subset T of P(X)
It is easy to see that (T) is the smallest topology containing T. Thus the following nonlinear

integer program gives the generated topology by T

2n—1
min in xi=1, i:GeT xeT.

3.1.5 Topology T for which a given function f : X — X is continuous with respect to T

Let f : X — X be an arbitrary function. We desire to find topology 7 for which f is continuous.
Let F = (fi;) where f;; = 1if f(j) = i and f;; = 0 otherwise. We have

fHG) = (maxjeg i1 Maxieg fiz --- MaxXieG fin) »
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since if b is the binary representation of f ~(G), then k € f~!(G) if and only if by = 1. On the
other hand max;c¢; fix = 1 if and only if at least one of fjs equal to one, equivalently if and
only if there is an i € X such that f(i) = k.

We wish f~1(G;) in 7, for each i. This is attained by the following equations

Xy =1, i=1,...,2" -1,

where f; ! is the binary representation of f~1(G;).

3.1.6 Connected topology

Adding the inequalities
xi+xp <1, i=1,...,2"1 -1,

implies that for any nonempty proper subset A of X, at most one of A and A€ is in 7, and by
definition, we have a connected topology.

3.1.7 Topology with the smallest number of connected components

Suppose some types of topologies are modeled as a mathematical program say (MP). By theo-
rem below one can easily show that including objective function }_ x;x; to (MP), will result in

1
topology which has the smallest number of connected components.

Theorem 1. Let (X, T) be a finite topological space. Then A C X is clopen if and only if A is a
union of some connected components of X. Thus, if F is the number of connected components
of X then X has exactly 2F clopen subsets.

Proof. Let G1,Go, ..., Gy are the connected components of X. Since X is the union of its
connected components, then G]‘-’ = Ui#]- G;. Therefore G¢ is closed, since G;’s are closed by
Theorem 1 [2, p. 139]. Thus G; is clopen and it proves that an arbitrary union of connected
components is a clopen set.

Conversely, let A be a clopen subset of X. We have X = AU A°. So by Theorem 1 in
[2, p. 131] G; entirely belongs to A or A°. On the other hand X = U;G; thus

A:U(AQGZ'): U (AﬂGZ'): U G;.

GNA#Y GNA#£D

O

3.1.8 The topology in which nonempty open sets have at least k; elements and nonempty
closed sets have at least k, elements, 0 < ki, k, < n

Let G be any nonempty proper open set. Then G and G° have at least ki, k, elements, re-
spectively. On the other hand |G°| = n — |G|, where |A| denotes number of elements in A.
Therefore k1 < |G| < n — ky. The last inequality is achieved by adding the following equations
to GFT(n)

n
xikl < xiZbZ-]- < xi(n—kz), i= 1,...,2” —1.
j=1
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3.2 Some combinatorial optimization problems on finite topologies

This section concerns two combinatorial optimization problems on finite topologies. First,
we propose a formulation for computing m(k), the smallest positive integer such that there
exists a topology on m(k) elements having k open sets. Then, we propose an algorithm for
computing the number T(n) of topologies on an n-set.

3.21 Computing m(k)

Topologies with exactly k open sets could be handled by including the equation

21

2: xi::k
i=0

to GFT(n).
K. Ragnarsson and B.E. Tenner in [4] prove that m (k) <

that m(k) > log, k. Letn = L% log, kJ +2and ! = [log, k|. We use the following theorem to
formulate the problem as an integer program.

3 log, k + 2. In addition it’s clear

Theorem 2. Suppose T, T are topologies on
X=1{1,2,...,n} and X ={1,2,...,n,n+1,...,m},

respectively and let x, x' are corresponding binary vectors. Then

21 271

Y 2xi< )] 2.
n=0 n=0

Proof. We have

2"—1 2"—1

Yo 2l < Y 2 =07 <22
n=0 n=0
om_q ‘ .
Since {1,2,...,m} € T then ) 2'xj > 22"~ and this completes the proof. O
n=0

As a consequence of Theorem 2, m (k) is the optimal solution of the following nonlinear
integer program:

271_1 )
MM (k) min 2'x;,
i=0
1 = PR ,Zn_ll
s.t. Xjnj > XX, j=i+1 2" —1
i=1--- 2" _1
Xivi 2> XiXi ' ' ,
ivji = XiXj, j=i+1,...,2"-1,
271_1
Z X; = kr
i=0
Xp — 1/
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Note that we exclude the equality x»_; = 1, since if B is the topology attained by the
system then f is the topology on Uacg A

The MM (k) may not be useful in practice, because in the objective function when i takes
the upper bound of the summation, the value of 22" ! is very large even for small values of .
We therefore add new variables y; for j = 1,...,n and the following constraints

1 2"—1 2"—1
E szbljgng inbijr ]:1,...,11.
i=0 i=0

211
If Y x;bjj > 0then x;bj = 1forsome0 <i <2"—1andk € X. Thus by Lemma 1, y; = 1 if
i=0

n
and only if k is in some open set. Hence, the sum }_ y; gives the number of topology elements.
j=1
Consequently we can use this sum for an objective function of MM (k) as follows

n
MM(k) min)_y;,
=1

s.t. Xinj > XiXj,

Xivj 2 XiXj, j=i+1,...,20-1,

121 21

E lebljgng lebZ]I ]:1/--'rn/
i=0 i=0

n

=1

211

Y xi=k,

i=0

xo =1,

xi € {0,1}, i=0,...2"—1.

We conclude this section with an example.

Example 1. For k = 8 we have n = 6 and I = 3. We solve MM (k) using LINGO software and
obtain m(8) = 3 with topology tg¢ = P({1,2,3}). Similarly for k = 15 againn = 6 butl = 4
and m(15) = 5 and the corresponding topology is

s = {2,{2},{1,2},{3},{2,3},{1,2,3}, {4}, {2,4} , {1, 2,4},
{3,4},{2,3,4},{1,2,3,4},{3,4,5},{2,3,4,5},{1,2,3,4,5} }.

3.2.2 Number of finite topologies

Suppose that any indiscrete topology has at most 2" — #(n) elements. While adding the in-

equality
2" -1
Z x; <2"—t(n)—1
i=0
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to GFT(n) drops discrete topology from solution space. It may improve solving process (e.g.
it decreases the number of nodes in branch and bound method). Using this fact one may
provides an algorithm for counting number of topologies on the finite set, T(n).

Let7;<S ={xeT : Yx <k}

Algorithm 1: Computing T'(n)

1 T(n) «—1;

2 5 +— 2" —t(n);

3 while Problem max {in X E 7;3} is not infeasible do
k:max{in X E 7;3},'

T(n) «— T(n)+T(n,k);

6 s<—s—1;

'S

)]

7 end
21
Note that T(n) = Y. T(n, k). In line 4 of the algorithm we omit to compute zero terms of
k=1
this sum.

4 MODEL IMPROVEMENT

In this section, we mention some improvements in models. It is well-known that some
properties on topologies could be restricted to a topology basis. Let us consider the problem
of the existence of such topologies. For example, is there any Tp-topology on n-set for which a
given function f is continuous? To answer such problems we can consider only the topology
basis. For this goal it suffices to keep the constraints related to closeness under intersection
(constraints (1)) and remove constraints (2) and (3) from GFT(n). By this approach if there is a
To-topology for which a given function f is continuous, then we find its basis, else, the model
is infeasible.

5 CONCLUSION

In this paper, we exhibited mathematical models of some combinatorial problems on finite
topologies. As well as modeling problems related to obtaining m(k), To(n), T(n, k), the mathe-
matical models of other topological concepts such as connected components, door topologies,
connected topologies, etc. are also presented. First, we proposed a quadratic zero-one system
for general finite topological spaces and then use it as the feasible region of the other types
of finite topologies models. We also provided an algorithm for the problem of counting the
number of finite topologies on n elements set. It is possible to incorporate models introduced
in section 3, to handle another type of problems. For example to answer the question: “is there
any door topology 7, for which given function f continuous with respect to 7?”, it suffices to
combine 3.1.1 and 3.1.5.
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LirourceabHe MporpaMyBaHHs — Ile iHCTPYMEHT AASI BUPIIIIeHHST AesIKMX KOMOiHaTOpHMX 3a-
Aad onTyMizarii. Y mili poboTi MM po3TAsiAa€MO KOMOIHATOPHI 3aaadi onTMMisanii Ha cKiHYeHHMX
TOMOAOTISIX. M BUKOPMCTOBYEMO ABIIKOBE MPEACTABACHHS MHOXIH AASL XapaKTePUCTUKM CKiH-
JeHHMX TOTIOAOTIN SIK PO3B’sI3KiB 6yAeBOI KBaApaTHMUHOI crcTeMI. LIS crcTemMa BUKOPMCTOBY€ETHCS
sIK 6a30Ba MOAEAD AAST POPMYAIOBaHHSI iHIIIVX TUIIB TOIIOAOTIN (HalpMKAAaA, TOIIOAOTISI ABepeli Ta
Tp-TOIOAOTIST) Ta AeSIKIMX KOMOIHATOpHMX 3apad ONTMMi3alil Ha CKIHYeHHNX TOIOAOTISIX. SIK Impu-
KAaA 3alpOIIOHOBAHOI MOAEA] MM BUSIBUAY, IO HaviMeHIIe uncAo 171 (k), AAST SIKOTO iCHy€ TOIOAOTIST
Ha Habopi m(k) ereMeHTIB, IO MiCTUTH PiBHO k BiAkpuTux Habopis, mpu k = 8ik =15 —me 3i5
BiATIOBiAHO.

Kntouosi cnosa i ¢ppasu: ckiHIeHHa TOIIOAOTISI, MaTeMaTIIHE MOAEAIOBaHHSI.



