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The differential-algebraic approach to studying the Lax type integrability of generalized
Riemann type equations is devised. The differentiations and the associated invariant differential
ideals are analyzed in detail. The approach is also applied to studying the Lax type integrability
of the well known Korteweg-de Vries dynamical system.

1 INTRODUCTION

Nonlinear hydrodynamic equations are of constant interest since the classical works by
B. Riemann in the general three-dimensional case, having paid special attention to their one-
dimensional spatial reduction, for which he devised the generalized method of characteristics
and Riemann invariants. These methods appeared to be very effective |21, 15 in investi-
gating many types of nonlinear spatially one-dimensional systems of hydrodynamical type
and, in particular, the characteristics method in the form of a "reciprocal" transformation
of variables has been used recently in studying the so called Gurevich-Zybin system |6, 5] in
[13] and the Whitham type system in [17, 2, 19]. Moreover, this method was further effec-
tively applied to studying solutions to a generalized [4] (owing to D. Holm and M. Pavlov)
Riemann type hydrodynamical system

DNu=0, D;:=030/0t+ud/0x, N €Z,, (1)

where u € C*°(R?;R) is a smooth function. The case N = 2 was recently analyzed in detail
in 2, 4] making use of the standard symplectic theory techniques. In particular, there was
demonstrated that the Riemann type hydrodynamical system (1) at N = 2, looking upon
putting z := D,u equivalently as

ut:z—uum}’ @)

Zp = —UZg
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allows the following Lax type representation

Of 0z = lu, z Alf, Of/ot=p(0)f,  p((): —ufuzAHQ(A)

= (0 ) o= (50),
p(l) = ( _;\g/\% —Aux )’

where f € C)(R?,C?) and A € C is an arbitrary spectral parameter. Making use of a
method devised in [16, 11, 7] and based on the spectral theory and related very complicated
symplectic theory relationships in [4, 2, 14] the corresponding Lax type representations for
the cases N = 3,4 were constructed in explicit form.

In this work a new and very simple differential-algebraic approach to studying the Lax
type integrability of the generalized Riemann type hydrodynamic equations at N = 3,4 is
devised. It can be easily generalized for treating the problem for arbitrary integers N &€
Z., . The approach is also applied to studying the Lax type integrability of the well known
Korteweg-de Vries dynamical system.

2 THE DIFFERENTIAL-ALGEBRAIC DESCRIPTION OF THE LAX TYPE INTEGRABILITY
OF GENERALIZED RIEMANN TYPE HYDRODYNAMICAL EQUATION AT N =3 AND 4

2.1 The differential-algebraic preliminaries

Take the ring K := R{{x,t}}, (z,t) € R?, of convergent germs of real-valued smooth func-

tions from C(*)(R2?;R) and construct [18, 9, 20, 3| the associated differential polynomial

ring C{u} := K[Ou] with respect to a functional variable u, where © denotes the standard

monoid of all operators generated by commuting differentiations 9/0x := D, and 9/0t. The

ideal I{u} C K{u} is called [18, 9| differential if the condition I{u} = ©I{u} holds.
Consider now the additional differentiation

Dy : K{u} — K{u}, (4)

depending on the functional variable u, which satisfies the Lie-algebraic commutator condi-
tion

[Dac’Dt] = (Dmu)Dza (5>

for all (z,t) € R?. As a simple consequence of (5) the following general (suitably normalized)
representation of the differentiation (4)

=0/t + ud/0x (6)

in the differential ring K{u} holds. Impose now on the differentiation (4) a new Riemann

type algebraic constraint
DNu =0, (7)

defining some smooth functional set (or "manifold") MW) of functions u € R{{z,t}},
and which allows to reduce naturally the initial ring K{u} to the basic ring K{u}|r, C
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R{{z,t}}. In this case the following natural problem of constructing the corresponding rep-
resentation of differentiation (4) arises: to find an equivalent linear representation of the
reduced differentiation Dy|a ., : RFNV{{x,t}} — RF{{z t}} in the functional vector
space RPN Lz )} for some specially chosen integer dimension p(N) € Z..

As it will be shown below for the cases N = 3 and N = 4, this problem is completely
analytically solvable, giving rise to the corresponding Lax type integrability of the generalized
Riemann type hydrodynamical system (1). Moreover, the same problem is also solvable for
the more complicated constraint

Dyu — D3u = 0, (8)

equivalent to the well known Lax type integrable nonlinear Korteweg-de Vries dynamical
system.

2.2 The generalized Riemann type hydrodynamical equation: the case N=3

To proceed with analyzing the above formulated representation problem for the generalized
Riemann type equation (7) at N = 3, we first construct an adjoint to the differential ring
K{u} and invariant with respect to differentiation (6) so called "Riemann differential ideal"
R{u} C K{u} as

R{u} = {/\ Z fH Dy, — Z A D, DM + Z f3D2DMy : D¥u =0,

’VLEZ+ TLGZ+ ’VLEZ+

fO e K{ul,k=1,3,n¢ Z+} C K{u}, 9)

where A € R is an arbitrary parameter, and formulate the following simple but important
lemma.

Lemma 2.1. The kernel Ker Dy C R{u} of the differentiation D, : K{u} — K{u}, reduced
modulo the Riemann differential ideal R{u} C KC{u}, is generated by elements satisfying the
following linear functional-differential relationships:

th(l) = O) th(2) = Af(1)7 th(3) = f(2)7 <1O>

where, by definition, [® = f®(\) =Y €N € K{u}m,, = R{{z.t}}, k =13,
and A € R is arbitrary.

It is easy to see that equations (10) can be equivalently rewritten both in the matrix
form as

(11)

o O O

0 0
0 1

where f = (f0), f@, fONT € K3¥{u}|um,
in the compact scalar form as

5 A € Ris an arbitrary "spectral" parameter, and

D}fs=0 (12)
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for an element f; € K{u}|r, . Here it is worth to note that the Riemann differential ideal
(9), satisfying the D;-invariance condition, is in this case maximal. Now we can construct
by means of relationship (12) a new invariant, the so-called "Lax differential ideal" L{u} C
K{u}, isomorphic to the Riemann differential ideal R{u} C K{u} and realizing the Lax type
integrability condition of the Riemann type hydrodynamical equation (1). Namely, based
on the result of Lemma 2.1 the following proposition holds.

Proposition 2.1. The expression (11) is an adjoint linear matrix representation in the space
R3{{z,t}} of the differentiation D; : K{u} — K{u}, reduced to the ideal R{u} C K{u}.
The related D,- and Dy-invariant Lax differential ideal L{u} C KC{u}, which is isomorphic to
the invariant Riemann differential ideal R{u} C K{u}, is generated by the element f3(\) €
K{u}, A € R, satisfying condition (12), and equals

L{u} = {g1f3(X) + g2Dif3(A) + 93D} fs(A) : D f3(A) = 0,
A € R,g; € K{u},j=1,3} C K{u}. (13)

We now construct a related adjoint linear matrix representation in the functional vector
space R¥{{z,t}} for the differentiation D, : K{u} — K{u}, reduced modulo the Lax differ-
ential ideal L{u} C K{u}. For this problem to be solved, we need to take into account the
commutator relationship (5) and the important invariance condition of the Lax differential
ideal L{u} C K{u} with respect to the differentiation D, : K{u} — K{u}. As a result of
simple but slightly tedious calculations one obtains the following matrix representation:

)\Uz —Ug Zy
Dof = v, 5 N f, Cu,v, 2\ = BN 2w, e | (14)
6% r[u,v, 2] =3\ Au,

where, by definition, v := Dyu,z = Dw, (...); = Dg(...), a vector f € R*{{x, t}},
A € R is an arbitrary spectral parameter and a smooth functional mapping r : M) —
R{{x,t}}, M3) := M_, D! M), solves the following functional-differential equation

Dyr +rDyu=1. (15)

Moreover, the matrix £ := f[u, v, z; \] : R¥3{{x,t}}— R*{{x,t}} satisfies the following deter-
mining functional-differential equation:

Dyl + €D,u = [q(N), 4], (16)

where [, -] denotes the usual matrix commutator in the functional space R3*{{z,t}}. The
following proposition solving the representation problem posed above, holds.

Proposition 2.2. The expression (14) is an adjoint linear matrix representation in the
space R3{{x,t}} of the differentiation D, : K{u} — K{u}, reduced modulo the invariant
Lax differential ideal L{u} C K{u}, given by (13).
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Remark 2.1. Here it is necessary to mention that the matrix representation (11) coin-
cides completely with that obtained before in the work [4] by means of completely different
methods, based mainly on the gradient-holonomic algorithm, devised in [16, 11, 7]. The
presented derivation of these representations (11) and (14) is much easier and simpler that
can be explained by a deeper insight into the integrability problem, devised above using the
differential algebraic approach.

To proceed further, it is now worth to observing that the invariance condition for the Lax
differential ideal L{u} C K{u} with respect to the differentiations D,, D, : K{u} — K{u}
is also equivalent to the related Lax type representation for the generalized Riemann type
equation 1 in the following dynamical system form:

Up =V — Ully
v =2z—uv, p:=Klu,v,zl, (17)

2 = —UZy
Namely, the following theorem, summing up the results obtained above, holds.

Theorem 1. The linear differential-matrix expressions (11) and (14) in the space R*{{z,t}}
for differentiations Dy : K{u} — K{u} and D, : K{u} — K{u}, respectively, provide us with
the standard Lax type representation for the generalized Riemann type equation (1) in the
equivalent dynamical system form (17), thereby implying its Lax type integrability.

The next problem of great interest is to construct, making use of the differential-algebraic
tools, the functional-differential solutions to the determining equation (19), and to construct
the corresponding differential-algebraic analogs of the symplectic structures characterizing
the differentiations D,, D, : K{u} — K{u}, as well as the local densities of the related
conservation laws, which were derived in [4, 14].

A was shown above and in [4, 14], the dynamical system (17) possesses the following Lax
type representation:

fx = g[uava z; A}f? ft = p(€>f7 p(ﬁ) = _ug[uava Z3 )‘] + Q()\)a

AUy, —Uy 2z 0 0 0
lu,v,2; ] = 32 2y Mg |, gAN) =1 X0 0 |,
6% r[u,v, 2] =3\ Au, 010 (18)

— AUty UV, —UZy
p(l) = =3uN+ XN 2w,  —Auv, |,
—6X\*ru, v, 2Ju 14 3ul  —Auu,

where f € Lo(R;E?), A € R is an arbitrary spectral parameter and a function r : M — R
satisfies the following functional-differential equation:

Dir +rDyu =1 (19)
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under the commutator condition (5).

Notwithstanding a slightly complicated form of the functional-differential equation 19,
making use of the differential-algebraic approach devised above, one can easily derive the
next supplementing theorem, describing its exact solutions on the corresponding functional
manifold M(g).

Theorem 2. The following set of functional expressions

vy u? ud o uyu, N 3 / Uy v cR
To =—=— — —— Tq = —_— _ _—
T 22,0 622 222 4z, Zy 222

solves the functional-differential equation (15) on the corresponding manifold M(g).

The set (20) coincides exactly with that constructed before in [4, 2, 14| by means of
completely different techniques.

2.3 The generalized Riemann type hydrodynamical equation: the case N=4
Now consider the generalized Riemann type differential equation (1) at N =4
D}u=0 (21)

on an element v € R{{x,t}} and construct the related invariant Riemann differential ideal
R{u} C K{u} as follows:

R{u} := {)\3 S VDR =N fPD DI+ A Y fP DD (22)

n€Z+ HEZ+ TLGZ+

= fODIDu : Diu=0,XeR, fP e K{u} k=T14n¢e Z+}

nEZ+

at a fixed function v € R{{z,t}}. The Riemann differential ideal (22), satisfying the D,-
invariance condition, is in this case also maximal. The corresponding kernel Ker D, C R{u}
of the differentiation D, : K{u} — K{u}, reduced upon the Riemann differential ideal (22),
is given by the following linear differential relationships:

DifM =0, Dif® = AfW, D f® = AfP, D f@ = Af, (23)

where f®) = fB() = 3 o A € K{u}lm, = R{{z.t}}, k = T4 and X € R is
arbitrary. The linear relationships (23) can be easily represented in the space R*{{z,¢}} in
the following matrix form:

Dif =qN)f, q(A) =

o O > O
S > O O
> O O O
o O O O



102 PRYKARPATSKY A.K., ARTEMOVICH O.D., Popowicz Z., PAvLOV M.V.
where f := (fM), f@ O fA)T € RY{z,t}}, and A € R. Moreover, it is easy to observe
that relationships (23) can be equivalently rewritten in the compact scalar form as

DifY =0, (25)

where an element f; € IC{u}. Thus, now one can construct the invariant Lax differential
ideal, isomorphically equivalent to (22), as follows:

L{u} = {91f<4) + gDy fY + 93Dt2f(4) + 94D£0’f(4) ; fo(4) =0,
g; € IC{’LL},] = m} - /C{u}, (26)

whose D, -invariance should be checked separately. The latter gives rise to the representation

—\u, v, —Aw,, Za
—4)\? 3Nu,  —2\%0, w,

D.f = ; A = 2
th E[U,U,’LU,Z, )\]fa K[u,v,w,z)\] —10>\5T1 6)\4 —3>\3U$ )\2’01; ) ( 7)
—20X\ry 10MN%r;  —4X* N,
where we put, by definition,
Dy = v, Dy = w, Dyw = z, D;z := 0, (28)

(u,v,w,2)T € M(4) C R*{{x,t}}, and the mappings 7; : M(4) — R{{z,t}},j = 1,2, satisfy
the following functional-differential equations:

Diri +riDyu=1, Dyro +roDyu = 11, (29)

similar to (15), considered above. The equations (29) possess many different solutions,
amongst which are the functional expressions:

ww?  vwd vw? Tw® wb

—- DM - , 30

& Sz 37 Yo T oo T 1) (30)
ww?  vwt 3w vw® w’

- D, _ _ .
"2 (35 ~ 621 T 805 T 1205~ 12050

Whence, we obtain the following proposition.

Proposition 2.3. The expressions (24) and (27) are the linear matrix representations in
the space R*{{x,t}} of the differentiations D; : K{u} — K{u} and D, : K{u} —
KC{u}, respectively, reduced upon the invariant Lax differential ideal L{u} C K{u} given
by (13).

Based now on the representations (24) and (27) one easily constructs a standard Lax
type representation, characterizing the integrability of the nonlinear dynamical system

Uy =V — Ul
R g Klu,v,w, z], (31)
Wy = 2 — uw,

2 = —UZg

equivalent to the generalized Riemann type hydrodynamical system (21). Namely, the fol-
lowing theorem holds.
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Theorem 3. The dynamical system (31), equivalent to the generalized Riemann type hy-
drodynamical system (21), possesses the Lax type representation

fo = Lu, v, z,w Alf, fi=p0)f,  p(l) == —uwllu,v,w, 2z A] + q(}), (32)

where f € R*{{z,t}}, A € R is a spectral parameter and

—\u, v, —\w, Zs 0 0 00
4\ 3N, —2X\%u, A\w A0 00
14 PA = v z x A) =
[, vy, 23 A C10Xr 60 —3u, Az, | 1Y 0Xx00 |
—20\%75 10X°1r;  —4X* Nuy, 00 X0
AU, —\uv, AUW,, —UZy

A+ 40w =3Nuu,  2\%uv, = uw,
10X%ur; A —6X ' 3Nuu,  —Nuw,
20\ury  —10MN%ur; A+ 4\ —Nuuy,

p(f) =

so it is a Lax type integrable dynamical system on the functional manifold M(4).

The result obtained above can be easily generalized on the case of an arbitrary integer
N € Z,, thereby proving the Lax type integrability of the whole hierarchy of the Riemann
type hydrodynamical equation (1). The related calculations will be presented and discussed
in other work. Here we only do the next remark.

Remark 2.2. The Riemann type hydrodynamical equation (1) as N — oo can be equiva-
lently rewritten as the following Benney type [1, 10, 15] chain

D™ =" D, =0/t +uV0 /0, (34)
for the suitably constructed moment functions u™ := Dru® u©) .=y € R{{x,t}},n € Z,.

This aspect of the problem is very interesting and we plan to treat it in detail by means
of the differential-geometric tools elsewhere.

3 THE DIFFERENTIAL-ALGEBRAIC ANALYSIS OF THE LAX TYPE INTEGRABILITY OF
THE KORTEWEG-DE VRIES DYNAMICAL SYSTEM

3.1 The differential-algebraic problem setting

We consider the well known Korteweg-de Vries equation in the following (8) differential-
algebraic form:

Dyu — D3u =0, (35)

where u € K{u} and the differentiations D; := 0/0t + ud/0x, D, = 0/0x satisty the
commutation condition (5):
ID,. D] = (D,u)D,. (36)
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We will also interpret relationship (35) as a nonlinear dynamical system
Dyu = Dyppu (37)

on a suitably chosen functional manifold M C R{{x,t}}.

Based on the expression (35) we can easily construct a suitable invariant KdV-differential
ideal KdV{u} C K{u} as follows:

KdV{u} := {Z Z W DEDry, e K{u} : Dyu — D3u =0,
k:@nEZ.,_

f® e K{u},k=0,2,ne€Z,} C K{u}. (38)

n

The ideal (38) proves to be not maximal, that seriously influences on the form of the reduced
modulo it representations of derivatives D, and D; : K{u} — K{u}. As the next step we
need to find the kernel Ker D, C KdV{u} of the differentiation D, : K{u} — K{u}, reduced
upon the KdV-differential ideal (38). We obtain by means of easy calculations that it is
generated by the following differential relationships:

DO = A0, Dif® = -Af® +2fPD,u,
th(l) — _)\f(l) +f(1)D$u+f(2)Dmu, (39)

where, by definition, f® := f®(\) = 3,5, "N € K{u}ln = R{{z,t}},k = 0,2, and
A € R is an arbitrary parameter. Based on the relationships (39) the following proposition
holds.

Proposition 3.1. The differential relationships (39) can be equivalently rewritten in the
following linear matrix form:

(40)

Dof = gV, q(A)zz(Dﬂ”“‘A Dz )

0 2D, u — A\

where [ := (fi, fo)T € R*{{z,t}}, X € R, giving rise to the corresponding linear matrix
representation in the space R*{{x,t}} of the differentiation D; : K{u} — K{u}, reduced
upon the KdV-differential ideal (38).

3.2 The Lax type representation

Now, making use of the matrix differential relationship (40), we can construct the Lax
differential ideal related to the ideal (38)

L{u} = {<g,f>pcK{u}:Dif =qNf,
frg € KYu}} CK{u}, (41)

where < -, - >p2 denotes the standard scalar product in the Euclidean real space E2. Since
the Lax differential ideal (41) is, by construction, D;-invariant and isomorphic to the D,-
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and D, -invariant KdV-differential ideal (38), it is necessary to check its D, -invariance. As
a result of this condition the following differential relationship

(42)

Dof = 0fus N f, s N] = ( Dy 2D, )

-1 —-D,a

holds, where the mapping a : M — R{{z,t}} satisfies the functional-differential relation-
ships
Dya =1, Dyu — D3u = 0, (43)

and the matrix £ := f[u; ] : R*{{z,t}} — R*{{x,t}} satisfies for all A € R the determining
functional-differential equation

Dl + ¢Dyu = [qg(N), €] + Dyq(N), (44)

generalizing the similar equation (16). The result obtained above we formulate as the fol-
lowing proposition.

Theorem 4. The derivatives D; : R{{z,t}} — R{{x,t}} and D, : K{u} — K{u} of
the differential ring K{u}, reduced upon the Lax differential ideal L{u} C K{u}, which
isomorphic to the KdV-differential ideal KdV{u} C K{u}, allow the compatible Lax type
representation (generated by the invariant Lax differential ideal L{u} C K{u})

Dif = o/, ) :=(D"’”“‘A Dazt )

0 2D, u — A
D.a 2D,.a. >

(45)

Dt = sy, o= (2 20t

where the mapping a : M — R{{x,t}} satisfies the functional-differential relationships (43),
f € R*{{x,t}} and X € R.

It is interesting to mention that the Lax type representation (45) strongly differs from
that given by the well known [12] classical expressions

D,u/6 —(2u/3 —4\)
Dif = qa(N)f, qa(A) = | Dyu/6— (u/6—\)x ,
| l % (2u/3 — 4)) —HD:u/6
0 1

where, as above, the following functional-differential equation (equivalent to the nonlinear
dynamical system (37) on the functional manifold M)

Dtgcl + ECleU — [QCZ(A)a gcl] + Dchl(A)J (47>

holds for any A € R. This fact, as we suspect, is related with the existence of different D;-
invarinat KdV-differential ideals of form (38), which are not maximal. Thus, a problem of
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constructing a suitable KdV-differential ideal KdV {u} C K{u} generating the corresponding
invariant Lax type differential ideal L{u} C IC{u}, invariant with respect to the differential
representations (46), naturally arises, and we expect to treat this in detail elsewhere. There
also is a very interesting problem of the differential-algebraic analysis of the related symplec-
tic structures on the functional manifold M, with respect to which the dynamical system
(37) is Hamiltonian and suitably integrable. Here we need also to mention a very interesting
work [22], where the integrability structure of the Korteweg-de Vries equation was analyzed
from the differential-algebraic point of view.

4  CONCLUSION

The results presented provide convincing evidence that the differential-algebraic tools,
when applied to a given set of differential relationships based on the derivatives D; and D, :
K{u} — K{u} in the differential ring {u} and parameterized by a fixed element u € {u},
make it possible to construct the corresponding Lax type representation as that realizing the
linear matrix representations of the derivatives reduced modulo the corresponding invariant
Riemann differentail ideal. This scheme was elaborated in detail for the generalized Riemann
type differential equation (1) and for the classical Korteweg-de Vries equation (37). As these
equations are equivalent to the corresponding Hamiltonian systems with respect to suitable
symplectic structures, this aspect presents a very interesting problem from the differential-
algebraic point of view, which we plan to study in the near future.
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