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The differential-algebraic approach to studying the Lax type integrability of generalized
Riemann type equations is devised. The differentiations and the associated invariant differential
ideals are analyzed in detail. The approach is also applied to studying the Lax type integrability
of the well known Korteweg-de Vries dynamical system.

1 Introduction

Nonlinear hydrodynamic equations are of constant interest since the classical works by
B. Riemann in the general three-dimensional case, having paid special attention to their one-
dimensional spatial reduction, for which he devised the generalized method of characteristics
and Riemann invariants. These methods appeared to be very effective [21, 15] in investi-
gating many types of nonlinear spatially one-dimensional systems of hydrodynamical type
and, in particular, the characteristics method in the form of a "reciprocal" transformation
of variables has been used recently in studying the so called Gurevich-Zybin system [6, 5] in
[13] and the Whitham type system in [17, 2, 19]. Moreover, this method was further effec-
tively applied to studying solutions to a generalized [4] (owing to D. Holm and M. Pavlov)
Riemann type hydrodynamical system

DN
t u = 0, Dt := ∂/∂t + u∂/∂x, N ∈ Z+, (1)

where u ∈ C∞(R2;R) is a smooth function. The case N = 2 was recently analyzed in detail
in [2, 4] making use of the standard symplectic theory techniques. In particular, there was
demonstrated that the Riemann type hydrodynamical system (1) at N = 2, looking upon
putting z := Dtu equivalently as

ut = z − uux

zt = −uzx

}
, (2)
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allows the following Lax type representation

∂f/∂x = `[u, z; λ]f, ∂f/∂t = p(`)f, p(`) := −u`[u, z; λ] + q(λ),

`[u, z; λ] :=

( −λux −zx

2λ2 λux

)
, q(λ) :=

(
0 0

−λ 0

)
,

p(`) =

(
λuxu zxu

−λ− 2λ2u −λuxu

)
,

(3)

where f ∈ C(∞)(R2;C2) and λ ∈ C is an arbitrary spectral parameter. Making use of a
method devised in [16, 11, 7] and based on the spectral theory and related very complicated
symplectic theory relationships in [4, 2, 14] the corresponding Lax type representations for
the cases N = 3, 4 were constructed in explicit form.

In this work a new and very simple differential-algebraic approach to studying the Lax
type integrability of the generalized Riemann type hydrodynamic equations at N = 3, 4 is
devised. It can be easily generalized for treating the problem for arbitrary integers N ∈
Z+. The approach is also applied to studying the Lax type integrability of the well known
Korteweg-de Vries dynamical system.

2 The differential-algebraic description of the Lax type integrability
of generalized Riemann type hydrodynamical equation at N = 3 and 4

2.1 The differential-algebraic preliminaries

Take the ring K := R{{x, t}}, (x, t) ∈ R2, of convergent germs of real-valued smooth func-
tions from C(∞)(R2;R) and construct [18, 9, 20, 3] the associated differential polynomial
ring K{u} := K[Θu] with respect to a functional variable u, where Θ denotes the standard
monoid of all operators generated by commuting differentiations ∂/∂x := Dx and ∂/∂t. The
ideal I{u} ⊂ K{u} is called [18, 9] differential if the condition I{u} = ΘI{u} holds.

Consider now the additional differentiation

Dt : K{u} → K{u}, (4)

depending on the functional variable u, which satisfies the Lie-algebraic commutator condi-
tion

[Dx, Dt] = (Dxu)Dx, (5)

for all (x, t) ∈ R2. As a simple consequence of (5) the following general (suitably normalized)
representation of the differentiation (4)

Dt = ∂/∂t + u∂/∂x (6)

in the differential ring K{u} holds. Impose now on the differentiation (4) a new Riemann
type algebraic constraint

DN
t u = 0, (7)

defining some smooth functional set (or "manifold") M(N) of functions u ∈ R{{x, t}},
and which allows to reduce naturally the initial ring K{u} to the basic ring K{u}|M(N)

⊆
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R{{x, t}}. In this case the following natural problem of constructing the corresponding rep-
resentation of differentiation (4) arises: to find an equivalent linear representation of the
reduced differentiation Dt|M(N)

: Rp(N){{x, t}} → Rp(N){{x, t}} in the functional vector
space Rp(N){{x, t}} for some specially chosen integer dimension p(N) ∈ Z+.

As it will be shown below for the cases N = 3 and N = 4, this problem is completely
analytically solvable, giving rise to the corresponding Lax type integrability of the generalized
Riemann type hydrodynamical system (1). Moreover, the same problem is also solvable for
the more complicated constraint

Dtu−D3
xu = 0, (8)

equivalent to the well known Lax type integrable nonlinear Korteweg-de Vries dynamical
system.

2.2 The generalized Riemann type hydrodynamical equation: the case N=3

To proceed with analyzing the above formulated representation problem for the generalized
Riemann type equation (7) at N = 3, we first construct an adjoint to the differential ring
K{u} and invariant with respect to differentiation (6) so called "Riemann differential ideal"
R{u} ⊂ K{u} as

R{u} :=

{
λ

∑

n∈Z+

f (1)
n Dn

xu−
∑

n∈Z+

f (2)
n DtD

n
xu +

∑

n∈Z+

f (3)
n D2

t D
n
xu : D3

t u = 0,

f (k)
n ∈ K{u}, k = 1, 3, n ∈ Z+

}
⊂ K{u}, (9)

where λ ∈ R is an arbitrary parameter, and formulate the following simple but important
lemma.

Lemma 2.1. The kernel Ker Dt ⊂ R{u} of the differentiation Dt : K{u} → K{u}, reduced
modulo the Riemann differential ideal R{u} ⊂ K{u}, is generated by elements satisfying the
following linear functional-differential relationships:

Dtf
(1) = 0, Dtf

(2) = λf (1), Dtf
(3) = f (2), (10)

where, by definition, f (k) := f (k)(λ) =
∑

n∈Z+
f

(k)
n λn ∈ K{u}|M(3)

= R{{x, t}}, k = 1, 3,

and λ ∈ R is arbitrary.

It is easy to see that equations (10) can be equivalently rewritten both in the matrix
form as

Dtf = q(λ)f, q(λ) :=




0 0 0

λ 0 0

0 1 0


 , (11)

where f := (f (1), f (2), f (3))ᵀ ∈ K3{u}|M(3)
, λ ∈ R is an arbitrary "spectral" parameter, and

in the compact scalar form as
D3

t f3 = 0 (12)
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for an element f3 ∈ K{u}|M(3)
. Here it is worth to note that the Riemann differential ideal

(9), satisfying the Dt-invariance condition, is in this case maximal. Now we can construct
by means of relationship (12) a new invariant, the so-called "Lax differential ideal" L{u} ⊂
K{u}, isomorphic to the Riemann differential ideal R{u} ⊂ K{u} and realizing the Lax type
integrability condition of the Riemann type hydrodynamical equation (1). Namely, based
on the result of Lemma 2.1 the following proposition holds.

Proposition 2.1. The expression (11) is an adjoint linear matrix representation in the space
R3{{x, t}} of the differentiation Dt : K{u} → K{u}, reduced to the ideal R{u} ⊂ K{u}.
The related Dx- and Dt-invariant Lax differential ideal L{u} ⊂ K{u}, which is isomorphic to
the invariant Riemann differential ideal R{u} ⊂ K{u}, is generated by the element f3(λ) ∈
K{u}, λ ∈ R, satisfying condition (12), and equals

L{u} := {g1f3(λ) + g2Dtf3(λ) + g3D
2
t f3(λ) : D3

t f3(λ) = 0,

λ ∈ R, gj ∈ K{u}, j = 1, 3} ⊂ K{u}. (13)

We now construct a related adjoint linear matrix representation in the functional vector
space R3{{x, t}} for the differentiation Dx : K{u} → K{u}, reduced modulo the Lax differ-
ential ideal L{u} ⊂ K{u}. For this problem to be solved, we need to take into account the
commutator relationship (5) and the important invariance condition of the Lax differential
ideal L{u} ⊂ K{u} with respect to the differentiation Dx : K{u} → K{u}. As a result of
simple but slightly tedious calculations one obtains the following matrix representation:

Dxf = `[u, v, z; λ]f, `[u, v, z; λ] :=




λux −vx zx

3λ2 −2λux λvx

6λ2r[u, v, z] −3λ λux


 , (14)

where, by definition, v := Dtu, z := Dtv, (...)x := Dx(...), a vector f ∈ R3{{x, t}},
λ ∈ R is an arbitrary spectral parameter and a smooth functional mapping r : M̃(3) →
R{{x, t}},M̃(3) := u3

j=1D
j
tM(3), solves the following functional-differential equation

Dtr + rDxu = 1. (15)

Moreover, the matrix ` := `[u, v, z; λ] : R3{{x, t}}→ R3{{x, t}} satisfies the following deter-
mining functional-differential equation:

Dt` + `Dxu = [q(λ), `], (16)

where [·, ·] denotes the usual matrix commutator in the functional space R3{{x, t}}. The
following proposition solving the representation problem posed above, holds.

Proposition 2.2. The expression (14) is an adjoint linear matrix representation in the
space R3{{x, t}} of the differentiation Dx : K{u} → K{u}, reduced modulo the invariant
Lax differential ideal L{u} ⊂ K{u}, given by (13).
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Remark 2.1. Here it is necessary to mention that the matrix representation (11) coin-
cides completely with that obtained before in the work [4] by means of completely different
methods, based mainly on the gradient-holonomic algorithm, devised in [16, 11, 7]. The
presented derivation of these representations (11) and (14) is much easier and simpler that
can be explained by a deeper insight into the integrability problem, devised above using the
differential algebraic approach.

To proceed further, it is now worth to observing that the invariance condition for the Lax
differential ideal L{u} ⊂ K{u} with respect to the differentiations Dx, Dt : K{u} → K{u}
is also equivalent to the related Lax type representation for the generalized Riemann type
equation 1 in the following dynamical system form:

ut = v − uux

vt = z − uvx

zt = −uzx



 := K[u, v, z], (17)

Namely, the following theorem, summing up the results obtained above, holds.

Theorem 1. The linear differential-matrix expressions (11) and (14) in the space R3{{x, t}}
for differentiations Dt : K{u} → K{u} and Dx : K{u} → K{u}, respectively, provide us with
the standard Lax type representation for the generalized Riemann type equation (1) in the
equivalent dynamical system form (17), thereby implying its Lax type integrability.

The next problem of great interest is to construct, making use of the differential-algebraic
tools, the functional-differential solutions to the determining equation (19), and to construct
the corresponding differential-algebraic analogs of the symplectic structures characterizing
the differentiations Dx, Dt : K{u} → K{u}, as well as the local densities of the related
conservation laws, which were derived in [4, 14].

A was shown above and in [4, 14], the dynamical system (17) possesses the following Lax
type representation:

fx = `[u, v, z; λ]f, ft = p(`)f, p(`) := −u`[u, v, z; λ] + q(λ),

`[u, v, z; λ] =




λux −vx zx

3λ2 −2λux λvx

6λ2r[u, v, z] −3λ λux


 , q(λ) :=




0 0 0

λ 0 0

0 1 0


 ,

p(`) =




−λuux uvx −uzx

−3uλ2 + λ 2λuux −λuvx

−6λ2r[u, v, z]u 1 + 3uλ −λuux


 ,

(18)

where f ∈ L∞(R;E3), λ ∈ R is an arbitrary spectral parameter and a function r : M→ R
satisfies the following functional-differential equation:

Dtr + rDxu = 1 (19)
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under the commutator condition (5).
Notwithstanding a slightly complicated form of the functional-differential equation 19,

making use of the differential-algebraic approach devised above, one can easily derive the
next supplementing theorem, describing its exact solutions on the corresponding functional
manifold M̃(3).

Theorem 2. The following set of functional expressions

R̃ =

{
r
(1)
1 =

vxv
3

6z3
− uxv

2

2z2
+

u(uz − v2)zx

6z3
+

v

z
, r

(2)
1 = [(xv − u2/2)/z]x,

r2 =
vx

zx

− u2
x

2zx

, r3 =

(
u3

x

6z2
x

− uxvx

2z2
x

+
3

4zx

)/ (
ux

zx

− v2
x

2z2
x

) }
⊂ R

(20)

solves the functional-differential equation (15) on the corresponding manifold M̃(3).

The set (20) coincides exactly with that constructed before in [4, 2, 14] by means of
completely different techniques.

2.3 The generalized Riemann type hydrodynamical equation: the case N=4

Now consider the generalized Riemann type differential equation (1) at N = 4

D4
t u = 0 (21)

on an element u ∈ R{{x, t}} and construct the related invariant Riemann differential ideal
R{u} ⊂ K{u} as follows:

R{u} :=

{
λ3

∑

n∈Z+

f (1)
n Dn

xu− λ2
∑

n∈Z+

f (2)
n DtD

n
xu + λ

∑

n∈Z+

f (3)
n D2

t D
n
xu (22)

−
∑

n∈Z+

f (4)
n D3

t D
n
xu : D4

t u = 0, λ ∈ R, f (k)
n ∈ K{u}, k = 1, 4, n ∈ Z+

}

at a fixed function u ∈ R{{x, t}}. The Riemann differential ideal (22), satisfying the Dt-
invariance condition, is in this case also maximal. The corresponding kernel Ker Dt ⊂ R{u}
of the differentiation Dt : K{u} → K{u}, reduced upon the Riemann differential ideal (22),
is given by the following linear differential relationships:

Dtf
(1) = 0, Dtf

(2) = λf (1), Dtf
(3) = λf (2), Dtf

(4) = λf (3), (23)

where f (k) := f (k)(λ) =
∑

n∈Z+
f

(k)
n λn ∈ K{u}|M(4)

= R{{x, t}}, k = 1, 4 and λ ∈ R is
arbitrary. The linear relationships (23) can be easily represented in the space R4{{x, t}} in
the following matrix form:

Dtf = q(λ)f, q(λ) :=




0 0 0 0

λ 0 0 0

0 λ 0 0

0 0 λ 0


 , (24)
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where f := (f (1), f (2), f (3), f (4))ᵀ ∈ R4{{x, t}}, and λ ∈ R. Moreover, it is easy to observe
that relationships (23) can be equivalently rewritten in the compact scalar form as

D4
t f

(4) = 0, (25)

where an element f4 ∈ K{u}. Thus, now one can construct the invariant Lax differential
ideal, isomorphically equivalent to (22), as follows:

L{u} := {g1f
(4) + g2Dtf

(4) + g3D
2
t f

(4) + g4D
3
t f

(4) : D4
t f

(4) = 0,

gj ∈ K{u}, j = 1, 4} ⊂ K{u}, (26)

whose Dx-invariance should be checked separately. The latter gives rise to the representation

Dxf = `[u, v, w, z; λ]f, `[u, v, w, z; λ] :=




−λ3ux λ2vx −λwx zx

−4λ2 3λ3ux −2λ2vx λwx

−10λ5r1 6λ4 −3λ3ux λ2vx

−20λ6r2 10λ5r1 −4λ4 λ3ux


 , (27)

where we put, by definition,

Dtu := v,Dtv := w,Dtw := z, Dtz := 0, (28)

(u, v, w, z)ᵀ ∈ M̃(4) ⊂ R3{{x, t}}, and the mappings rj : M̃(4) → R{{x, t}}, j = 1, 2, satisfy
the following functional-differential equations:

Dtr1 + r1Dxu = 1, Dtr2 + r2Dxu = r1, (29)

similar to (15), considered above. The equations (29) possess many different solutions,
amongst which are the functional expressions:

r1 = Dx(
uw2

2z2
− vw3

3z3
+

vw4

24z4
+

7w5

120z4
− w6

144z5
), (30)

r2 = Dx(
uw3

3z3
− vw4

6z4
+

3w6

80z5
+

vw5

120z5
− w7

420z6
).

Whence, we obtain the following proposition.

Proposition 2.3. The expressions (24) and (27) are the linear matrix representations in
the space R4{{x, t}} of the differentiations Dt : K{u} → K{u} and Dx : K{u} →
K{u}, respectively, reduced upon the invariant Lax differential ideal L{u} ⊂ K{u} given
by (13).

Based now on the representations (24) and (27) one easily constructs a standard Lax
type representation, characterizing the integrability of the nonlinear dynamical system

ut = v − uux

vt = w − uvx

wt = z − uwx

zt = −uzx





:= K[u, v, w, z], (31)

equivalent to the generalized Riemann type hydrodynamical system (21). Namely, the fol-
lowing theorem holds.
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Theorem 3. The dynamical system (31), equivalent to the generalized Riemann type hy-
drodynamical system (21), possesses the Lax type representation

fx = `[u, v, z, w; λ]f, ft = p(`)f, p(`) := −u`[u, v, w, z; λ] + q(λ), (32)

where f ∈ R4{{x, t}}, λ ∈ R is a spectral parameter and

`[u, v, w, z; λ] :=




−λ3ux λ2vx −λwx zx

−4λ4 3λ3ux −2λ2vx λwx

−10λ5r1 6λ4 −3λ3ux λ2vx

−20λ6r2 10λ5r1 −4λ4 λ3ux


 , q(λ) :=




0 0 0 0

λ 0 0 0

0 λ 0 0

0 0 λ 0


 ,

p(`) =




λuux −λ2uvx λuwx −uzx

λ + 4λ4u −3λ3uux 2λ2uvx −λuwx

10λ5ur1 λ− 6λ4u 3λ3uux −λ2uvx

20λ6ur2 −10λ5ur1 λ + 4λ4u −λ3uux


 , (33)

so it is a Lax type integrable dynamical system on the functional manifold M̃(4).

The result obtained above can be easily generalized on the case of an arbitrary integer
N ∈ Z+, thereby proving the Lax type integrability of the whole hierarchy of the Riemann
type hydrodynamical equation (1). The related calculations will be presented and discussed
in other work. Here we only do the next remark.

Remark 2.2. The Riemann type hydrodynamical equation (1) as N → ∞ can be equiva-
lently rewritten as the following Benney type [1, 10, 15] chain

Dtu
(n) = u(n+1), Dt := ∂/∂t + u(0)∂/∂x, (34)

for the suitably constructed moment functions u(n) := Dn
t u(0), u(0) := u ∈ R{{x, t}}, n ∈ Z+.

This aspect of the problem is very interesting and we plan to treat it in detail by means
of the differential-geometric tools elsewhere.

3 The differential-algebraic analysis of the Lax type integrability of

the Korteweg-de Vries dynamical system

3.1 The differential-algebraic problem setting

We consider the well known Korteweg-de Vries equation in the following (8) differential-
algebraic form:

Dtu−D3
xu = 0, (35)

where u ∈ K{u} and the differentiations Dt := ∂/∂t + u∂/∂x, Dx := ∂/∂x satisfy the
commutation condition (5):

[Dx, Dt] = (Dxu)Dx. (36)
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We will also interpret relationship (35) as a nonlinear dynamical system

Dtu = Dxxxu (37)

on a suitably chosen functional manifold M ⊂ R{{x, t}}.
Based on the expression (35) we can easily construct a suitable invariant KdV-differential

ideal KdV {u} ⊂ K{u} as follows:

KdV {u} := {
∑

k=0,2

∑

n∈Z+

f (k)
n Dk

xD
n
t u ∈ K{u} : Dtu−D3

xu = 0,

f (k)
n ∈ K{u}, k = 0, 2, n ∈ Z+} ⊂ K{u}. (38)

The ideal (38) proves to be not maximal, that seriously influences on the form of the reduced
modulo it representations of derivatives Dx and Dt : K{u} → K{u}. As the next step we
need to find the kernel Ker Dt ⊂ KdV {u} of the differentiation Dt : K{u} → K{u}, reduced
upon the KdV-differential ideal (38). We obtain by means of easy calculations that it is
generated by the following differential relationships:

Dtf
(0) = −λf (0), Dtf

(2) = −λf (2) + 2f (2)Dxu,

Dtf
(1) = −λf (1) + f (1)Dxu + f (2)Dxxu, (39)

where, by definition, f (k) := f (k)(λ) =
∑

n∈Z+
f

(k)
n λn ∈ K{u}|M = R{{x, t}}, k = 0, 2, and

λ ∈ R is an arbitrary parameter. Based on the relationships (39) the following proposition
holds.

Proposition 3.1. The differential relationships (39) can be equivalently rewritten in the
following linear matrix form:

Dtf = q(λ)f, q(λ) :=

(
Dxu− λ Dxxu

0 2Dxu− λ

)
, (40)

where f := (f1, f2)
ᵀ ∈ R2{{x, t}}, λ ∈ R, giving rise to the corresponding linear matrix

representation in the space R2{{x, t}} of the differentiation Dt : K{u} → K{u}, reduced
upon the KdV-differential ideal (38).

3.2 The Lax type representation

Now, making use of the matrix differential relationship (40), we can construct the Lax
differential ideal related to the ideal (38)

L{u} := {< g, f >E2∈ K{u} : Dtf = q(λ)f,

f, g ∈ K2{u} } ⊂ K{u}, (41)

where < ·, · >E2 denotes the standard scalar product in the Euclidean real space E2. Since
the Lax differential ideal (41) is, by construction, Dt-invariant and isomorphic to the Dt-
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and Dx-invariant KdV-differential ideal (38), it is necessary to check its Dx-invariance. As
a result of this condition the following differential relationship

Dxf = `[u; λ]f, `[u; λ] :=

(
Dxã 2Dxxã.

−1 −Dxã

)
(42)

holds, where the mapping ã : M → R{{x, t}} satisfies the functional-differential relation-
ships

Dtã = 1, Dtu−D3
xu = 0, (43)

and the matrix ` := `[u; λ] : R2{{x, t}} → R2{{x, t}} satisfies for all λ ∈ R the determining
functional-differential equation

Dt` + `Dxu = [q(λ), `] + Dxq(λ), (44)

generalizing the similar equation (16). The result obtained above we formulate as the fol-
lowing proposition.

Theorem 4. The derivatives Dt : R{{x, t}} → R{{x, t}} and Dx : K{u} → K{u} of
the differential ring K{u}, reduced upon the Lax differential ideal L{u} ⊂ K{u}, which
isomorphic to the KdV-differential ideal KdV {u} ⊂ K{u}, allow the compatible Lax type
representation (generated by the invariant Lax differential ideal L{u} ⊂ K{u})

Dtf = q(λ)f, q(λ) :=

(
Dxu− λ Dxxu

0 2Dxu− λ

)
,

Dxf = `[u; λ]f, `[u; λ] :=

(
Dxã 2Dxxã.

−1 −Dxã

)
, (45)

where the mapping ã : M→ R{{x, t}} satisfies the functional-differential relationships (43),
f ∈ R2{{x, t}} and λ ∈ R.

It is interesting to mention that the Lax type representation (45) strongly differs from
that given by the well known [12] classical expressions

Dtf = qcl(λ)f, qcl(λ) :=




Dxu/6 −(2u/3− 4λ)

Dxxu/6− (u/6− λ)×
×(2u/3− 4λ)

−11Dxu/6


 ,

Dxf = `cl[u; λ]f, `cl[u; λ] :=

(
0 1

u/6− λ 0

)
, (46)

where, as above, the following functional-differential equation (equivalent to the nonlinear
dynamical system (37) on the functional manifold M)

Dt`cl + `clDxu = [qcl(λ), `cl] + Dxqcl(λ), (47)

holds for any λ ∈ R. This fact, as we suspect, is related with the existence of different Dt-
invarinat KdV-differential ideals of form (38), which are not maximal. Thus, a problem of
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constructing a suitable KdV-differential ideal KdV {u} ⊂ K{u} generating the corresponding
invariant Lax type differential ideal L{u} ⊂ K{u}, invariant with respect to the differential
representations (46), naturally arises, and we expect to treat this in detail elsewhere. There
also is a very interesting problem of the differential-algebraic analysis of the related symplec-
tic structures on the functional manifold M, with respect to which the dynamical system
(37) is Hamiltonian and suitably integrable. Here we need also to mention a very interesting
work [22], where the integrability structure of the Korteweg-de Vries equation was analyzed
from the differential-algebraic point of view.

4 Conclusion

The results presented provide convincing evidence that the differential-algebraic tools,
when applied to a given set of differential relationships based on the derivatives Dt and Dx :

K{u} → K{u} in the differential ring K{u} and parameterized by a fixed element u ∈ K{u},
make it possible to construct the corresponding Lax type representation as that realizing the
linear matrix representations of the derivatives reduced modulo the corresponding invariant
Riemann differentail ideal. This scheme was elaborated in detail for the generalized Riemann
type differential equation (1) and for the classical Korteweg-de Vries equation (37). As these
equations are equivalent to the corresponding Hamiltonian systems with respect to suitable
symplectic structures, this aspect presents a very interesting problem from the differential-
algebraic point of view, which we plan to study in the near future.
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Прикарпатський А.К., Артемович О.Д., Поповiч З., Павлов М.В. Алгебраїчнi структури
типу Рiмана та диференцiально-алгебраїчний аналiз їх iнтегровностi // Карпатськi ма-
тематичнi публiкацiї. — 2010. — Т.2, №1. — C. 96–108.

Розвивається диференцiально-алгебраїчний пiдхiд до iнтегровностi узагальнених рiв-
нянь типу Рiмана. Аналiзується структура диференцiювань та асоцiйованих з ними iнварi-
антних диференцiальних iдеалiв. Пiдхiд також застосовується до вивчення iнтегровностi
за Лаксом вiдомої динамiчної системи Кортевега-де Фрiза.

Прикарпатский А.К., Артемович О.Д., Попович З., Павлов М.В. Алгебраические струк-
туры типа Римана и дифференциально-алгебраический анализ их интегрируемости //
Карпатские математические публикации. — 2010. — Т.2, №1. — C. 96–108.

Развивается дифференциально-алгебраический подход к изучению интегрируемости
обобщенных уравнений типа Римана. Анализируется структура дифференцирований и
ассоциированных с ними инвариантных дифференциальных идеалов. Подход также при-
меняется к исследованию интегрируемости известной динамической системы Кортевега-де
Фриза.


