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The Hardy type class of complex functions with infinite many variables defined on the
Schrédinger irreducible unitary orbit of reduced Heisenberg group, generated by the Gauss
density, is investigated. A Poisson integral type formula for their analytic extensions on an open
ball is established. Taylor coefficients for analytic extensions are described by the associated
symmetric Fock space.

INTRODUCTION

Hardy type spaces H? for irreducible representations of locally compact groups were
introduced in [4]. In this work we concentrate on an important partial case of such spaces,
defined by the Schrodinger irreducible unitary representation of reduced Heisenberg group.

The Hardy type space H? on the reduced Heisenberg group H, which acts irreducibly
and unitarily over the complex Hilbert space L?(R) with the help of Schrédinger’s represen-
tation, is associated, in according to its definition, with a Gauss type density A on R and
the Haar measure on H. The Schrodinger representation of H contains the complex cyclic
subgroup T = {7’ =e: 9 € 0,2m) }, which means that the essential assumption of the work
[4] is satisfied. We consider the Poisson type integral representation of analytic functions,
belonging to H?, on the open ball

Qrem) = {5 € L*(R): [|€]l 2wy < 2ﬁ}.

The Hilbert space of Taylor coefficients for the space H? is unitary equivalent to the
Hermitian dual I'*(R) of the symmetric Fock space I'(R), generated by the complex Hilbert
space L?(R). The corresponding isometry I'*(R) ~ H? is described in Theorem 2.

We establish in Theorem 3 the Poissson type integral formula

PLIE) = / PlE, .y 7)) Sy 7) dedydr, €€ Q.
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which for corresponding functions f € L?*(H), defined on H, produces their unique analytic
extensions P[f] on Qp2(w).

A theory of Hardy spaces HP with p > 1 of infinitely many variables was advanced in [2].
Many Hardy type spaces on infinite-dimensional Banach domains important in applications
have been studied in [6]. Hilbertian Hardy type classes H?, being reproducing kernel spaces,
have been investigated in [5].

We refer for infinite dimensional holomorphy to [3| and for Heisenberg groups to |7].

1 PRELIMINARIES AND DENOTATIONS

Consider the complex space LZ(R) of all quadratically integrable functions on R with
the scalar product (£ | ¢) 72, = [L&(t)((t) dt and the norm |||l L2r) = (£ | €>1/2 , where
£,¢ € LA(R). In L*(R) we consider the orthonormal basis

6_t2/2 €(t) de ,
t) = ’ t) = (—1)ye" —e teR, jeZ
0= gy SO eT teR ety

where ¢; denotes the Hermite polynomial of degree j.
Let L*(R") = @; L*(R) = spanc{& @ ... @ & &, ..., & € LA(R)} be the n-folds
Hilbert tensor product of L*(R) endowed with the scalar product

<fl ®...0& ‘ (1®...0 Cn>®2 L2(R =& ew - n | ) 2w)

and the norm ||w|lgnr 2@m) = (W | w)(lg/)il 2w With w € &} L*(R). Then the set of elements

{gpil ® ... Q@ (i1,...,1,) € ZZLF} forms the Hermite orthonormal basis in @) L*(R). If
s: {1,...,n} —— {s(1),...,8(n)} runs through all n-elements permutations, then the
codomain of the orthogonal projector

n 1
Spt ®hL2(R) 9€1®®5n'_>€1®®€n = Ezsgs(l)(g@gﬁ(n)v

called a symmetric Hilbertian tensor power of L?(R), we denote by (O L*(R). A symmetric
Fock space is defined as the orthogonal sum

=P OL®].  ONLAR) =

neEZy

with the scalar product and norm, respectively

Wlwr =Y W lwdgrrem, Il = o)

neZy

where ¢ =3 ¥, w=>" w, €' and ¥, w,, € O L*(R). We will use the following short
denotations

=@, . @fe OILAR) with ¢e L(R),
(k) == (v, ko) €27, |(K)| = ks 4+ ko (K) =kl k.
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Consider the systems of elements
k n . n
@, ={¢()" € OLLAR): (), (W) € ZL, |(W)| =nf, @ ={®u: nELsf,

where we denote wggk) = go?ikl ©...0 gpﬁk” and goggk) =1 for all (j) if n=|(k)| =0. As is

known (see e.g. [1, 2.2.2]), the system ® forms an orthogonal basis in the symmetric Fock

k
|20 )HF(R) = /() |(k)|! (see e.g. [1,2.2.2]).
In what follows H = R x R x T will stands for a reduced Heisenberg group with the

space I' such that

multiplication
(7,y,€") - (u,v,e") = (z +u,y + v, TV ellvumm)/2)

endowed with the Haar measure dx dy dr, where 2nwdr = dv.

Let L?(H) be the space of all quadratically Haar integrable complex functions f on H
with the norm || f|l2a0) = (fix |f (2,9, 7)[?dedydr)'? and let L*(H) be the space of all
essentially bounded complex functions on HI.

The Schrédinger representation U from H into the C*-algebra .Z (L*(R)) of bounded
linear operators on L*(R) has the form

Uy yr&(t) = 7e™2e¥e(t 4+ 1), z,y,t R, 7€T, ¢eclL*R).

It is unitary and irreducible. Easy to see that its codomain U(H) = {UM,T: (x,t,7) € ]HI}
contains the cyclic group T. Moreover, due to the Stone-von Neumann Theorem every irre-
ducible unitary representation U of H on a Hilbert space H, such that U(0,0,7)¢ = 7€ for
all 7 € T and £ € H, is unitarily equivalent to the Schrodinger representation U.

Lemma 1.1. The Gauss density function

At) = Ve 2, teR
has the property h € L*(R)()L*°(H) and each basis element goggk) € & generates the
continuous function

n k k1 kn
H> (z,y,7) — <<Uw,y,Tﬁ)® ’ @gg )>F = (Usy-h| 90j1>L2(1R) o AUs gyt | @jn>L2(R) (1)

which belongs to L?(H) and for all (j) € Z" and (k) € Z" with |(k)] = n

. 2 1/2 9l+nl+n/2
/ o) ‘ dedydr| </ ——— (2)
H VAN n

Proof. We have h € L*(R) () L>(H), since

(U r)"

) 222\ 12
[ty = Wlimo = sl = =, Wil = ([ || @) =1

Applying the Fourier transform by the variable ¢ € R, we can define a linear mapping
fix: L*(R) — L?*(H) in the following form
Telry/2
hxoi)(z,y,7) = (Upyrh | ©i) 0p = —F—
( ‘PJ)( Y, T) < Y, }90J>L(R) %\/ZJ_j' e

: ()2 42
it [e (@+1)2/2,—t /2€j(t)} dt

— /o (_1)3 (x _ iy)Je—J»’ [2+(z—1y)*/

/2]



90 LopPUSHANSKY O.V., OLEKSIENKO M.V.

for any ¢, € ®; and j € Z,. For all (k) such that |(k)| = n it follows

a1k
(i ), [ < vy v T [ E]

20t (1)

Since,

with m = Z]lkl and

// (x+y>dwdy—4// Flu dudﬂ—%/f

where 22 = 2ucos? and y? = 2usin® 4, we obtain that the functions (1) belong to L*(H)
and the estimation (2) holds.

]

2 THE MAIN UNITARY ISOMETRY

Since the Schrodinger unitary representation of H over L?(IR) contains the complex cyclic
subgroup T, we can apply the general result of [4]| to the case of reduced Heisenberg group.

Definition 2.1. The closure in L?(H) of the complex linear span of all functions (1), ge-
nerated by the Fock symmetric basis ® (respectively by ®, with n € N), we will denote by
H? (respectively by H?).

Now we consider the unitary representation of the diagonal form

U™ H > (z,y,7) — USl € Z(OpL*(R)) with U2’ :=Q®"Usy,, n €Ly,

x,Y,T T, Y, T

where U®? is the unit in C and £ ()} L*(R)) denotes the C*-algebra of all bounded linear
operators on () L*(R).
The next axillary statements immediately follow from [4] and the previous Lemma 1.1.

Lemma 2.1. (i) The unitary representation U®™ is irreducible for any n € N.

(ii) For any gog()k) € & with |(k)| = n the constants

(k)' 9 —1/2
] : R|(k)| (k)

are dependent on an index n € N but independent of indexes (j), (k) € Z.
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iii) For any element 1, € ()} L?>(R) uniquely corresponds the function
h

"Zn: H > (.I',y,’]') — {Zf\n(l',y,’/_) = Nn <(Ux’y77—ﬁ)®n ‘ wn>F7

which belongs to H?, and the equality
/@n(%va)En(xay?T) dr dydr = <Wn | 1/171>1"7 VY, wn € @ZLQ(R)a (5>
H

holds. The mapping of the form
h: ORLA(R) 3 o — G € H,, (6)

is an antilinear unitary equivalence between Oy L*(R) and H?2. The following inequal-

ity holds for all ¢y, w, € ©O; L*(R),

/ <<Ur,y,7h>®n ’ ¢n>r<(Um,y,Tﬁ)®" ’ wn>Fdx dy dt
H

< nl(n — 112" 2| r[|lwn e

(7)

Proof. Elements ¢,,w € (D) L*(R) present in the form of their Fourier decompositions on
the orthogonal basis ®,,,

(k) _ (m) _®m) T
" Z O‘J )' wn= Y Bl e (m)!
k), GZ"

with the Fourier coefficients agf)) ﬁ((”)l) € C, where |(k)| = |(m)| = n. Hence,

DRIGI |w > ((Upy, 1) ‘wn>rdx dy dr

= Z ‘O‘f )! /<(Ur,y7 & | ‘P®(k >F<<Ux,y,rﬁ)®‘(k)| ‘ 90((8;)(m)>rdx dydr|.
H

Applying the Cauchy-Schwarz inequality, we obtain

|2
> Jals J (Wb 50 (Voo By 0N | 57 ey
H

|
(k),(5) (m)

(m),(3)
(K)(5),(m), (@

i)
9 1/2 9 1/2
X (/ <(U$7y77ﬁ>®” | Sof%k)>r‘ dz dy d¢> (/ ‘ <(Ux7y77ﬁ)®n | wggm%‘ dx dy d¢> :
H H

Applying the inequality (2) and the Cauchy-Schwarz inequality one more, we have

n!?

(k) g(m) :
< 2 1w i

7 (2y/7)" my
<=2 ’a§f§5§i>)|m

< T (Sl ) (S )

/ <(Um7y77ﬁ)®|(k)\ | ¢n>r <(Ux7y7Tﬁ)®\(k)| ‘ wn>Fd-T dy dr
H
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n! K2 n!
It follows (7), as max — = max —— = n! and ||¢,||? = PP w2 =
2 n!

)y |ﬁ((gb)‘ ()1’ So, the integral [ <(Ux,y77ﬁ)®|(’“)‘ | ¢n>r<(Ux,y7Tﬁ)®|(k)| | wn>rdx dydr is a
(m),(0) mj:
Hermitian bounded form on () L*(R), which is antilinear by ¢, € (y L*(R) and linear by

wn, € O L*(R). Therefore, the statements (i) and (iii) directly follow from [4]. O

Let us consider properties of the systems

~

b= {Funez ),  Bo={3l: ()W ez k) =n},
which is generated by the orthogonal basis ® of the Fock space I', and where is denoted

ST B B k e
Puy =% with o @y, 7) =Ry Uagrh | 030) gy - Usrli | €5.) 1oy

with 8y = 1. Using that the Schrédinger representation U of H contains the cyclic subgroup
T, we similarly to [4] obtain the following.

Theorem 1. The system ® forms an orthogonal basis in ‘H? and the subsystem (IADn does
so in H2. If m # n then H2, is orthogonal to H2 in L*(H) and the orthogonal Hilbertian
decomposition

H =P H., H=C,

TZGZ+

holds. The surjective mapping (Which is a linear extension of (6))

h:To¢=EPvnr—d=> et (8)

TLGZ+ TLGZ+

where 1?0 =1y € C, realizes an antilinear unitary equivalence between the Fock space I and
the space H?. Moreover, the following equality holds

/QZ(I,y,T)E(I,y,T) dz dydr = <w ‘ w>r, Y, weTl. 9)
H

3 INTEGRAL FORMULAS FOR ANALYTIC EXTENSIONS

Lemma 3.1. For any function f = Y. f, € H?* with f, € H?2 its integral transform
neEZy

eLfIE) = /H S, (0,y. 7)) flay,7) dedydr, € € Qe (10)

with the Cauchy type reproducing kernel of the form
n i iyt —(t+)> "
ClE, (z,y,7)] = 1+ZW [76 y/Rﬁ(t)@yt (o) /zdt} . (zy.7)€H, (11)
neN

is a unique analytic extension of f on r2w) with the Taylor coefficients at the origin

dpelf)(€) n w222 |
n! - 21+n7rl+3n/4/H Te y/Rf(t)eyt (t+a)/ dt fn(ﬂf,yﬂ') dxdydT’ (12)

where ¢ € L*(R) and n € N.
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Proof. Applying the property that X, is independent on indexes (j), (k) € Z% and after the
formula (3) at j = 0, we conclude that these constants can be calculated by the formulas

| /_2 ) 2n
N = / (U )" [ 95| dar dy dr = / T et e A g dy
H
27

e |

" _”y2/2\/27r or \" 2r  ltnglin/2
() [—FTe=(F) -

It follows that the radius of convergence of the power series (12) is the inverse of

n 1
/T T -
nhjf)lo VR, = nhj{}o Qltngltn/2 — 3 /1
Therefore the power series of the form

n n
Cly (g, 7)) s =1+ ) n1in2 (€| Usyrh) 1o )

neN
n Ty : 2 "
=1+ E [ /E(t)e‘yt(t”) /2 dt
S [

is an analytic L°°(H)-valued function by the variable £ € Q2(r). For any function f € L?(H)
the linear functional F': L*(H) 3 g — [ fgdzdydr is Contmuous. Since €[f](§) =
Fo(£,-), the function €[f], determined by the formula (10), is analytic by £ € Qp2(g) in
view of [3, 3.1.2]. Therefore, differentiating €[f] in the formula (10) at the origin, we obtain

dg €[f](€)

n!

~ i | (7 | Wa)™Yy fula7) dodydr = SLLE)

for all £ € Q2®). By the Cauchy-Schwarz inequality

€L < g /H (€5 | (Usgeh)®™) (i, 7)| dwdy dr

n n
< WHfHH(R)anHLi(H) forall &€ L*(R).

Hence, every element f, € H2 has a unique continuous extension to a n-homogenous poly-
nomial €[f,] defined on L?(R), which takes the form (12). As is known [3, 2.4.2|, continuous
Taylor coefficients uniquely define the analytic function €[f] on §72(®). So, uniqueness of the
analytic extension €[f] is proved. O

Definition 3.1. Following to [4] we mean the space of analytic functions
H (Qew) = {€[f]: f e H*},

defined by the formula (10) with the finite norm

1/2
1e[f] e = sup ( / €Uy ) dxdyd¢> |

rel0,1)

the Hardy type space associated with the Heisenberg group H and the Gaussian density h.
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Applying Lemma 3.1 similarly to [4] we can prove the following statement.
Theorem 2. The following is an antilinear surjective isometry
(€ob): T3 r— Cl] € 1 (Ueqw) -

Now consider an analogue of analytic extension in a Poisson form. For this purpose we
need the positive function

n n
) =1+ srrrlélBm €€ Qe

neN

where the series is convergent by Lemma 3.1.

Theorem 3. The integral transform

PO = [ By ) fo.r) dedydr, e
H
with the Poisson type reproducing kernel

e @y )P
e(E. <)

EB [5? (Z’,y,T)] : > 07 6 S QLQ(R)a (:Cay77—) € H

satisfies the equalities
BlI=<lf],  PRef]=Rel[f].

€ (,y,7)]
€(¢,¢)

is uniformly bounded by the variables (z,y,7) € H for any fixed

Proof. 1t we put g(z,y,7) :=

¢lE (z,y,7)]

¢(¢,¢)
element § € Q2 via Lemma 3.1. For instance, we obtain €[f](§) = €[g](&). Therefore,

f(z,y,7) with £ € Qr2g), then g € H?, since

the function

eLfI(E) = /H CIE, (@9, 7)) gle,y,7) dx(e,y,7)
- /H BIE, (@,9,7)] fla,9,7) dx(e,y,7) = BUIE)

via Theorem 3.1, that it was necessary to prove. [
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Jlonymancekuit O.B.; Onekcieako M.B. @opmyaa muny ITyaccona daa xaacie Xapdi na epynax
Xetizenoepsia // Kapnarcoki maremarnani my6uikanii. — 2010. — T.2, Nel. — C. 87-95.

HocutiryeTbest Kaac TUILY Xap/i KOMILUIEKCHUX (QYHKIH HECKIHYEHO! KLIBKOCTI 3MIHHUX,
BU3HAYEHUX Ha YHITAPHiit opbiTi MOpOIKeHiit TraycciBChKOO (DYHKINEIO TYCTUHHU TPU HE3BITHO-
vy npeacrasiaenti [peminrepa peaykoBanol rpynn Xeiizenbepra. Bcramosmeno interpaabmy
dopmyny tumy Ilyaccona st iX aHaJiTHYHAX PO3MIMPEHb Y BiAkputry Kyiwo. Koedirientn
Teitopa aHAITHYHIX PO3NINPEHD OIKICAHO 3a JIOIOMOI'OI0 CHMETPUYHUX IpocTopiB Poka.

Jlomymauckuit O.B., Onekcuenxko M.B. @opmyaa muna Ilyaccona das waaccos Xapdu na
epynnax Xetsenbepea // Kapuarckue maremarndeckue mybuukanuu. — 2010. — T.2, Nel. — C.
87-95.

Uccnemnyercs kirace trmma Xapaum KOMILIIEKCHBIX (DYHKII OECKOHETHOTO INC/Ia TIePEMEHHBIX,
OIPEJIEIEHHBIX Ha YHUTAPHONW OpOUTEe MOPOJLKACHHONW TayCCOBCKOW (YHKIUEH ILIOTHOCTU
[Ipy HEOPUBOJAMMOM TmpejcTapjennu [lpénuHrepa peyMpoOBaHHON TI'pPYyIIbl XelizeHbOepra.
YcraHOBJIEHO MHTErpasibHyo dopMmyiry tuna llyaccoHa js UX aHAJUTUIECKUX PACIIAPEHU
B OTKpPBHITYIO Kyiaio. Koadbdunmentsr Teitopa amamnTudecHUX pPaCIIUPEHUN OMUCAHBI MPU
ITIOMOIIN ACCOIMUPOBAHBIX CUMMeTpudIecKuX mnpocrpancts Poka.



