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We prove that the inverse spectral mapping reconstructing the impedance function of the
Sturm–Liouville operators on [0, 1] in impedance form from their spectral data (two spectra or
one spectrum and the corresponding norming constants) is analytic and uniformly stable in a
certain sense.

1 Introduction

The main goal of this paper is to establish analyticity and uniform continuity of solutions
to the inverse spectral problems for a certain class of Sturm–Liouville operators on [0, 1] in
the so-called impedance form. Namely, the spectral problems of interest are

−(a2(x)y′(x))′ = λa2(x)y(x), x ∈ [0, 1], (1)

subject to suitable boundary conditions, e.g., the Neumann ones

y′(0) = y′(1) = 0 (2)

or Neumann–Dirichlet ones
y′(0) = y(1) = 0. (3)

Here a > 0 is an impedance function, which will be supposed to belong to the Sobolev space
W 1

2 (0, 1), so that the logarithmic derivative τ := (log a)′ (called the logarithmic impedance
below) is in L2(0, 1). Without loss of generality we may assume that a(0) = 1, so that
a(x) = exp

(∫ x

0
τ(s) ds

)
. Such spectral problems arise in many applications, e.g., in modelling

propagation of sound waves in a duct [44], torsional vibrations of the earth [17] or longitudinal
vibrations in a thin straight rod [13].
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The corresponding differential operators SN and SD given by the differential expression
`(y) := a−2(a2y′)′ and boundary conditions (2) and (3) respectively are self-adjoint in the
weighted Hilbert space L2

(
(0, 1); a2 dx

)
and have simple discrete spectra accumulating at

+∞. We denote by 0 = λ0 < λ1 < · · · the eigenvalues of SN and by 0 < µ0 < µ1 < · · ·
those of SD. The inverse spectral problem is to reconstruct the impedance function a or its
logarithm τ from the spectra of SN and/or SD.

For the standard Sturm–Liouville operators, i.e., those generated by the differential ex-
pression

− d2

dx2
+ q,

with q a real-valued locally integrable potential, it was proved by Borg [7] in 1946 that,
generically, knowledge of the spectrum corresponding to one set of boundary conditions (e.g.
Neumann ones or Neumann–Dirichlet ones) does not allow to unambiguously determine q.
(An exceptional situation where this is possible was pointed out by Ambartzumyan [5] in
1929.) However, two such spectra do uniquely determine q.

The same holds true for the inverse spectral problem of reconstructing the impedance
function a of the operators SN or SD. In fact, these operators are unitarily equivalent to self-
adjoint operators TN and TD acting in L2(0, 1) and generated by the differential expression

`(τ) := −1

a

d

dx
a2 d

dx

1

a
= −

( d

dx
+ τ

)( d

dx
− τ

)
(4)

and the boundary conditions
y[1](0) = y[1](1) = 0 (5)

and
y[1](0) = y(1) = 0 (6)

respectively. Here and hereafter f [1](x) := f ′(x)− τ(x)f(x) shall denote the quasi-derivative
of a function f . Moreover, for a ∈ W 2

2 (0, 1) the differential expression `(τ) can be recast in
the potential form

`(τ) = − d2

dx2
+ τ ′ + τ 2

with potential q = τ ′ + τ 2. For a ∈ W 1
2 (0, 1) the reduction to the potential form is still

possible, but the potential q becomes a distribution from W−1
2 (0, 1) [39]. Sturm–Liouville and

Schrödinger operators with singular potentials (that are, e.g., point interactions, measures,
or distributions) have been widely studied; we refer the reader, e.g., to the books [1, 3]
and to review paper [40] where additional references can be found. Inverse problems for
distributional potentials in the space W−1

2 (0, 1) have also been successfully treated; see,
e.g., [24, 41].

This suggests the following method of solving the inverse spectral problem for impe-
dance Sturm–Liouville operators under consideration: first, one recasts the problem (1) in
the potential form, then uses one of the algorithms reconstructing the potential q from
the spectral data

(
(λn), (µn)

)
of TN and TD, and, finally, finds τ by solving the Riccati

differential equation τ ′+ τ 2 = q. However, this equation may not possess global solutions on
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[0, 1], whence it is desirable to find a way to reconstruct the impedance a or its logarithmic
derivative τ directly from the spectral data for the operators TN and TD.

In the papers [2, 6, 8, 32, 35] several approaches to reconstruction of the impedance a ∈
W 1

2 (0, 1) were suggested and the corresponding spectral data were completely described.
These necessary and sufficient conditions require that the spectra (λn) and (µn) must

(i) interlace, i.e., that λn < µn < λn+1 for all n ∈ Z+, and

(ii) satisfy the asymptotic relations
√

λn = πn + ρ2n,
√

µn = π(n + 1
2
) + ρ2n+1,

where the sequence (ρn) belongs to `2.

Moreover, the induced mapping from the spectral data
(
(λn), (µn)

)
into the impedance

function a providing a solution to the inverse spectral problem was shown in [6] and [32] to
be locally continuous in a certain sense. In particular, this yields local stability of the inverse
spectral problem; see also similar stability results for the related problem of reconstructing
the potential q in [4, 7, 16, 19–21, 31, 33, 34, 36–38, 46]. Here we introduce a metric on the
set of the spectral data

(
(λn), (µn)

)
by e.g. identifying such data with the sequence (ρn) in

the representation of item (ii) above. Typically, this local stability states that, for a fixed
M > 0, there are positive ε and L with the following property: if potentials q1 and q2

(resp., logarithmic impedances τ1 and τ2) are such that ‖q1‖∗ ≤ M and ‖q2‖∗ ≤ M (resp.,
‖τ1‖∗ ≤ M and ‖τ2‖∗ ≤ M) and the corresponding spectral data ν1 :=

(
(λ1,n), (µ1,n)

)
and

ν2 :=
(
(λ2,n), (µ2,n)

)
satisfy ‖ν1 − ν2‖ ≤ ε, then

‖q1 − q2‖∗ ≤ L‖ν1 − ν2‖ (7)

(resp., then
‖τ1 − τ2‖∗ ≤ L‖ν1 − ν2‖) (8)

for a suitable norm ‖·‖∗. For instance, local stability results with respect to the L2(0, 1)-norm
were established in [32, 38] in the regular case q ∈ L2(0, 1), and in [6, 8, 32] for impedance
Sturm–Liouville operators. In [16,33] the case L∞(0, 1) was treated; earlier Hochstadt in [20,
21] proved stability if only finitely many eigenvalues in one spectrum are changed. The
papers [19, 36] studied to what extent only finitely many eigenvalues in one or both spectra
determine the potential, and the latter problem in the non-self-adjoint setting was recently
discussed in [31]. Also, stability of the inverse spectral problems on semi-axis was proved
in [30,37], and the inverse scattering problem on the line was studied in [10,18].

However, the above results cannot be considered satisfactory, as they refer to the norm
of the potential q (resp. of the logarithmic impedance τ) to be recovered and thus specify
neither the allowed noise level ε nor the Lipschitz constant L. Therefore we need a global
stability result that asserts (7) whenever the spectral data ν1 and ν2 run through bounded
sets N and with L only depending on N .

Recently, such a uniform stability in the inverse spectral problem for Sturm–Liouville
operators on [0, 1] was established by Shkalikov and Savchuk [43]. They considered operators
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with real-valued potentials from the Sobolev spaces W s
2 (0, 1) with s > −1. (For negative

s, such potentials are distributions; see [40] for the review on Sturm–Liouville operators
with distributional potentials.) Their approach for solving the inverse spectral problem was
based on the so called Prüfer angle and used extensively the implicit function theorem. In our
work [22] analyticity and global stability of the inverse spectral mapping for s ∈ [−1, 0] was
established using a different approach that generalizes the classical method due to Gelfand
and Levitan [12] and Marchenko [29] and has been successfully applied to reconstruction of
Sturm–Liouville operators with singular potentials in [24,25].

The main aim of this paper is to prove analyticity and Lipschitz continuity on bounded
subsets of the inverse spectral mapping

(
(λn), (µn)

) 7→ τ for the class of the Sturm–Liouville
operators in impedance form with logarithmic impedance τ ∈ L2(0, 1). To this end we use
the approach of [2] to the inverse spectral problem for impedance Sturm–Liouville operators
based on the Krein equation [27] and further develop the methods of [22]. Also, we discuss the
analogous properties in the inverse spectral problem of reconstruction of τ from the Neumann
spectrum (λn) and the corresponding norming constants αn defined in Subsection 2.1.

We mention that the methods of [2] could be used to treat logarithmic impedances τ

belonging to Lp(0, 1) with p ∈ [1,∞). However, apart from some technicalities caused by
more complicated properties of the Fourier transform in Lp(0, 1) for p 6= 2, the approach
would remain the same and we decided to sacrifice the generality to simplicity of presentation.
See Section 5 for discussion of possible generalizations.

The paper is organised as follows. In the next section, we state the main results of the
paper and recall the method of reconstructing the impedance Sturm–Liouville operators from
their spectral data using the Gelfand–Levitan–Marchenko and Krein equations. In Section 3,
we show analyticity and uniform continuity in the inverse problem of reconstructing the
logarithmic impedance τ from the spectrum of the operator TN(τ) and the sequence of the
corresponding norming constants. Reconstruction from two spectra (those of TN(τ) and
TD(τ)) is discussed in Section 4; there the problem is reduced to the one studied in Section 3
by showing that the norming constants depend analytically and Lipschitz continuously on
these spectra. The last Section 5 discusses some ways of extending the results to a wider class
of operators. Finally, three appendices contain auxiliary results on some related nonlinear
mappings in L2(0, 1), on relation between some analytic functions of sine type and their
zeros, and on the special Banach algebra that were used in the proofs.

2 Preliminaries and main results

In this section we state the main results of the paper and recall the method of solution of
the inverse spectral problem based on the Gelfand–Levitan–Marchenko [28] and Krein [27]
equations. All the missing details can be found in [2].

2.1 Spectral data

Throughout this subsection, τ designates a fixed real-valued function in L2(0, 1). We denote
by λn and µn, n ∈ Z+, the eigenvalues of the operators TN(τ) and TD(τ) respectively defined
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via (4)–(6) and recall that these eigenvalues interlace, i.e., λn < µn < λn+1 for all n ∈ Z+,
and satisfy the relations

√
λn = πn + ρ2n,

√
µn = π(n + 1

2
) + ρ2n+1 (9)

with some `2(Z+)-sequence ρ = (ρn).
For λ = ω2 ∈ C, the equation `(τ)u = ω2u subject to the initial conditions u(0) = 1 and

u[1](0) = 0 has the solution

c(x, ω) = cos ωx +

∫ x

0

k(x, t) cos ωt dt, (10)

where k is the kernel of the so called transformation operator. Clearly, cos ωx is a solution
of the “unperturbed” equation `(0)u = ω2u with τ = 0; it is mapped into the solution c(·, ω)

for a generic τ by means of the transformation operator via (10). The function k vanishes
for a.e. (x, t) ∈ [0, 1]2 with x < t and, for every x ∈ [0, 1], k(x, ·) belongs to L2(0, 1) and
the mapping x 7→ k(x, ·) is continuous from [0, 1] into L2(0, 1). Also, there exists a kernel k1

with similar properties such that

c[1](x, ω) = −ω sin ωx− ω

∫ x

0

k1(x, t) sin ωt dt; (11)

we recall that f [1] := f ′ − τf is the quasi-derivative of a function f .
Set ω2n :=

√
λn and ω2n+1 :=

√
µn, n ∈ Z+. Then c(·, ω2n) is an eigenfunction of

the operator TN(τ) corresponding to the eigenvalue λn = ω2
2n, and we call the number1

αn := 1/(2‖c(·, ω2n)‖2) the norming constant for this eigenvalue. It is known [2] that

αn = 1 + βn, (12)

where the sequence β := (βn)n∈Z+ belongs to `2. Moreover, the norming constants αn

can be determined from the spectra of the operators TN(τ) and TD(τ) as follows. We set
C(ω) := c(1, ω) and S(ω) := c[1](1, ω); due to (10) and (11) these are entire functions of
exponential type 1 with zeros ±√µn and ±√λn respectively. The Hadamard canonical
products for S and C are

S(ω) = ω2

∞∏
n=1

ω2
2n − ω2

π2n2
, C(ω) =

∞∏
n=0

ω2n+1 − ω2

π2(n + 1
2
)2

, (13)

so that S and C are uniquely determined by their zeros. Then we have (cf. [2])

αn = − ω2n

Ṡ(ω2n)C(ω2n)
, (14)

where the dot denotes the derivative in ω.

Here and hereafter, ‖f‖ shall stand for the L2(0, 1)-norm of a function f .



40 Hryniv R.O.

2.2 The main results

We introduce the set N of pairs
(
(λn)n∈Z+ , (µn)n∈Z+

)
with the following properties:

• the sequences (λn) and (µn) strictly interlace, i.e., λn < µn < λn+1 for all n ∈ Z+;

• the sequence ρ := (ρk)k∈Z+ , with ρ2n :=
√

λn − πn and ρ2n+1 :=
√

µn − π(n + 1
2
),

belongs to `2.

In this way every element ν :=
(
(λn), (µn)

)
of N is identified with a sequence (ρn) in `2

thus inducing a metric on N . Namely, if ν1 and ν2 are elements of N and ρ1 := (ρ1,n) and
ρ2 := (ρ2,n) are the corresponding `2-sequences of remainders, then

distN (ν1,ν2) := ‖ρ1 − ρ2‖`2 .

In what follows, ν0 shall stand for the element of N corresponding to ρ = 0; then we get
distN (ν,ν0) = ‖(ρn)‖`2 .

According to [2], every element of N gives the eigenvalue sequences of the operators
TN(τ) and TD(τ) for a unique real-valued function τ ∈ L2(0, 1) and, conversely, for every
real-valued τ ∈ L2(0, 1) the spectra of the corresponding Sturm–Liouville operators TN(τ)

and TD(τ) form an element of N . When the logarithmic impedance τ varies over a bounded
subset of L2(0, 1), then the corresponding spectral data

(
(λn), (µn)

)
remain in a bounded

subset of N . Moreover, the Prüfer angle technique (cf. [41,42]) yields then a positive d such
that all the corresponding spectral data

(
(λn), (µn)

)
are d-separated, i.e., that µn − λn ≥ d

and λn+1 − µn ≥ d for every n ∈ Z+. Summarizing, we conclude that the uniform stability
of the inverse spectral problem we would like to establish is only possible on bounded sets
of spectral data in N that are d-separated for some d > 0.

This motivates the following definition.

Definition 2.1. For d ∈ (0, π/2) and r > 0, we denote by N (d, r) the set of all ν ∈ N

that are d-separated and satisfy distN (ν,ν0) ≤ r.

In these notations, the first main result of the paper reads as follows.

Theorem 1. For every d ∈ (0, π/2) and r > 0, the inverse spectral mapping

N (d, r) 3 ν 7→ τ ∈ L2(0, 1) (15)

is analytic and Lipschitz continuous.

See [9] for analyticity of mapping between Banach spaces. In fact, as in [22], we prove
first the analyticity and Lipschitz continuity of the inverse spectral problem of reconstructing
τ from the Neumann spectrum (λn) and the norming constants (αn) (see Theorem 2 below),
and then derive Theorem 1 by showing that the norming constants depend analytically and
Lipschitz continuously on the two spectra.

More exactly, we denote by L the family of strictly increasing sequences λ := (λn)n∈Z+

such that ρ2n :=
√

λn−πn form an element of `2 and pull back the topology on L from that
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of `2 by identifying such λ with (ρ2n) ∈ `2. For d ∈ (0, π) and r > 0, we denote by L (d, r)

the closed convex subset of L consisting of sequences (λn)n∈Z+ such that ‖(ρ2n)‖`2 ≤ r and
λn+1 − λn ≥ d for all n ∈ Z+. Next, we write A for the set of sequences α := (αn)n∈Z of
positive numbers such that the sequence (βn) with βn := αn − 1 belongs to `2. This induces
the topology of `2 on A ; we further consider closed subsets A (d, r) of A consisting of all
(αn) satisfying the inequalities αn ≥ d for all n ∈ Z and the relation ‖(βn)‖`2 ≤ r.

It is known [2] that, given an element (λ,α) ∈ L × A , there is a unique real-valued
τ ∈ L2(0, 1) such that λ is the sequence of eigenvalues and α the sequence of norming
constants for the Sturm–Liouville operator TN(τ). Some further properties of the induced
mapping are described in the following theorem.

Theorem 2. For every d ∈ (0, π) and d′ ∈ (0, 1) and every positive r and r′, the inverse
spectral mapping

L (d, r)×A (d′, r′) 3 (λ,α) 7→ τ ∈ L2(0, 1)

is analytic and Lipschitz continuous.

2.3 Solution of the inverse spectral problem using the Krein equa-
tion

The classical algorithm of reconstructing the potential q = τ ′ + τ 2 of a Sturm–Liouville op-
erator uses the so called Gelfand–Levitan–Marchenko (GLM) equation relating the spectral
data (λ,α) and the transformation operator K, see e.g. the monographs [28,29] for details.
The derivation of the GLM equation sketched below follows the reasoning of [24], to which
we refer the reader for further details.

First we notice that due to the asymptotics of λn and αn the series in

h(s) := 1 + 2
∞∑

n=0

[
αn cos(2ω2ns)− cos(2πns)

]
(16)

converges in L2(0, 1) (in fact, h is an even function on (−1, 1)). Next, denote by F an integral
operator in L2(0, 1) with kernel

f(x, t) := 1
2

[
h
(

x+t
2

)
+ h

(
x−t
2

)]
. (17)

Starting with the resolution of identity for the operator TN(τ),

I = 2
∞∑

n=0

αn( · , cn)cn,

with cn = c( · , ω2n) being the eigenfunction corresponding to the eigenvalue λn = ω2
2n, and

using the relations (10) and the definition of F , after straightforward transformations one
arrives at the equality

I = (I + K)(I + F )(I + K∗).
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Actually, the above equality rewritten in terms of the kernels k and f of the operators K

and F produces the GLM equation,

k(x, t) + f(x, t) +

∫ x

0

k(x, s)f(s, t) ds = 0, x > t. (18)

Given the spectral data and thus the kernel f , one solves the GLM equation for the kernel
k and then determines the potential q from the relation

q(x) = 2
d

dx
k(x, x). (19)

However, this approach does not work for impedance Sturm–Liouville operators under
consideration since formula (19) is then meaningless: indeed, the kernel k is not regular
enough to have a well-defined restriction k(x, x) to the diagonal and the potential q = τ ′+τ 2

is a distribution rather then a regular function. Instead, one can use the method of Krein
that reconstructs the function τ ∈ L2(0, 1) directly. The original method was suggested
by Krein [27] for smooth functions τ and was further developed for the class of impedance
Sturm–Liouville operators with τ ∈ Lp(0, 1), p ∈ [1,∞) in [2].

Namely, with the function h of (16), one considers a different GLM-type integral equation
(called the Krein equation)

r(x, t) + h(x− t) +

∫ x

0

r(x, s)h(s− t) ds = 0, 0 < t < x < 1, (20)

of which the GLM equation (18) is the even part (in the sense that if r is a solution to (20),
then the function

k(x, t) := 1
2

[
r(x, x−t

2
) + r(x, x+t

2
)
]

solves (18)). It can be proved (see the next section) that equation (20) possesses a unique
solution r and, moreover, the function τ satisfies the equality

τ = r(·, 0). (21)

This formula will be the basis of the reconstruction algorithm and stability analysis.

3 Stability of the inverse spectral problem: norming constants

In this section, we prove Theorem 2 on analytic and Lipschitz continuous dependence of
the logarithmic potential τ determining the impedance Sturm–Liouville operator TN(τ) on
its eigenvalues λn and norming constants αn.

We shall study the correspondence between the data (λ,α) ∈ L (d, r) × A (d′, r′) and
the functions τ through the chain of mappings

(λ,α) 7→ h 7→ r 7→ τ,

in which h is the function of (16), r is the kernel solving the Krein equation (20), and, finally,
τ is given by (21).
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Lemma 3.1. The mapping

L (d, r)×A (d′, r′) 3 (λ,α) 7→ h ∈ L2(0, 1)

is analytic and Lipschitz continuous.

Proof. We have h = 1 + hλ + hλ,α, where

hλ(s) := 2
∞∑

n=0

[cos(2ω2ns)− cos(2πns)], hλ,α(s) := 2
∞∑

n=0

βn cos(2ω2ns);

recall that the numbers ρ2n = ω2n − πn and βn := αn − 1 form sequences in `2 that induce
the topology of L and A .

Introduce the function fλ ∈ L2(0, 1) whose Fourier coefficients are f̂λ(0) = 0 and

f̂λ(n) = −f̂λ(−n) := ρ2n

for n ∈ N; then we have hλ = Φ1(fλ) with the mapping Φ1 of Lemma A.1. Therefore the
function hλ depends analytically and Lipschitz continuously on fλ in bounded sets. Since
the mapping sending (ρ2n) ∈ `2 into fλ ∈ L2(0, 1) is linear and quasi-isometric in the sense
that ‖fλ‖ =

√
2‖(ρ2n)‖, we conclude that the mapping λ 7→ hλ is analytic and Lipschitz

continuous on bounded sets.
Next, let gα be the function in L2(0, 1) whose Fourier coefficients are

ĝλ(n) = ĝλ(−n) := βn

for n ∈ Z+. Then hλ,α = Φ2(fλ, gα) with Φ2 being the mapping of Lemma A.2. The
properties of Φ2 and of the mapping (βn) 7→ gα then establish the required dependence
of hλ,α on (λ,α). The lemma is proved.

Solubility of the Krein equation crucially relies on the following property of the convolu-
tion operator H = H(λ,α) defined via

(Hf)(x) :=

∫ 1

0

h(x− t)f(t) dt,

with the function h of (16).

Lemma 3.2. For every d ∈ (0, π), d′ ∈ (0, 1), and positive r and r′, there exists ε > 0 with
the following property: if (λ, α) is an arbitrary element of L (d, r)×A (d′, r′) and h is the
function of (16), then for the corresponding convolution operator H we have I + H ≥ εI.

Proof. Observing that
∫ 1

0

cos 2πn(x− t)f(t) dt = cos 2πnx

∫ 1

0

cos 2πnt f(t) dt + sin 2πnx

∫ 1

0

sin 2πnt f(t) dt
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and that the functions 1,
√

2 sin 2πnx,
√

2 cos 2πnx, n ∈ N, form an orthonormal basis of
L2(0, 1), we find that

((I + H)f, f) = (f, f) + 2 lim
k→∞

k∑
n=0

αn

[|(f, cos 2ω2ns)|2 + |(f, sin 2ω2ns)|2]

− |(f, 1)|2 − 2 lim
k→∞

k∑
n=1

[|(f, cos 2πns)|2 + |(f, sin 2πns)|2]

= 2
∞∑

n=0

αn

[|(f, cos 2ω2ns)|2 + |(f, sin 2ω2ns)|2]

= 2α0|(f, 1)|2 +
∞∑

n=1

αn

[|(f, e−2ω2nis)|2 + |(f, e2ω2nis)|2].

It follows from the results of [14, Ch. VI], [45, Ch. 4] that the system

Eλ :=
{
e−2ω2nis}n∈N ∪ {1} ∪

{
e2ω2nis}n∈N

is a Riesz basis of L2(0, 1). Moreover, it was shown in [23] that there exists m = m(d, r) > 0

that gives a lower bound of Eλ for every λ ∈ L (d, r). Since the inclusion α ∈ A (d′, r′)
implies that αn ≥ d′ for all n ∈ Z, we get

((I + H)f, f) = 2α0|(f, 1)|2 +
∞∑

n=1

αn

[|(f, e−2ω2nis)|2 + |(f, e2ω2nis)|2] ≥ d′m‖f‖2,

and the proof is complete.

To study solubility of the Krein equation (20), we shall regard it as a relation between
the corresponding integral operators. To this end we recall several notions that will be used.
The ideal S2 of Hilbert–Schmidt operators in L2(0, 1) consists of integral operators whose
kernels are square integrable on Ω := [0, 1] × [0, 1]. The linear set S2 becomes a Hilbert
space under the scalar product

〈A, B〉2 := tr(AB∗) :=

∫ 1

0

∫ 1

0

a(x, y)b(x, y) dx dy,

where a and b are the kernels of A and B respectively; in particular, ‖A‖S2 := 〈A,A〉1/2
2 is

the corresponding norm.
As an example, the inequality

∫ 1

0

∫ 1

0

|h(x− y)|2 dx dy ≤ 2‖h‖2

implies that the convolution operator H belongs to S2 and, moreover, ‖H‖2
S2
≤ 2‖h‖2.

Denote by S+
2 the subspace of S2 consisting of all Hilbert–Schmidt operators with lower-

triangular kernels. In other words, A ∈ S2 belongs to S+
2 if the kernel a of A satisfies
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a(x, y) = 0 for a.e. 0 ≤ x < y ≤ 1. For an arbitrary A ∈ S2 with kernel a the cut-off a+ of
a given by

a+(x, y) =

{
a(x, y) for x ≥ y,

0 for x < y

generates an operator A+ ∈ S+
2 , and the corresponding mapping P+ : A 7→ A+ turns out to

be an orthoprojector in S2 onto S+
2 , i.e. (P+)2 = P+ and 〈P+A,B〉2 = 〈A,P+B〉2 for all

A,B ∈ S2; see details in [15, Ch. I.10].
With these notations, the Krein equation (20) can be recast as

R + P+H + P+(RH) = 0 (22)

or
(I + P+

H)R = −P+H,

where P+
X is the linear operator in S2 defined by P+

XY = P+(Y X) and I is the identity
operator in S2. Therefore solubility of the Krein equation and continuity of its solutions
on H is strongly connected with the properties of the operator P+

H .

Lemma 3.3. For every X ∈ B, the operator P+
X is bounded in S2. Moreover, for every

convolution operator H from the set

H := {H = H(λ, α) | (λ,α) ∈ L (d, r)×A (d′, r′)} ⊂ S2

the operator I+P+
H is invertible in B(S+

2 ) and the inverse (I+P+
H)−1 depends analytically

and Lipschitz continuously on H ∈ H in the topology of S2.

Proof. Boundedness of P+
X is a straightforward consequence of the inequality

‖P+
XY ‖S2 ≤ ‖Y X‖S2 ≤ ‖X‖B‖Y ‖S2 ,

cf. [14, Ch. 3]. Assume next that I + X ≥ εI in L2(0, 1); then for Y ∈ S+
2 we find that

〈(I + P+
X)Y, Y 〉2 = 〈Y, Y 〉2 + 〈Y X, Y 〉2 = tr

(
Y (I + X)Y ∗).

Since Y (I + X)Y ∗ ≥ εY Y ∗ and the trace is a monotone functional, we get

〈(I + P+
X)Y, Y 〉2 ≥ ε〈Y, Y 〉2,

i.e., I + P+
X ≥ εI in S+

2 .
Applying now Lemma 3.2, we conclude that for every H ∈ H it holds I +P+

H ≥ εI with
ε of that lemma depending only on d, d′, r, and r′; therefore, I+P+

H is boundedly invertible
in B(S+

2 ) and ∥∥(I + P+
H)−1

∥∥
B(S+

2 )
≤ ε−1.

Since P+
H depends linearly on H, it follows that the mapping H 7→ (I +P+

H)−1 from S2 into
B(S+

2 ) is analytic and Lipschitz continuous on the set H. The proof is complete.
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Corollary 3.1. For every H ∈ H, the Krein equation (22) has a unique solution

R := −(I + P+
H)−1P+H ∈ S+

2 ;

moreover, R depends analytically and Lipschitz continuously in S+
2 on H ∈ H ⊂ S2.

It follows that the kernel r(x, t) of R is square integrable in the domain Ω and depends
analytically and Lipschitz continuously in L2(Ω) on H. However, we need to know that
r( · , 0) is well defined and belongs to L2(0, 1).

To this end we use the Krein equation to find that

r(x, t) = −h(x− t)−
∫ 1

0

r(x, s)h(s− t) ds

as a function of x depends continuously in L2(0, 1) on t ∈ [0, 1]. Indeed, since the shift
f(·) 7→ f(· − t) is a continuous operation in L2(R), h(· − t) enjoys the required property.
Next, since the kernels r and h belong to L2(Ω), we find that

∫ 1

0

∣∣∣
∫ 1

0

r(x, s)h(s− t) ds
∣∣∣
2

dx

≤
∫ 1

0

dx

∫ 1

0

|r(x, s)|2 ds

∫ 1

0

|h(s− t)|2 ds

≤ 2

∫ 1

0

|h(s)|2 ds

∫ 1

0

∫ 1

0

|r(x, s)|2 ds dx < ∞.

(23)

Thus the function ∫ 1

0

r(x, s)h(s− t) ds (24)

of the variable x ∈ [0, 1] belongs to L2(0, 1); moreover, continuity of the shifts h(· − t) and
estimate (23) show that function (24) depends continuously in L2(0, 1) on t ∈ [0, 1]. We
thus conclude that indeed r(·, t) depends continuously in L2(0, 1) on t ∈ [0, 1]. In particular,
r(x, 0) is a well-defined function in L2(0, 1).

Finally, we again use the Krein equation and (21) to get the relation

τ(x) = r(x, 0) = −h(x)−
∫ 1

0

r(x, s)h(s) ds.

The integral on the right-hand side is a bilinear expression in h and r. In view of the analytic
dependence of r on h stated in Corollary 3.1 and estimates (23), this yields analyticity and
Lipschitz continuity of r(x, 0) on h ∈ L2(0, 1). On account of Lemma 3.2, the proof of
Theorem 2 is complete.

4 Reconstruction from two spectra

We recall that the norming constants αn for the Sturm–Liouville operator TN(τ) can be
determined from the spectra (λn) and (µn) of TN(τ) and TD(τ) by the formula (14),

αn = − ω2n

Ṡ(ω2n)C(ω2n)
,
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where the entire functions S and C are given by the canonical products (13) over λn = ω2
2n

and µn = ω2
2n+1 respectively. This induces a mapping ν 7→ α from the spectral data ν :=(

(λn), (µn)
) ∈ N into the norming constants α := (αn) ∈ A . In this section, we shall

establish Theorem 1 by proving the following result.

Theorem 3. For every d ∈ (0, π/2) and r > 0, the mapping

N (d, r) 3 ν 7→ α ∈ A (25)

is analytic and Lipschitz continuous; moreover, there exist positive constants d′ and r′ such
that the range of this mapping belongs to A (d′, r′).

By definition, A consists of elements of the commutative unital Banach algebra A intro-
duced in Appendix C. We observe that the metrics on A agrees with the norm of A, and
thus the results of Appendix C yield the following statement.

Proposition 4.1. For every positive d and r, the set A (d, r) consists of invertible elements
of A. Moreover, the mapping α 7→ α−1 is analytic and Lipschitz continuous in A on A (d, r),
and its range lies in A

(
(1 + r)−1, rd−1

)
.

In view of Proposition 4.1, it suffices to prove Theorem 3 with α replaced by α−1.
The elements of the sequence α−1 are α−1

n = −Ṡ(ω2n)C(ω2n)/ω2n. We shall show that the
sequences

γ :=
(
(−1)n+1Ṡ(ω2n)/ω2n

)
n∈Z+

, δ :=
(
(−1)nC(ω2n)

)
n∈Z+

form elements of A . Thus Theorem 3 will be proved if we show that the mappings

N (d, r) 3 ν 7→ γ ∈ A , N (d, r) 3 ν 7→ δ ∈ A (26)

enjoy the properties required therein for the mapping (25).
To begin with, integral representations (10) and (11) of the solution c( · , ω) and its quasi-

derivative c[1]( · , ω) yield the formulae

S(ω) = −ω sin ω − ω

∫ 1

0

k1(1, t) sin ωt dt, (27)

C(ω) = cos ω +

∫ 1

0

k(1, t) cos ωt dt (28)

for the functions S and C. Therefore both expressions −Ṡ(ω2n)/ω2n and C(ω2n) can be
recast in the form

cos ω2n +

∫ 1

0

g(t) cos ω2nt dt

with g(t) = tk1(1, t) for the former expression and g(t) = k(1, t) for the latter. The sequences
γ and δ have therefore similar structures; namely, their n-th element equals

cos ρ2n + (−1)n

∫ 1

0

g(t) cos ω2nt dt (29)
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for respective g; here, as usual, ρ2n := ω2n − πn.
Clearly, the mapping (ρ2n) 7→ (cos ρ2n − 1) is analytic in `2. Its Lipschitz continuity

follows from the inequality | cos x − cos y| ≤ |x − y|; also, the inequality 1 − cos x ≤ x2/2

yields the estimate
‖(cos ρ2n − 1)‖`2 ≤ 1

2
‖(ρ2n)‖2

`2
. (30)

Set

g̃(s) :=

{
g(1− 2s), s ∈ [0, 1

2
),

g(2s− 1), s ∈ [1
2
, 1];

then straightforward transformations give

vn := (−1)n

∫ 1

0

g(t) cos ω2nt dt = (−1)n

∫ 1

0

g̃(s)eiω2n(1−2s) ds

=

∫ 1

0

g̃(s)eiρ2n(1−2s)e−2πins ds.

(31)

Therefore the above number vn gives the n-th Fourier coefficient of the function u := Ψ(fλ, g̃),
where Ψ is the mapping of Lemma A.3 and fλ is the function introduced in the proof of
Lemma 3.1. It follows from Lemma A.3 that the sequence (û(n))n∈Z of Fourier coefficients
of u depends analytically and boundedly Lipschitz continuously in `2 on fλ and g̃. We prove
in the lemma below that the functions k(1, · ) and k1(1, · ) (and thus the corresponding
transformates g̃) depend in the same manner on ν = (λ,µ) ∈ N (d, r).

Lemma 4.1. The mappings

N (d, r) 3 (λ,µ) 7→ k(1, · ) ∈ L2(0, 1),

N (d, r) 3 (λ,µ) 7→ k1(1, · ) ∈ L2(0, 1)

are analytic and Lipschitz continuous.

Proof. Since both mappings can be treated similarly, we only consider the second one. By
definition, we have S(ω2n)/ω2n = 0, and thus the numbers ω2n = πn + ρ2n, n ∈ Z, are
zeros of the odd entire function S(ω)/ω of (27). The required properties of the mapping
λ 7→ k1(1, · ) follow now from the results of [26]; see Appendix B.

The above reasoning justifies the inclusion α−1 ∈ A as well as analyticity and Lipschitz
continuity of the mappings of (26). It remains to prove that there exist positive d′ and r′

such that, for every ν ∈ N (h, r), the corresponding elements γ and δ belong to A (d′, r′).
Existence of such an r′ follows from the uniform estimates of the `2-norms of the sequences

(cos ρ2n − 1) of (30) and the fact that
∑

n∈Z+

|vn|2 ≤ ‖Ψ(fλ, g̃)‖2,

see (31) and the discussion following it. Indeed, in view of Lemma A.3 the function u =

Ψ(fλ, g̃) remains in the bounded subset of L2(0, 1) when fλ and g̃ vary over bounded subsets
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of L2(0, 1), and the latter is the case when ν runs over N (d, r) by the definition of the
functions fλ and g̃ and Lemma 4.1.

Next, in view of formula (13) and the interlacing property of λn and µn, the numbers
γn = (−1)nṠ(ω2n)/ω2n and δn = (−1)nC(ω2n) are all of the same sign and thus are all
positive in view of the asymptotic relation (29). The uniform positivity of γn and δn (and
thus existence of a positive d′ such that 1/αn = γnδn ≥ d′) follows immediately from the
lemma below.

Lemma 4.2. For every d ∈ (0, π/2) and r > 0 we have

sup
(λ,µ)

sup
n∈Z+

log |Ṡ(ω2n)/ω2n| < ∞, sup
(λ,µ)

sup
n∈Z+

log |C(ω2n)| < ∞,

where S and C are constructed via (13) from the sequences λ and µ, and the suprema are
taken over (λ, µ) ∈ N (d, r).

Proof. We assume first that n 6= 0. By (13), we have

Ṡ(ω2n)/ω2n = −2ω2
2n

π2n2

∏

k∈N, k 6=n

ω2
2k − ω2

2n

π2k2
.

Dividing both sides by

cos πn =
d sin z

dz

∣∣∣
z=πn

= −2
∏

k∈N, k 6=n

k2 − n2

k2
,

we conclude that
|Ṡ(ω2n)/ω2n| = ω2

2n

π2n2

∏

k∈N, k 6=n

ω2
2k − ω2

2n

π2(k2 − n2)
;

for n = 0 the direct calculations give

lim
ω→0

|Ṡ(ω)/ω| = 2
∏

k∈N

ω2
2k

π2k2
.

Recall that ρ2k := ω2k − πk and set

an,±k :=
ρ2n ∓ ρ2k

π(n∓ k)
,

with a0,0 = 1 and an,n = 0 if n ∈ N; then
ω2

2k − ω2
2n

π2(k2 − n2)
=

(
1 + an,k

)(
1 + an,−k

)

and2

|Ṡ(ω2n)/ω2n| =
∏

k∈Z
(1 + an,k).

In what follows, all summations and multiplications over the index set Z will be taken in the principal value
sense and the symbol V.p. will be omitted.
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Since the sequence (λn) is 2d-separated for every (λ, µ) ∈ N (d, r), we have 1 + ak,n ≥ 2d/π

for all n ∈ Z+ and all k ∈ Z. Therefore, with

K := max
x≥−1+2d/π

∣∣∣ log(1 + x)− x

x2

∣∣∣ < ∞,

we get the estimate ∣∣∣log
∏

k∈Z
(1 + an,k)

∣∣∣ ≤
∣∣∣
∑

k∈Z
an,k

∣∣∣ + K
∑

k∈Z
a2

n,k, (32)

provided the two series converge.
Clearly, ∑

k 6=n

1

n− k
= 0,

and thus ∣∣∣
∑

k∈Z
an,k

∣∣∣ =
∣∣∣ 1
π

∑

k 6=n

ρ2k

k − n

∣∣∣ ≤ r√
3

by the Cauchy–Bunyakovski–Schwarz inequality (recall that
∑

k∈Z ρ2
2k ≤ r2 by the definition

of the set N (d, r) and
∑

k 6=n(k − n)−2 = π2/3). Next, the inequality

a2
n,k ≤

2ρ2
2k

π2(k − n)2
+

2ρ2
2n

π2(k − n)2

for k 6= n yields ∑

k∈Z
a2

n,k ≤ 4r2
∑

k 6=n

1

π2(k − n)2
=

4r2

3
.

It follows from (32) that
∣∣∣log

∏

k∈Z
(1 + an,k)

∣∣∣ ≤ (
√

3r + 4Kr2)/3,

where the constant K only depends on d.
Similarly, we find that

|C(ω2n)| =
∣∣∣
∏

k∈Z+

ω2
2k+1 − ω2

2n

π2(k + 1
2
)2

∣∣∣ =
∏

k∈Z+

ω2
2k+1 − ω2

2n

π2(k + 1
2
)− π2n2

and then mimic the above reasoning to establish the other uniform bound. The lemma is
proved.

Proof of Theorem 3. Combining the results of Lemmata 4.1 and 4.2, we conclude that the
mappings (26) enjoy all the properties stated in Theorem 3, and thus so does the mapping
(λ,µ) 7→ α−1. In virtue of Proposition 4.1 this completes the proof of the theorem.

Proof of Theorem 1. Analyticity and Lipschitz continuity on bounded sets of the inverse
spectral mapping

N 3 ν 7→ τ ∈ L2(0, 1)

is the direct consequence of those for the mappings (25) and (15) established in Theorems 3
and 2 respectively.
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5 Some extensions

The results proved above for the class of impedance Sturm–Liouville operators with real-
valued impedance functions a ∈ W 1

2 (0, 1), i.e., for Sturm–Liouville operators TN(τ) and
TD(τ) with τ = a′ + a2 ∈ L2(0, 1) allow quite a straightforward generalization to wider
classes of operators.

Firstly, it is not important that the boundary conditions considered are of Dirichlet or
Dirichlet–Neumann type. In fact, the analysis proceeds in much the same way for generic
Robin-type boundary conditions at one or both endpoints.

Secondly, as in [2] one can treat the case τ ∈ Lp(0, 1), with p ∈ [1,∞). The asymptotic
representation of the eigenvalues and norming constants become then as in (9) and (12),
but the sequences of remainders (ρn) and (βn) form now sequences of sine or cosine Fourier
coefficients of functions in the respective Lp(0, 1) space, see details in [2, 26].

Finally, also the τ in the Sobolev space scale W s
2 (0, 1) can be treated; see similar results for

the potential Sturm–Liouville inverse problem in [25,41]. Again the sequences of remainders
(ρn) and (βn) are then sine or cosine Fourier coefficients of functions in the same space,
and they form Banach algebra under multiplication with properties similar to those of the
algebra A discussed in Appendix C.

For such more general settings the above-described approach is applicable and, save for
some more involved technicalities, proceeds in much the same way and establishes analytic
and Lipschitz continuous dependence of the impedance function a on the spectral data for
the impedance Sturm–Liuoville operators considered.

Acknowledgements. The author thanks A. A. Shkalikov and Ya. V. Mykytyuk for
stimulating discussions. The research was partially supported by the Alexander von Hum-
boldt Foundation and was partially carried out during the visit to the Institute for Applied
Mathematics of Bonn University, whose warm hospitality is sincerely acknowledged.

A Some auxiliary results

We recall that the convolution f ∗ g of two functions in L2(0, 1) is a function in L2(0, 1)

given by

(f ∗ g)(x) :=

∫ 1

0

f(x− t)g(t) dt,

where f is extended to (−1, 0) as a periodic function with period 1. The (discrete) Fourier
transform f̂ of f ∈ L2(0, 1) is a function over Z given by

f̂(n) :=

∫ 1

0

f(t)e−2πnit dt.

It is well known that the Fourier transform is a unitary mapping from L2(0, 1) to `2(Z) and
that f̂ ∗ g(n) = f̂(n)ĝ(n); as a result, we have the inequality

‖f ∗ g‖ ≤ ‖f‖‖g‖
for all f, g ∈ L2(0, 1).
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Lemma A.1. For a function f ∈ L2(0, 1), set

Φ1(f)(x) := V.p.

∞∑
n=−∞

[e2f̂(n)ix − 1]e2πnix.

Then the series determines a function in L2(0, 1), and the mapping

L2(0, 1) 3 f 7→ Φ1(f) ∈ L2(0, 1)

is analytic and Lipschitz continuous on bounded subsets.

Proof. We start with observing that the series
∑

n∈Z f̂ k(n)e2πnis is the Fourier series for the
function f 〈k〉, the k-fold convolution of f with itself, and that ‖f 〈k〉‖ ≤ ‖f‖k. Developing
ef̂(n)is into the Taylor series, we find that

Φ1(f) = V.p.

∞∑
n=−∞

[ ∞∑

k=1

f̂k(n)(2is)k

k!

]
e2πnis

=
∞∑

k=1

(2is)k

k!
V.p.

∞∑
n=−∞

f̂k(n)e2πnis

=
∞∑

k=1

(2is)k

k!
f 〈k〉.

The change of the summation order in the second equality above is justified by the fact
that, for k > 1, the summands in the double series are dominated by Ckf̂ 2(n)/k! with
C := 2 maxn∈Z{|f̂(n)|} + 1. Therefore the double series over the index set {(n, k) | n ∈
Z, k > 1} converges absolutely and the Fubini theorem applies. This formula represents
Φ1(f) as an absolutely convergent series (which is a Taylor series expansion of Φ1(f) in the
variable f) and thus proves the analyticity in L2(0, 1) of the mapping f 7→ Φ1(f).

Lipschitz continuity of that mapping on bounded sets follows from the estimate

‖Φ1(f1)− Φ1(f2)‖ =
∥∥∥
∞∑

k=1

(2is)k

k!
[f
〈k〉
1 − f

〈k〉
2 ]

∥∥∥

≤
∞∑

k=1

2k

(k − 1)!
‖f1 − f2‖

(‖f1‖+ ‖f2‖
)k−1 ≤ exp{4r}‖f1 − f2‖,

which is valid as soon as the L2-norms of f1 and f2 are not greater than r. The proof is
complete.

Lemma A.2. For f and g in L2(0, 1), set

Φ2(f, g) := V.p.

∞∑
n=−∞

ĝ(n) exp{2[πn + f̂(n)]is}.

Then the function Φ2(f, g) belongs to L2(0, 1) and the mapping

Φ2 : L2(0, 1)× L2(0, 1) → L2(0, 1)

is analytic and Lipschitz continuous on bounded subsets.
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Proof. Transformations similar to those used in the proof of the above lemma show that

Φ2(f, g) =
∞∑

k=1

(2is)k

k!
[f 〈k〉 ∗ g].

The mapping Φ2 is linear (and thus analytic) in g, and its analyticity in f as well as Lipschitz
continuity on bounded subsets is established in the same manner as for the mapping Φ1 of
Lemma A.1.

Lemma A.3. For f and g in L2(0, 1), set

Ψ(f, g) := V.p.
∑

n∈Z
(−1)n

∫ 1

0

g(t) exp{[πn + f̂(n)]i(1− 2t)} dt e2πinx.

Then the function Ψ(f, g) belongs to L2(0, 1) and the mapping

Ψ : L2(0, 1)× L2(0, 1) → L2(0, 1)

is analytic and Lipschitz continuous on bounded subsets.

Proof. The coefficient of e2πinx in the above series for Ψ can be written as
∫ 1

0

g(t) exp{i(1− 2t)f̂(n)}e−2πint dt (33)

and gives the n-th Fourier coefficient of the function h :=
∑∞

k=0 hk/k!, with h0 := g, hk :=

f 〈k〉 ∗Mkg for k ≥ 1, and M being the operator of multiplication by the function i(1− 2x).
In other words, we have Ψ(f, g) = h. Since ‖f ∗ g‖ ≤ ‖f‖‖g‖ for every f and g in L2(0, 1),
the functions hk belong to L2(0, 1) and their norms there obey the estimate

‖hk‖ ≤ ‖f‖k‖Mkg‖ ≤ ‖f‖k‖g‖.

Thus the series for h converges absolutely and, since every hk is a multi-linear function of f

and g, the mapping Ψ is analytic. Its Lipschitz continuity on bounded subsets is established
in the usual manner, and the proof is complete.

B Analyticity of some related mappings

Here we give a brief account on the results of [26] and also establish some of their
extensions needed to prove Lemma 4.1. It was shown in [26] that for every f ∈ L2(0, 1)

there exists a unique function g ∈ L2(0, 1) such that all zeros (counting multiplicities) of the
entire function

Gg(z) := sin z +

∫ 1

0

g(t)eiz(1−2t) dt (34)

are given by the numbers πn+ f̂(n), n ∈ Z. Such pairs of f and g in fact satisfy the relation

H(f, g) := s(f) + g +
∞∑

k=1

(Mkg) ∗ f 〈k〉

k!
= 0; (35)
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here

s(f) :=
∞∑

k=0

(−1)kf 〈2k+1〉

(2k + 1)!
,

f 〈k〉 is the k-fold convolution of f with itself, and M is the operator of multiplication
by i(1 − 2x). The function H is analytic from L2(0, 1) × L2(0, 1) into L2(0, 1), and its
partial derivatives ∂fH(f, g) and ∂gH(f, g) are given by

∂fH(f, g)(h1) =
(
c(f) +

∞∑

k=1

(Mkg) ∗ f 〈k−1〉

(k − 1)!

)
∗ h1, (36)

∂gH(f, g)(h2) = h2 +
∞∑

k=1

(Mkh2) ∗ f 〈k〉

k!
(37)

with

c(f) :=
∞∑

k=0

(−1)kf 〈2k〉

(2k)!
.

Using the implicit function theorem, it was shown that the induced mapping ϕ : f 7→ g

is analytic. In order to establish its Lipschitz continuity, we shall study the above partial
derivatives in more detail.

Namely, we assume that f ∈ L2(0, 1) is such that the corresponding sequence ω = (ωn)n∈Z
with ωn := πn + f̂(n) belongs to L (d, r) and that g = ϕ(f). Set Sω to be the canonical
product of (13); then Sω(z)/z can also be represented as (34). Direct calculations show that
the n-th Fourier coefficient of the function of (36) is equal to

(−1)nĥ1(n)
[
cos ωn +

∫ 1

0

i(1− 2t)g(t)eiωn(1−2t) dt
]

= (−1)nĥ1(n)Ṡω(ωn).

By Lemma 4.2 there are positive numbers k1 and k2 such that

k1 ≤ |Ṡω(ωn)/ω2n| ≤ k2

for all ω ∈ L (d, r) and all n ∈ Z. Therefore the partial derivative ∂fH(f, g) is a bounded
and boundedly invertible operator in L2(0, 1); moreover, for every fixed d > 0 and r > 0, the
norms of ∂fH(f, g) and their inverses are uniformly bounded for all f ∈ L2(0, 1) generating
the sequences ω in the set L (d, r).

Similarly, the n-th Fourier coefficient of the function of (37) is equal to

(−1)n

∫ 1

0

h2(t)e
iωn(1−2t) dt.

By the results of [23], there exist positive m1 and m2 such that, for all ω ∈ L (d, r), the
sequences (eiωn(1−2x))n∈Z form Riesz bases of L2(0, 1) of lower bound m1 and upper bound m2.
Therefore the operator Hg := ∂gH(f, g),

Hg : h2 7→
∑

n∈Z
(−1)n(h2, e

iωn(1−2x)) e2πnix,
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is bounded and boundedly invertible in L2(0, 1), with ‖Hg‖ ≤ m
1/2
2 and ‖H−1

g ‖ ≤ m
−1/2
1 .

We now use the implicit mapping theorem to conclude that the mapping ϕ : f 7→ g is
analytic in L2(0, 1). The uniform bounds on the inverses of the partial derivatives ∂fH(f, g)

and ∂gH(f, g) established above imply that, for every d ∈ (0, π) and r > 0, this mapping
is Lipschitz continuous on the set of functions f ∈ L2(0, 1) generating the sequences ω ∈
L (d, r).

C The Banach algebra A

The space `2 = `2(Z+) is a commutative Banach algebra under the pointwise multiplica-
tion (xn) ·(yn) = (xn ·yn). Its unital extension A consists of elements of `∞ of the form a1+x

with a ∈ C, the unity 1 ∈ `∞ having all its elements equal to 1, and x = (xn) ∈ `2. The
norm in A is given by

‖a1 + x‖A = |a|+ ‖x‖.
An element a1 + x is invertible in A if and only if a 6= 0 and a + xn 6= 0 for all n ∈ Z; in
this case the inverse is equal to a−11 + y, where y = (yn) with yn := −xn/a(a + xn). Since
under the above assumptions we have infn |a + xn| > 0, we see that y indeed belongs to `2;
moreover,

‖(a1 + x)−1‖A ≤ |a|−1
(
1 + ‖x‖/ inf

n
|a + xn|

)
.

The mapping x̂ 7→ x̂−1 is analytic on the open set of all invertible elements of A; in addition,
it is Lipschitz continuous on the sets

Sε :=
{
a1 + x | |a| ≥ ε, inf

n
|a + xn| ≥ ε

}
.
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Гринiв Р.О. Аналiтичнiсть i рiвномiрна стiйкiсть в оберненiй задачi для iмпедансних
операторiв Штурма–Лiувилля // Карпатськi математичнi публiкацiї. — 2010. — Т.2, №1.
— C. 35–58.

Доведено, що обернене спектральне вiдображення, що вiдновлює iмпедансну функцiю
операторiв Штурма–Лiувилля на [0, 1] в iмпеданснiй формi за спектральними даними
(двома спектрами або одним спектром та нормiвними множниками) є аналiтичним та
рiвномерно стiйким в певному сенсi.

Гринив Р.О. Аналитичность и равномерная устойчивость в обратной задаче для им-
педансных операторов Штурма–Лиувилля // Карпатские математические публикации.
— 2010. — Т.2, №1. — C. 35–58.

Доказано, что обратное спектральное отображение, восстанавливающее импедансную
функцию операторов Штурма–Лиувилля на [0, 1] в импедансной форме по спектральным
данным (двум спектрам или одному спектру и нормирующим множителям) является
аналитическим и равномерно устойчивым в некотором смысле.


