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We prove that the inverse spectral mapping reconstructing the impedance function of the
Sturm-Liouville operators on [0, 1] in impedance form from their spectral data (two spectra or
one spectrum and the corresponding norming constants) is analytic and uniformly stable in a
certain sense.

1 INTRODUCTION

The main goal of this paper is to establish analyticity and uniform continuity of solutions
to the inverse spectral problems for a certain class of Sturm-Liouville operators on [0, 1] in
the so-called impedance form. Namely, the spectral problems of interest are

—(a*(2)y(2))" = Aa*(z)y(z), = €10,1], (1)

subject to suitable boundary conditions, e.g., the Neumann ones

y(0)=y'(1)=0 (2)

or Neumann—Dirichlet ones

y'(0) =y(1) =0. (3)
Here a > 0 is an impedance function, which will be supposed to belong to the Sobolev space
W}(0,1), so that the logarithmic derivative 7 := (loga)’ (called the logarithmic impedance
below) is in L9(0,1). Without loss of generality we may assume that a(0) = 1, so that
a(x) = exp( fom 7($) ds). Such spectral problems arise in many applications, e.g., in modelling
propagation of sound waves in a duct [44], torsional vibrations of the earth [17] or longitudinal
vibrations in a thin straight rod [13].
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The corresponding differential operators Sy and Sp given by the differential expression
{(y) := a~?(a*y’)" and boundary conditions (2) and (3) respectively are self-adjoint in the
weighted Hilbert space Lg((O, 1);a® dm) and have simple discrete spectra accumulating at
+00. We denote by 0 = Ay < A; < --- the eigenvalues of Sy and by 0 < pg < pg < ---
those of Sp. The inverse spectral problem is to reconstruct the impedance function a or its
logarithm 7 from the spectra of Sy and/or Sp.

For the standard Sturm-Liouville operators, i.e., those generated by the differential ex-
pression

d2
T dr?
with ¢ a real-valued locally integrable potential, it was proved by Borg [7] in 1946 that,

+4

generically, knowledge of the spectrum corresponding to one set of boundary conditions (e.g.
Neumann ones or Neumann-Dirichlet ones) does not allow to unambiguously determine g.
(An exceptional situation where this is possible was pointed out by Ambartzumyan [5] in
1929.) However, two such spectra do uniquely determine g.

The same holds true for the inverse spectral problem of reconstructing the impedance
function a of the operators Sy or Sp. In fact, these operators are unitarily equivalent to self-
adjoint operators Ty and Tp acting in Lo(0, 1) and generated by the differential expression

0=~ =~ ) (- o
and the boundary conditions
y(0) = (1) =0 (5)
and
y(0) =y(1) =0 (6)

respectively. Here and hereafter f(x) := /() — 7(2) f(z) shall denote the quasi-derivative
of a function f. Moreover, for a € W2(0,1) the differential expression £(7) can be recast in
the potential form ,
1) = —% + 7+ 72

with potential ¢ = 7/ + 72. For a € W3 (0,1) the reduction to the potential form is still
possible, but the potential ¢ becomes a distribution from W, (0, 1) [39]. Sturm-Liouville and
Schrodinger operators with singular potentials (that are, e.g., point interactions, measures,
or distributions) have been widely studied; we refer the reader, e.g., to the books |1, 3|
and to review paper [40| where additional references can be found. Inverse problems for
distributional potentials in the space W, *(0,1) have also been successfully treated; see,
e.g., [24,41].

This suggests the following method of solving the inverse spectral problem for impe-
dance Sturm—Liouville operators under consideration: first, one recasts the problem (1) in
the potential form, then uses one of the algorithms reconstructing the potential ¢ from
the spectral data (()\n), (un)) of Ty and Tp, and, finally, finds 7 by solving the Riccati
differential equation 7’ 4+ 72 = ¢q. However, this equation may not possess global solutions on
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0, 1], whence it is desirable to find a way to reconstruct the impedance a or its logarithmic
derivative 7 directly from the spectral data for the operators Ty and Tp.

In the papers [2,6,8,32,35| several approaches to reconstruction of the impedance a €
W5(0,1) were suggested and the corresponding spectral data were completely described.
These necessary and sufficient conditions require that the spectra (\,) and (u,) must

(i) interlace, i.e., that A\, < p, < A,4q1 for all n € Z, , and

(ii) satisfy the asymptotic relations

V )\n = TN + Pon, V Hn :77(”+%)+P2n+17
where the sequence (p,,) belongs to /.

Moreover, the induced mapping from the spectral data ((),), (i4,)) into the impedance
function a providing a solution to the inverse spectral problem was shown in [6] and [32] to
be locally continuous in a certain sense. In particular, this yields local stability of the inverse
spectral problem; see also similar stability results for the related problem of reconstructing
the potential ¢ in [4,7,16,19-21, 31, 33, 34,36-38,46|. Here we introduce a metric on the
set of the spectral data (()\n), (un)) by e.g. identifying such data with the sequence (p,) in
the representation of item (ii) above. Typically, this local stability states that, for a fixed
M > 0, there are positive ¢ and L with the following property: if potentials ¢; and ¢
(resp., logarithmic impedances 71 and 73) are such that ||¢1]l. < M and ||g|l« < M (resp.,
|71]|« < M and |7, < M) and the corresponding spectral data vy := ((A1n), (1t1,,)) and
vy i= ((A2n), (p2,n)) satisty |lvn — vs|| < e, then

g1 — @2« < Ly — vy (7)

(resp., then
I71 = 72l < Lllvr —1nf) (8)

for a suitable norm ||-||.. For instance, local stability results with respect to the Ly(0, 1)-norm
were established in [32,38] in the regular case ¢ € Ly(0,1), and in [6,8, 32| for impedance
Sturm-Liouville operators. In [16,33] the case L (0, 1) was treated; earlier Hochstadt in |20,
21| proved stability if only finitely many eigenvalues in one spectrum are changed. The
papers [19, 36| studied to what extent only finitely many eigenvalues in one or both spectra
determine the potential, and the latter problem in the non-self-adjoint setting was recently
discussed in [31]. Also, stability of the inverse spectral problems on semi-axis was proved
in [30,37], and the inverse scattering problem on the line was studied in [10, 18].

However, the above results cannot be considered satisfactory, as they refer to the norm
of the potential ¢ (resp. of the logarithmic impedance 7) to be recovered and thus specify
neither the allowed noise level € nor the Lipschitz constant L. Therefore we need a global
stability result that asserts (7) whenever the spectral data v, and v, run through bounded
sets 4" and with L only depending on .4".

Recently, such a uniform stability in the inverse spectral problem for Sturm-Liouville
operators on [0, 1] was established by Shkalikov and Savchuk [43]. They considered operators
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with real-valued potentials from the Sobolev spaces W5 (0,1) with s > —1. (For negative
s, such potentials are distributions; see [40] for the review on Sturm-Liouville operators
with distributional potentials.) Their approach for solving the inverse spectral problem was
based on the so called Priifer angle and used extensively the implicit function theorem. In our
work [22] analyticity and global stability of the inverse spectral mapping for s € [—1,0] was
established using a different approach that generalizes the classical method due to Gelfand
and Levitan [12] and Marchenko [29] and has been successfully applied to reconstruction of
Sturm—Liouville operators with singular potentials in |24, 25].

The main aim of this paper is to prove analyticity and Lipschitz continuity on bounded
subsets of the inverse spectral mapping ((/\n), (un)) — 7 for the class of the Sturm-Liouville
operators in impedance form with logarithmic impedance 7 € Ly(0,1). To this end we use
the approach of [2| to the inverse spectral problem for impedance Sturm-Liouville operators
based on the Krein equation [27] and further develop the methods of [22]. Also, we discuss the
analogous properties in the inverse spectral problem of reconstruction of 7 from the Neumann
spectrum (\,) and the corresponding norming constants «,, defined in Subsection 2.1.

We mention that the methods of [2] could be used to treat logarithmic impedances 7
belonging to L,(0,1) with p € [1,00). However, apart from some technicalities caused by
more complicated properties of the Fourier transform in L,(0,1) for p # 2, the approach
would remain the same and we decided to sacrifice the generality to simplicity of presentation.
See Section 5 for discussion of possible generalizations.

The paper is organised as follows. In the next section, we state the main results of the
paper and recall the method of reconstructing the impedance Sturm-Liouville operators from
their spectral data using the Gelfand-Levitan—-Marchenko and Krein equations. In Section 3,
we show analyticity and uniform continuity in the inverse problem of reconstructing the
logarithmic impedance 7 from the spectrum of the operator Tx(7) and the sequence of the
corresponding norming constants. Reconstruction from two spectra (those of Tx(7) and
Tp (7)) is discussed in Section 4; there the problem is reduced to the one studied in Section 3
by showing that the norming constants depend analytically and Lipschitz continuously on
these spectra. The last Section 5 discusses some ways of extending the results to a wider class
of operators. Finally, three appendices contain auxiliary results on some related nonlinear
mappings in Ly(0,1), on relation between some analytic functions of sine type and their
zeros, and on the special Banach algebra that were used in the proofs.

2 PRELIMINARIES AND MAIN RESULTS

In this section we state the main results of the paper and recall the method of solution of
the inverse spectral problem based on the Gelfand-Levitan-Marchenko [28] and Krein [27]
equations. All the missing details can be found in [2].

2.1 Spectral data

Throughout this subsection, 7 designates a fixed real-valued function in Ly(0, 1). We denote
by A, and p,, n € Z, the eigenvalues of the operators Tx(7) and Tp(7) respectively defined
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via (4)—(6) and recall that these eigenvalues interlace, i.e., A\, < p, < A\py1 for all n € Z,,
and satisfy the relations

V Ap =Tn + P2n, vV Hn = 7T(7”L + %) + Pan+1 (9>

with some l5(Z, )-sequence p = (py,).
For A = w? € C, the equation ¢(7)u = w?u subject to the initial conditions «(0) = 1 and
ul(0) = 0 has the solution

c(x,w) = coswz +/ k(x,t)coswtdt, (10)
0

where k is the kernel of the so called transformation operator. Clearly, coswx is a solution
of the “unperturbed” equation ¢(0)u = w?u with 7 = 0; it is mapped into the solution c(-,w)
for a generic 7 by means of the transformation operator via (10). The function k vanishes
for a.e. (z,t) € [0,1]* with < ¢ and, for every = € [0,1], k(z,-) belongs to L,(0,1) and
the mapping x — k(x,-) is continuous from [0, 1] into L(0,1). Also, there exists a kernel k;
with similar properties such that

Mz, w) = —wsinwz — w/ ki(z,t) sin wt dt; (11)
0

we recall that fl! := f/ — 7 f is the quasi-derivative of a function f.

Set wy, = VA, and wo, 1 = VHn, n € Zy. Then c(-,wsy,) is an eigenfunction of
the operator Tx(7) corresponding to the eigenvalue A\, = w3, , and we call the number!
= 1/(2||e(+,wa2n)]|?) the norming constant for this eigenvalue. It is known [2] that

o, =1+ By, (12)

where the sequence 8 := (0,)nez, belongs to ¢;. Moreover, the norming constants a,
can be determined from the spectra of the operators Tx(7) and Tp(7) as follows. We set
C(w) = ¢(l,w) and S(w) := (1,w); due to (10) and (11) these are entire functions of
exponential type 1 with zeros =4/, and ++/)\,, respectively. The Hadamard canonical
products for S and C' are

0 2 2 0 2
_ 2 Wop, — W _ Wony1 — W
Sw)=u? [] o Cl)= [ ] 212 (13)
n=1 n=0

so that S and C' are uniquely determined by their zeros. Then we have (cf. [2])

where the dot denotes the derivative in w.

Here and hereafter, || f|| shall stand for the L(0,1)-norm of a function f.
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2.2 The main results

We introduce the set .4 of pairs ((An)neer, (Nn)neZ+) with the following properties:
e the sequences (\,) and (u,) strictly interlace, i.e., A, < p, < Apyq for all m € Z;

e the sequence p = (pi)rez,, With pa, := VA, — mn and popi1 = /b — m(n + %),
belongs to /.

In this way every element v := ((A,), (1n)) of 4" is identified with a sequence (p,) in
thus inducing a metric on .4". Namely, if v and v, are elements of 4" and p; := (p1,,) and
p2 = (p2,,) are the corresponding fy-sequences of remainders, then

diSt,/V(VhVZ) = le - PzHZz-

In what follows, v shall stand for the element of 4" corresponding to p = 0; then we get
diStJV(Va VO) = ||(pn)H42

According to [2], every element of .4 gives the eigenvalue sequences of the operators
Tn(7) and Tp(7) for a unique real-valued function 7 € L9(0,1) and, conversely, for every
real-valued 7 € L(0,1) the spectra of the corresponding Sturm-Liouville operators Ty(7)
and Tp(7) form an element of .4". When the logarithmic impedance 7 varies over a bounded
subset of L(0,1), then the corresponding spectral data ((A,), (14,)) remain in a bounded
subset of .4”. Moreover, the Priifer angle technique (cf. [41,42]) yields then a positive d such
that all the corresponding spectral data (()\n), (,un)) are d-separated, i.e., that p, — X\, > d
and A\,y1 — pn, > d for every n € Z,. Summarizing, we conclude that the uniform stability
of the inverse spectral problem we would like to establish is only possible on bounded sets
of spectral data in .4 that are d-separated for some d > 0.

This motivates the following definition.

Definition 2.1. For d € (0,7/2) and r > 0, we denote by A'(d,r) the set of allv € A
that are d-separated and satisfy dist_y (v, vy) < r.

In these notations, the first main result of the paper reads as follows.

Theorem 1. For every d € (0,7/2) and r > 0, the inverse spectral mapping
N (d,r) > v— 1€ Ly(0,1) (15)
is analytic and Lipschitz continuous.

See [9] for analyticity of mapping between Banach spaces. In fact, as in [22], we prove
first the analyticity and Lipschitz continuity of the inverse spectral problem of reconstructing
7 from the Neumann spectrum (A,) and the norming constants («,) (see Theorem 2 below),
and then derive Theorem 1 by showing that the norming constants depend analytically and
Lipschitz continuously on the two spectra.

More exactly, we denote by .2 the family of strictly increasing sequences X := (A, )nez,
such that py, := /A, —7n form an element of ¢, and pull back the topology on .# from that
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of {5 by identifying such A with (pa,) € ¢2. For d € (0,7) and r > 0, we denote by Z(d,r)
the closed convex subset of .Z consisting of sequences (A, )nez, such that ||(p2,)|le, < 7 and
Ani1 — Ay > d for all n € Z,. Next, we write &7 for the set of sequences o := (v, )nez of
positive numbers such that the sequence (3,) with 3, := «a,, — 1 belongs to ¢5. This induces
the topology of /5 on «7; we further consider closed subsets 7 (d,r) of o/ consisting of all
(av,) satisfying the inequalities oy, > d for all n € Z and the relation ||(3,)]s, < r.

It is known [2] that, given an element (A, ) € £ X &7, there is a unique real-valued
T € Ly(0,1) such that A is the sequence of eigenvalues and « the sequence of norming
constants for the Sturm—Liouville operator Tx(7). Some further properties of the induced

mapping are described in the following theorem.

Theorem 2. For every d € (0,7) and d' € (0,1) and every positive r and ', the inverse
spectral mapping

L(d,r) x (d,7") 3 (A o) — 7 € Ly(0,1)

is analytic and Lipschitz continuous.

2.3 Solution of the inverse spectral problem using the Krein equa-
tion

The classical algorithm of reconstructing the potential ¢ = 7/ + 72 of a Sturm-Liouville op-
erator uses the so called Gelfand-Levitan-Marchenko (GLM) equation relating the spectral
data (A, @) and the transformation operator K, see e.g. the monographs [28,29] for details.
The derivation of the GLM equation sketched below follows the reasoning of [24], to which
we refer the reader for further details.

First we notice that due to the asymptotics of A\, and «,, the series in
h(s) :==1+2 Z (v, cos(2way,s) — cos(2mns)] (16)
n=0

converges in Ly(0,1) (in fact, h is an even function on (—1,1)). Next, denote by F' an integral
operator in Ly(0, 1) with kernel

Flot) = Sn(252) + h(752)]. (17)

Starting with the resolution of identity for the operator Ty(7),

I = Qi (-, en)en,
n=0

with ¢, = ¢(-,ws,) being the eigenfunction corresponding to the eigenvalue \, = w2 , and
using the relations (10) and the definition of F, after straightforward transformations one
arrives at the equality

I=(I+K)I+F)(I+K".
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Actually, the above equality rewritten in terms of the kernels £ and f of the operators K
and F' produces the GLM equation,

k(z,t) + f(x,t) + /03«“ k(xz,s)f(s,t)ds =0, T > t. (18)

Given the spectral data and thus the kernel f, one solves the GLM equation for the kernel
k and then determines the potential ¢ from the relation

q(z) = Z%k(x,x). (19)

However, this approach does not work for impedance Sturm—Liouville operators under
consideration since formula (19) is then meaningless: indeed, the kernel & is not regular
enough to have a well-defined restriction k(x, z) to the diagonal and the potential ¢ = 7'+ 72
is a distribution rather then a regular function. Instead, one can use the method of Krein
that reconstructs the function 7 € Ly(0,1) directly. The original method was suggested
by Krein [27] for smooth functions 7 and was further developed for the class of impedance
Sturm-Liouville operators with 7 € L,(0,1), p € [1,00) in [2].

Namely, with the function & of (16), one considers a different GLM-type integral equation
(called the Krein equation)

r(x,t)+h(a:—t)—i—/xr(a:,s)h(s—t)ds:O, O<t<uz<l, (20)

of which the GLM equation (18) is the even part (in the sense that if r is a solution to (20),
then the function
Ko t) = Lo, 259 + r(o, =50)]

solves (18)). It can be proved (see the next section) that equation (20) possesses a unique
solution r and, moreover, the function 7 satisfies the equality

T =r(-0). (21)

This formula will be the basis of the reconstruction algorithm and stability analysis.

3 STABILITY OF THE INVERSE SPECTRAL PROBLEM: NORMING CONSTANTS

In this section, we prove Theorem 2 on analytic and Lipschitz continuous dependence of
the logarithmic potential 7 determining the impedance Sturm-Liouville operator Tx(7) on
its eigenvalues ), and norming constants av,.

We shall study the correspondence between the data (A, a) € Z(d,r) x &7 (d',r") and
the functions 7 through the chain of mappings

A a)—h—re—rT

in which A is the function of (16), r is the kernel solving the Krein equation (20), and, finally,
7 is given by (21).
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Lemma 3.1. The mapping

Ld,r)x (d,r") > (A a)— he Ly0,1)
is analytic and Lipschitz continuous.

Proof. We have h =1+ hx + hy o, Where

Z cos(2wsy, s) — cos(2mns)], hxa(s) =2 Z B cos(2wapS);
n=0

recall that the numbers py, = ws, — mn and 3, := «,, — 1 form sequences in ¢, that induce
the topology of . and 7.
Introduce the function fx € Ly(0,1) whose Fourier coefficients are fx(0) = 0 and

fA(n) = —fA(—n) = P2n

for n € N; then we have hy = ®1(fx) with the mapping ®; of Lemma A.1. Therefore the
function hy depends analytically and Lipschitz continuously on fy in bounded sets. Since
the mapping sending (ps,,) € ls into fx € Ly(0,1) is linear and quasi-isometric in the sense
that || fa]l = v2||(p2n)||, We conclude that the mapping A — hy is analytic and Lipschitz
continuous on bounded sets.

Next, let go be the function in L(0,1) whose Fourier coefficients are

for n € Zy. Then hxa = Po(fr,ga) With ®y being the mapping of Lemma A.2. The
properties of ®, and of the mapping (3,) — g then establish the required dependence
of hya on (A, o). The lemma is proved. O

Solubility of the Krein equation crucially relies on the following property of the convolu-
tion operator H = H (X, ) defined via

1
(H)w) = [ bz =00
0
with the function h of (16).
Lemma 3.2. For every d € (0,7), d € (0,1), and positive r and r', there exists € > 0 with

the following property: if (X, &) is an arbitrary element of £ (d,r) x <7 (d',r") and h is the
function of (16), then for the corresponding convolution operator H we have I + H > 1.

Proof. Observing that

1 1 1
/ cos2mn(x — t) f(t) dt = cos 27rnx/ cos 2mnt f(t) dt 4 sin 27m:v/ sin 27t f(t) dt
0 0 0
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and that the functions 1, V/2sin 2mnx, V2 cos 2mnx, n € N, form an orthonormal basis of
L5(0,1), we find that

k
((I+ H)fa f) = (f7 f) + QI}LIgozanU(fa C082w2n8)|2 + |(f7 Sin2w2n3)|2]
n=0
k

= (£, D = 2 lim Z;[\<f, cos 2mns)|* 4 |(f, sin 2mns) ]

=9 Zan[](f, 08 2wo,8) |2 + | (f, sin 2way,s)|?]

n=0

=200/ (f, )] + Y an[[(f, 722 2 | (f, %) ).
n=1

It follows from the results of [14, Ch. VI|, [45, Ch. 4] that the system
53\ = {6721‘}2"18}”61\] U {1} U {62w2"is}neN

is a Riesz basis of Ly(0,1). Moreover, it was shown in [23| that there exists m = m(d,r) > 0
that gives a lower bound of & for every A € Z(d,r). Since the inclusion a € &/ (d', 1)
implies that «,, > d’ for all n € Z, we get

(L +H)f f) =200l (f, P + D an[l(f,e7225) P + |(f,e*) ] = d'm| f|?,
n=1

and the proof is complete. n

To study solubility of the Krein equation (20), we shall regard it as a relation between
the corresponding integral operators. To this end we recall several notions that will be used.
The ideal S5 of Hilbert—Schmidt operators in Ly(0,1) consists of integral operators whose
kernels are square integrable on 2 := [0,1] x [0,1]. The linear set G5 becomes a Hilbert
space under the scalar product

11
(A, B)2 = tr(AB") == / / a(z,y)b(z,y) dz dy,
o Jo
where a and b are the kernels of A and B respectively; in particular, [|A| s, := (A4, A)3/* is
the corresponding norm.
As an example, the inequality

1 1
|| e =)o dy < 210?
0 JO

implies that the convolution operator H belongs to &, and, moreover, ||H||%, < 2|[A[.
Denote by &3 the subspace of &, consisting of all Hilbert—Schmidt operators with lower-
triangular kernels. In other words, A € &, belongs to &5 if the kernel a of A satisfies
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a(x,y) =0 for a.e. 0 <z <y < 1. For an arbitrary A € &, with kernel a the cut-off a™ of
a given by
n [ oa(z,y)  for x>y,

a’(@,) {O for z <y
generates an operator AT € &7, and the corresponding mapping P+ : A — AT turns out to
be an orthoprojector in &, onto &3, i.e. (PT)? = P and (PTA, B)s = (A, P*B), for all
A, B € Gy; see details in [15, Ch. 1.10].

With these notations, the Krein equation (20) can be recast as

R+P*H+P"(RH) =0 (22)

or

(Z+Pf)R=—-P"H,

where Py is the linear operator in &y defined by PLY = PH(Y X) and 7 is the identity
operator in G,. Therefore solubility of the Krein equation and continuity of its solutions
on H is strongly connected with the properties of the operator Pj.

Lemma 3.3. For every X € 4, the operator Py is bounded in &,. Moreover, for every
convolution operator H from the set

§={H=HMXa)|(Aa)e.2dr)xd,r)}C&

the operator Z + P}, is invertible in (&3 ) and the inverse (Z +P;;)~" depends analytically
and Lipschitz continuously on H € §) in the topology of G,.

Proof. Boundedness of Py is a straightforward consequence of the inequality
IPxY e < Y Xle, < IXN2]Y e,
cf. [14, Ch. 3]. Assume next that I + X > el in Ly(0,1); then for Y € &5 we find that
(T+PHY,Y)s = (V.YV} + (VX V) = (Y (I + X)V7).
Since Y (I + X)Y* > ¢YY™ and the trace is a monotone functional, we get
(Z+PRY.Y)2 2 (YY),

e, I+ Py >¢elin &7,

Applying now Lemma 3.2, we conclude that for every H € § it holds Z + P}, > £Z with
e of that lemma depending only on d, ', r, and r’; therefore, Z + P}; is boundedly invertible
in 8(67) and

||(I+79§)_1 <e !l

2(65)

Since P}, depends linearly on H, it follows that the mapping H +— (Z +P};)~" from &, into
A(&7) is analytic and Lipschitz continuous on the set §). The proof is complete. O
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Corollary 3.1. For every H € §), the Krein equation (22) has a unique solution
R:=—(ZT+P})'P"H € &5;
moreover, R depends analytically and Lipschitz continuously in &5 on H € § C G,.

It follows that the kernel r(z,t) of R is square integrable in the domain €2 and depends
analytically and Lipschitz continuously in Ls(2) on H. However, we need to know that
r(-,0) is well defined and belongs to Ly(0, 1).

To this end we use the Krein equation to find that

r(z,t) = —h(zx —1t) — /0 r(z,s)h(s —t)ds

as a function of z depends continuously in Ly(0,1) on ¢ € [0,1]. Indeed, since the shift
f(:) — f(- —t) is a continuous operation in Ls(R), h(- — t) enjoys the required property.
Next, since the kernels r and h belong to Ly(€2), we find that

/Oll/olr(x,s)h(s—t) ds‘zdx
< /01 dx/ol Ir(z, s)\2d3/01|h(s—t)|2ds (23)
< 2/01 \h(s)\st/()l/Ol Ir(z,5)|* ds do < oc.

/0 r(z,s)h(s —t)ds (24)

of the variable z € [0, 1] belongs to Ly(0, 1); moreover, continuity of the shifts h(- — ¢) and
estimate (23) show that function (24) depends continuously in L9(0,1) on ¢ € [0,1]. We
thus conclude that indeed r(+,t) depends continuously in Ly(0,1) on ¢t € [0,1]. In particular,
r(z,0) is a well-defined function in Ly(0,1).

Finally, we again use the Krein equation and (21) to get the relation

Thus the function

7(z) =r(z,0) = —h(x) —/0 r(z, s)h(s) ds.

The integral on the right-hand side is a bilinear expression in h and r. In view of the analytic
dependence of r on h stated in Corollary 3.1 and estimates (23), this yields analyticity and
Lipschitz continuity of r(z,0) on h € L5(0,1). On account of Lemma 3.2, the proof of
Theorem 2 is complete.

4 RECONSTRUCTION FROM TWO SPECTRA

We recall that the norming constants «,, for the Sturm-Liouville operator Tx(7) can be
determined from the spectra (\,) and (u,) of Tx(7) and Tp(7) by the formula (14),

Wan
Ay = T,

S (WQn) C (u)gn)
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where the entire functions S and C' are given by the canonical products (13) over \, = w3,
and p, = w3, 41 respectively. This induces a mapping v +— o from the spectral data v :=
((An), (1n)) € 4 into the norming constants o := (a,,) € «/. In this section, we shall
establish Theorem 1 by proving the following result.

Theorem 3. For every d € (0,7/2) and r > 0, the mapping
N(d,r)sv—aed (25)

is analytic and Lipschitz continuous; moreover, there exist positive constants d' and r’ such
that the range of this mapping belongs to </ (d',1").

By definition, ./ consists of elements of the commutative unital Banach algebra A intro-
duced in Appendix C. We observe that the metrics on & agrees with the norm of A, and
thus the results of Appendix C yield the following statement.

Proposition 4.1. For every positive d and r, the set </ (d, r) consists of invertible elements
of A. Moreover, the mapping o — a ' is analytic and Lipschitz continuous in A on </ (d, ),

and its range lies in <« ((1+7)~, rd™").
In view of Proposition 4.1, it suffices to prove Theorem 3 with « replaced by a™!.
The elements of the sequence a™! are a;,;! = —S(wa,)C'(wayn)/wan. We shall show that the

sequences
7= (C)" S o) fwan) ez 8= (21" Cw) g,

form elements of /. Thus Theorem 3 will be proved if we show that the mappings
N(d,r)dvi—>yeE A, N(d,r)dvi—d €A (26)

enjoy the properties required therein for the mapping (25).
To begin with, integral representations (10) and (11) of the solution ¢( -,w) and its quasi-
derivative c'( -, w) yield the formulae

1
S(w) = —wsinw — w/ k1(1,t) sinwt dt, (27)
0

1
C(w) = cosw +/ k(1,t)coswtdt (28)
0

for the functions S and C. Therefore both expressions —S(way,)/wa, and C(ws,) can be
recast in the form

1
COS Wy, + / g(t) coswa,t dt
0

with g(t) = tky(1,t) for the former expression and g(t) = k(1, ) for the latter. The sequences
~ and § have therefore similar structures; namely, their n-th element equals

1
COS Pay, + (—1)"/ g(t) coswa,t dt (29)
0
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for respective g; here, as usual, py, := wo, — TN.

Clearly, the mapping (p2,) +— (cosps, — 1) is analytic in ¢5. Its Lipschitz continuity
follows from the inequality |cosz — cosy| < |z — y|; also, the inequality 1 — cosz < x?%/2
yields the estimate

€05 pan — Dlles < Sll(on) 2, (30)
Set

i(s) = {g(l —2s), se€l0, %),

Clg2s—1), seli1);

then straightforward transformations give

1
Uy 1= (—1)”/ g(t) coswapt dt = elwzn(1=29) g
0 0 (31)

/ (S) ipan(1—2s) —27rms ds.
0

Therefore the above number v,, gives the n-th Fourier coefficient of the function u := W( fx, §),
where W is the mapping of Lemma A.3 and f, is the function introduced in the proof of
Lemma 3.1. It follows from Lemma A.3 that the sequence (4(n))nez of Fourier coefficients
of u depends analytically and boundedly Lipschitz continuously in /5 on fy and g. We prove
in the lemma below that the functions k(1, -) and ki(1, -) (and thus the corresponding
transformates ¢) depend in the same manner on v = (A, ) € A (d,r).

Lemma 4.1. The mappings

A(d,r) D (A, p) — k(1, -) € Ly(0,1),
N (d,r) 2 (A, p) — ki(1, ) € Ly(0,1)

are analytic and Lipschitz continuous.

Proof. Since both mappings can be treated similarly, we only consider the second one. By
definition, we have S(ws,)/wa, = 0, and thus the numbers wsy, = 7 + po,, n € Z, are
zeros of the odd entire function S(w)/w of (27). The required properties of the mapping
A — ki(1, -) follow now from the results of [26]; see Appendix B. O

The above reasoning justifies the inclusion ™! € &7 as well as analyticity and Lipschitz
continuity of the mappings of (26). It remains to prove that there exist positive d’ and 7’
such that, for every v € A (h,r), the corresponding elements « and & belong to <7 (d', r’).

Existence of such an " follows from the uniform estimates of the fo-norms of the sequences
(cos pa,, — 1) of (30) and the fact that

Do el < (D)1

TLEZ+

see (31) and the discussion following it. Indeed, in view of Lemma A.3 the function u =
U(fx,g) remains in the bounded subset of Ly(0,1) when fy and g vary over bounded subsets
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of Ly(0,1), and the latter is the case when v runs over .4 (d,r) by the definition of the
functions fx and g and Lemma 4.1.

Next, in view of formula (13) and the interlacing property of A, and p,, the numbers
Yo = (=1)"S(wan) /wan and 8, = (—1)"C(wyy,) are all of the same sign and thus are all
positive in view of the asymptotic relation (29). The uniform positivity of 7, and ¢, (and
thus existence of a positive d' such that 1/a,, = 7,6, > d') follows immediately from the
lemma below.

Lemma 4.2. For every d € (0,7/2) and r > 0 we have

sup sup log|S(wan)/waa| < 00, sup sup log|C(wa,)| < oo,
(M) n€Zy (A p) €L

where S and C' are constructed via (13) from the sequences A and p, and the suprema are
taken over (A, ) € A (d,r).

Proof. We assume first that n # 0. By (13), we have

) 2w w2, — w?
S(wan)/wan = — = H —21; 2,

Dividing both sides by

dsin z k% —n?
cosTn = = -2 H R
dZ zZ=mn
kEN, k#n
we conclude that ) ) )
. w Why — W
2n 2k 2n
|S(wan) fwan| = H )
202 T2 (k2 — nz)’
kEN, k+

for n = 0 the direct calculations give

2
. > w2k
i%|5(w)/w|:2| | 22

s
keN
Recall that pop := wor — mk and set
a _ Pon F Dok
n,tk - 7T<7”L T k) )

with apo =1 and a,,, = 0 if n € N; then

2 2
Wor, — Way,

2y = (o) (L an i)

and?

| (wan) fwan| = [ [ (1 + ana).

keZ

In what follows, all summations and multiplications over the index set Z will be taken in the principal value
sense and the symbol V.p. will be omitted.
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Since the sequence (A,,) is 2d-separated for every (A, pu) € A'(d,r), we have 1+ ay, > 2d/7
for all n € Z, and all k € Z. Therefore, with

log(1+z)—x
x? ‘

K = max
x>—142d/m

‘logH 1+ ang) ’ < ’Za"k

provided the two series converge.

< o0,

we get the estimate

+KD al,, (32)

kEZ

Clearly,

1
Zn—k:O’

k#n

DICHE I R

by the Cauchy-Bunyakovski-Schwarz inequality (recall that ), _, p2. < r? by the definition
of the set A (d,r) and 37, (k —n)~* = 7?/3). Next, the inequality

and thus

2p2 2p2
Gk = B H—n2 T 2k —n)?

for k # n yields

47?2
Zank<4fr 271'2 F—n) :?.

keZ k#n
It follows from (32) that

’10g T[]+ amk)‘ < (V3r + 4Kr?)/3,

kEZ

where the constant K only depends on d.
Similarly, we find that

C(w ‘H W2k;+1 Wzn
2n
m2(k +

and then mimic the above reasoning to establish the other uniform bound. The lemma is

2 2

B Wop41 — Wapn

- l l 2 1 2,2

m2(k+32) — mn
kEZJr ( + 2>

proved. Il

Proof of Theorem 8. Combining the results of Lemmata 4.1 and 4.2, we conclude that the
mappings (26) enjoy all the properties stated in Theorem 3, and thus so does the mapping
(A, ) — a~ . In virtue of Proposition 4.1 this completes the proof of the theorem. Il

Proof of Theorem 1. Analyticity and Lipschitz continuity on bounded sets of the inverse
spectral mapping
N v T€E Ly0,1)

is the direct consequence of those for the mappings (25) and (15) established in Theorems 3
and 2 respectively. O]
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5 SOME EXTENSIONS

The results proved above for the class of impedance Sturm—Liouville operators with real-
valued impedance functions a € W3 (0,1), i.e., for Sturm-Liouville operators Tx(7) and
Tp(T) with 7 = d + a® € Ly(0,1) allow quite a straightforward generalization to wider
classes of operators.

Firstly, it is not important that the boundary conditions considered are of Dirichlet or
Dirichlet—Neumann type. In fact, the analysis proceeds in much the same way for generic
Robin-type boundary conditions at one or both endpoints.

Secondly, as in [2| one can treat the case 7 € L,(0,1), with p € [1,00). The asymptotic
representation of the eigenvalues and norming constants become then as in (9) and (12),
but the sequences of remainders (p,) and (/3,) form now sequences of sine or cosine Fourier
coefficients of functions in the respective L, (0, 1) space, see details in [2,26].

Finally, also the 7 in the Sobolev space scale W5 (0, 1) can be treated; see similar results for
the potential Sturm-Liouville inverse problem in [25,41]. Again the sequences of remainders
(pn) and (5,) are then sine or cosine Fourier coefficients of functions in the same space,
and they form Banach algebra under multiplication with properties similar to those of the
algebra A discussed in Appendix C.

For such more general settings the above-described approach is applicable and, save for
some more involved technicalities, proceeds in much the same way and establishes analytic
and Lipschitz continuous dependence of the impedance function a on the spectral data for
the impedance Sturm—Liuoville operators considered.

Acknowledgements. The author thanks A. A. Shkalikov and Ya. V. Mykytyuk for
stimulating discussions. The research was partially supported by the Alexander von Hum-
boldt Foundation and was partially carried out during the visit to the Institute for Applied
Mathematics of Bonn University, whose warm hospitality is sincerely acknowledged.

A SOME AUXILIARY RESULTS

We recall that the convolution f * g of two functions in Ly(0, 1) is a function in Ls(0,1)
given by

(f % g)(x) = / f(x — t)g(t) dt,

where f is extended to (—1,0) as a periodic function with period 1. The (discrete) Fourier
transform f of f € Ly(0,1) is a function over Z given by

Fn) = /0 F(#)e2t gt

It is well known that the Fourier transform is a unitary mapping from Ly(0,1) to ¢5(Z) and
that f * g(n) = f(n)g(n); as a result, we have the inequality

1 gl < [I£1lllgll
for all f,g € Ly(0,1).
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Lemma A.1. For a function f € Ly(0,1), set

e}

O1(f)(w) = Vop. Y [z — qJe?mic,

n=—0oo

Then the series determines a function in Ly(0,1), and the mapping
L2(07 ]-) > f = Cbl(f) € L2(07 1)
is analytic and Lipschitz continuous on bounded subsets.

Proof. We start with observing that the series ), f¥(n)e¥™is is the Fourier series for the
function f%*) the k-fold convolution of f with itself, and that ||| < ||f||*. Developing
ef(™is into the Taylor series, we find that

2\ e fR(n)(2is)* .
Oi(f)=Vp. Y [Z %}&

00 k o
_ Z (2]1:‘) Vp Z fk(n) 27nis
k=1 n=-—oo
=, (2is)*
- Z k! o

The change of the summation order in the second equality above is justified by the fact
that, for k& > 1, the summands in the double series are dominated by C*f2(n)/k! with
C := 2max,ez{|f(n)|} + 1. Therefore the double series over the index set {(n, k) | n €
Z,k > 1} converges absolutely and the Fubini theorem applies. This formula represents
®,(f) as an absolutely convergent series (which is a Taylor series expansion of ®;(f) in the
variable f) and thus proves the analyticity in Ly(0,1) of the mapping f — ®1(f).
Lipschitz continuity of that mapping on bounded sets follows from the estimate

o0~ e = [ 35 2;5 o )|
k=1
S;( ) Hfl f2H(Hf1||+”f2H)k—1 SeXp{4T}||f1—f2H,

which is valid as soon as the Lo-norms of f; and f; are not greater than r. The proof is
complete. ]

Lemma A.2. For f and g in Ly(0,1), set

Dy(f,g) := V.p. Z §(n) exp{2[rn + f(n)]is}.

n=—oo

Then the function ®o(f, g) belongs to Ly(0,1) and the mapping
D, : L2<Oa 1) X L2(07 1) - L2(0> 1)

is analytic and Lipschitz continuous on bounded subsets.
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Proof. Transformations similar to those used in the proof of the above lemma show that

@5(f, 9) :Z
k=1

The mapping @ is linear (and thus analytic) in g, and its analyticity in f as well as Lipschitz

. 0
k' * g

continuity on bounded subsets is established in the same manner as for the mapping ®; of

Lemma A.1. O

Lemma A.3. For f and g in Ly(0,1), set

U(f,g):=V.p. Y (-1 / t) exp{[mn + f(n)]i(1 — 2t)} dt >

Then the function V(f, g) belongs to Ls(0,1) and the mapping
v L2(07 1) X LQ(O, ].) — LQ(O, ].)
is analytic and Lipschitz continuous on bounded subsets.

Proof. The coefficient of e*™"* in the above series for ¥ can be written as

/0 g(t) exp{i(1 — 2t)f(n)}e_2”i”t dt (33)

and gives the n-th Fourier coefficient of the function A := Zio hi/k!, with hg := g, hy :=
f%) % MFg for k > 1, and M being the operator of multiplication by the function i(1 — 2z).
In other words, we have ¥(f,g) = h. Since ||f = g|| < ||f]|llg|| for every f and g in Ly(0, 1),
the functions hy belong to Ls(0, 1) and their norms there obey the estimate

il < LI gl < 11 £1* 19

Thus the series for h converges absolutely and, since every hy is a multi-linear function of f
and ¢, the mapping ¥ is analytic. Its Lipschitz continuity on bounded subsets is established
in the usual manner, and the proof is complete. Il

B ANALYTICITY OF SOME RELATED MAPPINGS

Here we give a brief account on the results of [26] and also establish some of their
extensions needed to prove Lemma 4.1. It was shown in [26] that for every f € Lo(0,1)
there exists a unique function g € Ly(0, 1) such that all zeros (counting multiplicities) of the
entire function

1
Gy(z) ==sinz —|—/ g(t)e* 172D gt (34)
0

are given by the numbers mn + f (n), n € Z. Such pairs of f and g in fact satisfy the relation

X MFa) 5 O
H(f.g) = s(f) + g+ 3 PO g, (35)
k=1 ’
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here
<2k+1)

Z 2k+ ’

k=0

%) is the k-fold convolution of f with itself, and M is the operator of multiplication
by i(1 — 2x). The function H is analytic from L9(0,1) x L9(0,1) into Ls(0,1), and its
partial derivatives ¢ H (f, g) and 0,H(f, g) are given by

H(f,9)(h) = ( +i f<k 1>)*h1, (36)

k=1

H(f, ) (hs) _h2+ZM

(37)

with o
— (—1)Ff
o

elf) = (2k)!

k=0
Using the implicit function theorem, it was shown that the induced mapping ¢ : f — g
is analytic. In order to establish its Lipschitz continuity, we shall study the above partial
derivatives in more detail.

Namely, we assume that f € Ly(0, 1) is such that the corresponding sequence w = (wy, )nez
with w, := mn + f(n) belongs to Z(d,r) and that ¢ = ¢(f). Set S, to be the canonical
product of (13); then S, (2)/z can also be represented as (34). Direct calculations show that
the n-th Fourier coeflicient of the function of (36) is equal to

1
(=1)"h1 (n) [coswn—i— / i(1 = 20)g(t)ein(1-20 dt] = (—1)"h (1) S (wn)-
0
By Lemma 4.2 there are positive numbers k; and ks such that
ki < |Sw(wn)/w2n| < ks

for all w € Z(d,r) and all n € Z. Therefore the partial derivative 0;H(f,g) is a bounded
and boundedly invertible operator in Ly(0, 1); moreover, for every fixed d > 0 and r > 0, the
norms of 0;H(f,g) and their inverses are uniformly bounded for all f € Ly(0,1) generating
the sequences w in the set Z(d, ).

Similarly, the n-th Fourier coefficient of the function of (37) is equal to

1
(—1)"/ ho(t)e“n(1=2D gt
0

By the results of [23|, there exist positive m; and msy such that, for all w € Z(d,r), the

sequences (e“»(1=22)) _, form Riesz bases of Ly (0, 1) of lower bound m; and upper bound m.
Therefore the operator H, := 0,H(f,g),

1wn 1 2x 2mnix
H,: hy — § (- )) e2mmiz

neL



UNIFORM STABILITY IN THE INVERSE PROBLEM 55

is bounded and boundedly invertible in Ly(0,1), with ||H,|| < m;ﬂ and [|[H, | < ml_l/2.

We now use the implicit mapping theorem to conclude that the mapping ¢ : f +— g is
analytic in Ly(0,1). The uniform bounds on the inverses of the partial derivatives 0y H (f, g)
and 0,H(f,g) established above imply that, for every d € (0,7) and > 0, this mapping
is Lipschitz continuous on the set of functions f € Ly(0,1) generating the sequences w €

Z(d,r).

C THE BANACH ALGEBRA A

The space ¢y = (5(Z,) is a commutative Banach algebra under the pointwise multiplica-
tion () (Yn) = (Tn-yn). Its unital extension A consists of elements of ¢, of the form a1 +x
with a € C, the unity 1 € /. having all its elements equal to 1, and x = (z,) € f5. The
norm in A is given by

a1 + x4 = [a] + x]].

An element al + x is invertible in A if and only if @ # 0 and a + x,, # 0 for all n € Z; in
this case the inverse is equal to a~'1 +y, where y = (y,,) with y, := —z,/a(a + z,,). Since
under the above assumptions we have inf, |a + z,,| > 0, we see that y indeed belongs to fs;
moreover,

(a1 45074 < Jal ™ (1 + ]/ inf a + ]

1

The mapping X — X~ is analytic on the open set of all invertible elements of A; in addition,

it is Lipschitz continuous on the sets

Se={al+x||a| > ¢, infla+z,| > e}
n
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JoBeneno, mo obepHeHe CrieKTpaJibHe BiTOOpaXKeHHs, [0 BiTHOBIIIOE IMIIeTaHCHY (DYHKITIIO
oneparopis Irypma—JliyBmwiia wa [0,1] B iMuenadcuiii dbopmi 3a ClekTpajbHUME JAHUMUI
(zBOMa crekTpaMu ab0 OIHHUM CIIEKTPOM Ta HOPMIBHMME MHOXKHHKAME) € AHAJITHYHUM Ta
PIBHOMEPHO CTIiKMM B IIEBHOMY CEHCI.

Tpunue P.O. Anaaumuunocms u pasnomepras ycmotuusocms 6 obpamnotli 3adaue 0as uM-
nedancnoxr onepamopos IlImypma—JTuysuans // Kapnarckue maremaTuyecKue IryOGJIMKAIUH.
— 2010. — T.2, Nel. — C. 35-58.

Hokazamo, 9To 0OpaTHOE CIHEKTPAJIbHOE OTOOparKeHNe, BOCCTAHABINBAIONIEE NMIIEIAHCHY O
dyukimo oneparopos Hltypma—JInysmwiis va [0, 1] B ummenancHo# (hopMe Mo CreKTpaJbHBIM
JIAHHBIM (ZIByM CIIEKTpaM WJIM OJJHOMY CIIEKTPY U HOPMHDPYIOUIUM MHOXKHUTEJISIM) sIBJISIETCSI
AHAJIUTUYECKIM U PABHOMEPHO YCTONYUBBIM B HEKOTOPOM CMBICJIE.



