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Given a group X we study the algebraic structure of the compact right-topological semi-
group G(X) consisting of inclusion hyperspaces on X. This semigroup contains the semigroup
A(X) of maximal linked systems as a closed subsemigroup. We construct a faithful represen-
tation of the semigroups G(X) and A(X) in the semigroup P(X)P(X) of all self-maps of the
power-set P(X). Using this representation we prove that each minimal left ideal of A(X) is
topologically isomorphic to a minimal left ideal of the semigroup pT':’T7 where by pT we denote
the family of pretwin subsets of X.

INTRODUCTION

After discovering a topological proof of Hindman theorem [8] (see [10, p.102], [9]), topo-
logical methods become a standard tool in the modern combinatorics of numbers, see [10],
[11]. The crucial point is that any semigroup operation * defined on a discrete space X can
be extended to a right-topological semigroup operation on 3(X), the Stone-Cech compacti-
fication of X. The extension of the operation from X to G(X) can be defined by the simple
formula

AoB={ACX:{zeX a2 'Aec B} e A}, (1)

where A, B are ultrafilters on X. Endowed with the so-extended operation, the Stone-
Cech compactification 5(X ) becomes a compact right-topological semigroup. The algebraic
properties of this semigroup (for example, the existence of idempotents or minimal left ideals)
have important consequences in combinatorics of numbers, see [10], [11].

The Stone-Cech compactification B(X) of X is the subspace of the double power-set
P(P(X)), which is a complete lattice with respect to the operations of union and intersection.
In |7] it was observed that the semigroup operation extends not only to 3(X) but also to the
complete sublattice G(X) of P(P(X)) generated by 3(X). This complete sublattice consists
of all inclusion hyperspaces over X.
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By definition, a family F of non-empty subsets of a discrete space X is called an inclusion
hyperspace if F is monotone in the sense that a subset A C X belongs to F provided
A contains some set B € F. Besides the operations of union and intersection, the set
G(X) possesses an important transversality operation assigning to each inclusion hyperspace
F € G(X) the inclusion hyperspace

Fr={ACX:VFeF (ANF +# o)}

This operation is involutive in the sense that (F1)+ = F.

It is known that the family G(X) of inclusion hyperspaces on X is closed in the double
power-set P(P(X)) = {0,1}P™) endowed with the natural product topology. The induced
topology on G(X) can be described directly: it is generated by the sub-base consisting of
the sets

Ur={FeGX):UcFtandU ={FeGX):UecF'}

where U runs over subsets of X. Endowed with this topology, G(X) becomes a Hausdorff
supercompact space. The latter means that each cover of G(X) by the sub-basic sets has
a 2-element subcover. Let also No(X) = {4 € G(X) : A C At} denote the family of all
linked inclusion hyperspaces on X and A\(X) = {F € G(X) : F = F*} the family of all
maximal linked systems on X.

By [6], both the subspaces A\(X) and No(X) are closed in the space G(X). Observe that
U N AX) = U NAX) and hence the topology on A\(X) is generated by the sub-basis
consisting of the sets

Ur={Aec\NX):Uc A}, UCX.

The extension of a binary operation * from X to G(X) can be defined in the same
manner as for ultrafilters, i.e., by the formula (1) applied to any two inclusion hyperspaces
A, B € G(X). In [7] it was shown that for an associative binary operation x on X the space
G(X) endowed with the extended operation becomes a compact right-topological semigroup.
The structure of this semigroup was studied in details in |7]. In particular, it was shown
that for each group X the minimal left ideals of G(X) are singletons containing invariant
inclusion hyperspaces. Besides the Stone-Cech extension, the semigroup G(X) contains
many important spaces as closed subsemigroups. In particular, the space A\(X) of maximal
linked systems on X is a closed subsemigroup of G(X). The space A(X) is well-known in
General and Categorial Topology as the supereztension of X, see [12].

We call an inclusion hyperspace A € G(X) invariant if xtA = A for all x € X. It follows

from the definition of the topology on G(X) that the set G(X) of all invariant inclusion

hyperspaces is closed and non-empty in G(X). Moreover, the set G(X) coincides with the
minimal ideal of G(X), which is a closed semigroup of right zeros. The latter means that

AoB=Bforall A B e G(X).

The minimal ideal E(X) contains the closed subset ng(X) = Ny(X)N E(X) of invariant
linked systems on X. The subset max N 2(X) of mazimal invariant linked systems on X is
denoted by (X(X ). It can be shown that K(X ) is a closed subsemigroup of N 2(X). By [2,
2.2|, this semigroup has cardinality ]K(X )| = 22 for every infinite group X.
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The thorough study of algebraic properties of semigroups of inclusion hyperspaces and
the superextensions of groups was started in [7] and continued in [1], [2] and [3]. In this
paper we construct a faithful representation of the semigroups G(X) and A(X) in the semi-
group P(X)P™X) of all self-maps of the power-set P(X) and show that the image of A(X) in
P(X)P™X) coincides with the semigroup A(X,P(X)) of all functions f : P(X) — P(X) that
are equivariant, monotone and symmetric in the sense that f(X \ A) = X \ f(A) for all
A C X. Using this representation we prove that each minimal left ideal of A(X) is topo-
logically isomorphic to a minimal left ideal of the semigroup pTP', where by pT we denote
the family of pretwin subsets of X. A subset A of a group X is called a pretwin subset if
xA C X\ AC yA for some z,y € X.

1  RIGHT-TOPOLOGICAL SEMIGROUPS

In this section we recall some information from [10] related to right-topological semi-
groups. By definition, a right-topological semigroup is a topological space S endowed with
a semigroup operation x : S x S — S such that for every a € S the right shift r, : S — 5,
Ty @ X — T *a, is continuous. If the semigroup operation % : S x S — S is (separately)
continuous, then (S, x) is a (semi-)topological semigroup.

From now on, S is a compact Hausdorff right-topological semigroup. We shall recall some
known information concerning ideals in S, see [10].

A non-empty subset I of S is called a left (resp. right) ideal if ST C I (vresp. IS C I). If
I is both a left and right ideal in S, then [ is called an ideal in S. Observe that for every
x € S the set SzS = {sat : s,t € S} (resp. Sz = {sz:s € S}, S ={rs:s e S})is
an ideal (resp. left ideal, right ideal) ideal in S. Such an ideal is called principal. An ideal
I C S is called minimal if any ideal of S that lies in I coincides with I. By analogy we define
minimal left and right ideals of S. It is easy to see that each minimal left (resp. right) ideal
I is principal. Moreover, I = Sz (resp. I = z5) for each x € I. This simple observation
implies that each minimal left ideal in S, being principal, is closed in S. By [10, 2.6], each
left ideal in S contains a minimal left ideal.

We shall use the following known fact, see [3, Lemma 1.1].

Proposition 1.1. If a homomorphism h : S — S’ between two semigroups is injective on
some minimal left ideal of S, then h is injective on each minimal left ideal of S.

2 THE FUNCTION REPRESENTATION OF THE SEMIGROUP G(X)

In this section given a group X we introduce the function representation ¢ : G(X) —
P(X)P) of the semigroup G(X) in the semigroup P(X)PX) of all self-maps of the power-
set P(X) of X. The semigroup P(X)P™) endowed with the Tychonov product topol-
ogy is a compact right-topological semigroup naturally homeomorphic to the Cantor cube
({0, 1}X)PX) = {0, 1}X*P(X) " The sub-base of the topology of P(X)P(X) consists of the sets

(2, A)t ={f e P(X)"M 1z € f(A)},
(@, A)” ={f e P(X)PX) 1z ¢ f(A)}.



ON REPRESENTATION OF SEMIGROUPS OF INCLUSION HYPERSPACES 27

Given an inclusion hyperspace A € G(X) consider the function
Py:P(X) = P(X), Oq(A)={reG:a'Ac A}
called the function representation of A.

Proposition 2.1. A function ¢ : P(X) — P(X) coincides with the function representation
® 4 of some (invariant) inclusion hyperspace A € G(X) if and only if ¢ is

1) equivariant in the sense that ¢(xA) = xp(A) for any A C X and x € X;
2) monotone in the sense that ¢(A) C ¢(B) for any subsets A C B of X;
3) ¢(2) =2, p(X) = X (and o(P(X)) C {@, X}).

Proof. To prove the “only if” part, take any inclusion hyperspace A € G(X) and consider
its function representation ® 4.
It is equivariant because

Py(rA)={ye Xy 'zAc Ay ={ay:y 'Ac A} = 2D (A)

for any x € X and A C X.
Also it is monotone because

PuA)={reG:2'Ac A} C{z€G :27'Be A} = dy(B)

for any subsets A C B of X.

It is clear that ®4(@) = @ and P 4(X) = X.

If A is invariant, then for every A € A we get ®4(A) = X and for each A € P(X)\ A
we get P 4(A) = 2.

To prove the “if” part, fix any equivariant monotone map ¢ : P(X) — P(X) with p(@) =
@ and ¢(X) = X and observe that the family

A, ={z7"A: AC X, 7€ p(A)}

is an inclusion hyperspace with ® 4, = ¢. If p(P(X)) C {@, X}, then the inclusion hyper-
space A, is invariant. O

Remark 2.1. If X is a left-topological group and A is the filter of neighborhoods of the
identity element e of X, then the functional representations ® 4 and ® 4. have transparent

topological interpretations: for any subset A C X the set ® 4(A) coincides with the interior
of a set A C X while ® 41 (A) with the closure of A in X!

The correspondence ® : A +— &4 determines a map ® : G(X) — P(X)P™X) called the
function representation of the semigroup G(X).

Theorem 1. The function representation ® : G(X) — P(X)P™) is a continuous injective
semigroup homomorphism.
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Proof. To check that ® is a semigroup homomorphism, take any two inclusion hyperspaces
X, Y € G(X) and let Z = X o). We need to check that ®z(A) = ®y o Py (A) for every
A C X. Observe that

Pz(A)={z€G:z7"AcZ}={zcG:{xcG:27'27'AcY}c X} =
={2€G :Py(zrA) € X} ={2€G: 27 Dy(A) € X} = Dr(Dy(A)).

To see that ® is injective, take any two distinct inclusion hyperspaces X,) € G(X).
Without loss of generality, X \ ) contains some set A C X. It follows that e € ®x(A) but
e ¢ ®y(A) and hence Oy # Py.

To prove that ® : G(X) — P(X)PX) is continuous we first define a convenient sub-base of
the topology on the spaces P(X) and P(X)P¥). The product topology of P(X) is generated
by the sub-base consisting of the sets

rt={AcCcX:reAlandz  ={ACX:z¢ A}

where € X. On the other hand, the product topology on P(X)P) is generated by the
sub-base consisting of the sets

(2, A\t ={f e P(X)"™M 1z € f(A)} and (z,A)” = {f € P(X)"N) 1z ¢ f(A)}

where A € P(X) and z € X.
Now observe that the preimage

P (2, AN ={AcG(X):z e Dy (A)} ={AcCG(X):2'Ac A} = (27 A)*
is open in G(X). The same is true for the preimage
P2, A7) ={AeG(X):x¢ D (A)}={AcGX):a7'A¢g A} = (X \z7'A)”
which also is open in G(X). O

3 THE SEMIGROUP A(X,P(X)) AND ITS PROJECTIONS A(X,F)

Since for a group X the function representation ® : G(X) — P(X)PX) is an isomorphic
embedding, instead of the semigroup A(X) we can study its isomorphic copy A(X,P(X)) =
P(AN(X)) € P(X)PX). Our strategy is to study A(X,P(X)) via its projections A(X,F) onto
the faces P(X)F of the cube P(X)PX)| where F is a suitable subfamily of P(X).

Given a subfamily F C P(X) by

pre : PP — P(X)T, pre: f = fIF,
we denote the projection of P(X)P™X) onto its F-face P(X)F. Let
dp = preo @ : A\(X) — P(X)F

and
AMX,F) = @e(AM(X)) = pre(AMX, P(X)) = (pre o @)(A(X)).

Now we detect functions f : F — P(X) belonging to the image A(X,F). Let us call a
family F C P(X)
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o X-invariant if xF" € F for every F' € F and every z € X
o symmetric if for each A € F we get X \ A € F.

Theorem 2. A function f : F — P(X) defined on a symmetric X-invariant subfamily
F C P(X) belongs to the image A\(X,F) = ®(A(X)) if and only if

1) f is equivariant;
2) f is monotone;
3) f is symmetric in the sense that f(X \ A) = X \ f(A) for each A € F.

Proof. To prove the “only if” part, take any maximal linked system £ € A(X) and consider
its function representation f = &, : P(X) — P(X).

By Proposition 2.1, the function f is equivariant and monotone. Consequently, the
restriction f|F satisfies the items (1), (2). To prove the third item, take any set A € F and
observe that

fX\A)={zecX: 2 (X\A)ell={reX : X\o'Ac L} =
={reX:z'A¢ L} =X \{rc X v tAc L) =X\ f(A).

This completes the proof of the “only if” part.
To prove the “if” part, take any function f : F — P(X) satisfying the conditions 1)-3)
and consider the family

Li={z"A:A€F, ze f(A)}

We claim that this family is linked. Assuming the converse, find two sets A, B € F and
two points z € f(A) and y € f(B) with z7'ANy'B = @. Then yz'A C X \ B and
hence yz='f(A) C f(X \ B) = X\ f(B) by the properties 1)-3) of the map f. Then
7 f(A) € X \ y'f(B), which is not possible because the neutral element e of the group
X belongs to x7Lf(A) Ny L f(B).

Enlarge the linked family £; to a maximal linked family £ € A(X). We claim that
®,.|F = f. Indeed, take any set A € F and observe that

fAc{zeX v 'AcLyyc{zeX a7 tAc L} =D (A).

To prove the reverse inclusion, observe that for any = € X \ f(A) = f(X \ A) we get
Y X \A) =X \z'Ae Ly CL. Since L is linked, z7'A ¢ £ and hence z ¢ ®.(A). O

A subfamily F C P(X) is called C-incomparable if for any subset A, B € F the inclusion
A C B implies the equality A = B. In this case each function f : F — P(X) is monotone,
so the characterization Theorem 2 simplifies as follows.

Corollary 3.1. A function f : F — P(X) defined on a C-incomparable symmetric X-
invariant subfamily F C P(X) belongs to the image A\(X,F) = ®g(A(X)) if and only if f is
equivariant and symmetric.
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A subfamily F C P(X) is called A-invariant if ®,(F) C F for every maximal linked system
L € M(X). In this case A(X,F) C FF is a subsemigroup of the right-topological group FF of
all self-maps of F.

Now we see that Theorem 1 implies

Proposition 3.1. For any A-invariant subfamily F C P(X) the map
P =prpo®: AN(X) — AX,F) C FF

is a continuous semigroup homomorphism and \(X,F) is a compact right-topological semi-
group.

4 SELF-LINKED SETS IN GROUPS

Our strategy in studying minimal left ideals of the semigroup A(X) consists in finding
a relatively small A-invariant subfamily F C P(X) such that the function representation
®r : A(X) — A(X, F) is injective on some (equivalently all) minimal left ideals of A(X).

The first step in finding such a family F is to consider the family of self-linked sets in X.

Definition 4.1. A subset A of a group X is self-linked if tANyA # @& for all x,y € X.

Self-linked sets in (finite) groups were studied in details in [1]. The following simple
characterization can be easily derived from the definitions.

Proposition 4.1. For a subset A C X the following conditions are equivalent:
1) A is self-linked;
2) the family of shifts {xA: x € X} is linked;
3) AA™! = X;

4) A belongs to an invariant linked system A € No(X);

N

5) A belongs to a maximal invariant linked system A € \(X) = max ]T}Q(X).

The following proposition was first proved in [3, 4.1]. Here we present a short proof for
completeness.

Proposition 4.2. For any invariant linked system L, € ]HVQ(X) the upper set
TLo={LeXNX): LD Ly}

is a closed left ideal in A\(X).
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Proof. Let A, B € A(X) be maximal linked systems with £, C B. Then for every subset
L e Ly we get
L= U r(z'L)e Ax Ly C AxB
veX

which means that £y C A * B.

To show that 1Ly is closed in A(X), take any maximal linked system £ € A(X) \ 1L
and find a set A € Ly with A ¢ L. Since £ is maximal linked, X \ A € £. Consequently,
(X \ A)* is an open neighborhood of £ that does not intersect L. O

Observe that any linked system £ € Ny(X) extending an invariant linked system Ly €

Ny(X) lies in the inclusion hyperspace £p-. It turns out that sets from £g-\ £, have a specific
structure described in the following theorem.

Theorem 3. For any maximal invariant linked system Ly € X(X ) and any A € L\ Lo
there are points a,b € X such that aA C X \ A C bA.

Proof. Fix a subset A € L \ Lo. We claim that
aANA=0 (2)

for some a € X. Assuming the converse, we would conclude that the family {zA : x € X}
is linked and then the invariant linked system Lo U {zA : x € X} is strictly larger than Lo,

which impossible because of the maximality of L.
Next, we find b € X with
AUDA = X. (3)

Assuming that no such a point b exist, we conclude that for any z,y € X the union rtAUyA #
X. Then (X \ zA) N (X \yA) = X \ (AU yA) # &, which means that the family
{X\zA : x € X} is linked and invariant. We claim that X \ A € £;. Assuming the
converse, we would conclude that X \ A misses some set L € L£5. Then L C A and hence
A € Ly which is not the case. Thus X \ A € L3 and hence {X \ 1A : 2 € X} C L because
Ly is invariant. Since Lo U {X \ zA : x € X} is an invariant linked system containing L,
the maximality of £y guarantees that G\ A € £, which contradicts A € L.
Unifying the equalities (2) and (3) we get the required inclusions

aA C X\ A CDbA. B

5 TWIN AND PRETWIN SETS IN GROUPS
Having in mind the sets appearing in Theorem 3 we introduce the following two notions.
Definition 5.1. A subset A of a group X is called
e a twin subset if X \ A =xzA for some z € X;

e a pretwin subset if tA C X \ A C yA for some z,y € X.
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By T and pT we denote the families of twin and pretwin subsets of X, respectively.
Proposition 5.1. The families pT and T are A-invariant.

Proof. Take any maximal linked system £ € A\(X) and consider its function representation
f = &, : P(X) — P(X), which is equivariant, monotone, and symmetric according to
Theorem 2.

To show that the family pT is A-invariant, take any pretwin set A € pT and find two
points z,y € X with zA € X \ A C yA. Applying to those inequalities the monotone
equivariant symmetric function f we get

rf(A) = fzA) C f(X\A) = X\ f(A) C fyA) = yf(A),

which means that f(A) is pretwin.
If a set A is twin, then X \ A = xA for some x € X and then X \ f(4) = f(X \ A) =
f(zA) = xf(A), which means that f(A) is a twin set. O

Propositions 5.1 and 3.1 imply that A(X,T) and A(X,pT) both are compact right-
topological semigroups. The importance of the family pT is explained by the following

Theorem 4. For every maximal invariant linked system Ly € A(X) the restriction ®,7|1Lo :
1Ly — AX, pT) is a topological isomorphism of the compact right-topological semigroups.

Proof. Since ®,7 is continuous and the semigroups A(X) and A(X,pT) are compact. It
suffices to check that the restriction ®,7|TLy is bijective.

To show that it is surjective, take any function f € A(X,pT), which is equivariant,
monotone, and symmetric according to Theorem 2.

By the proof of Theorem 2, the family

Li={x"A: AepT, v f(A)}

is linked. We claim that so is the family £y U L;. Assuming the opposite we could find
disjoint sets A € L; and B € L. Since A is pretwin, zA C X \ A C yA for some z,y € X.
Now we see that

BCc X\AcCyAcC X\yB,

which is not possible as B is self-linked and hence meets its shift yB.
Now extend the linked family £y U L to a maximal linked family £ € A(X) and show
that ®,|pT = f (repeating the argument of the proof of Theorem 2).

Next, we show that the restriction ®,r|TLy is injective. Take any two distinct maximal
linked systems X,) € 1Ly. It follows that there is a set A € X\ ). This set belongs to
Li\ Ly and hence is pretwin by Theorem 3. Now the definition of the function representation
yields that e € ®x(A) \ ©y(A), witnessing that ®pr(X) # Ppr (D). O

Since the function representation ®,r is injective on the left ideal 7L, of A(X), it is
injective on some minimal left ideal of A(X') and hence is injective on each minimal left ideal
of A\(X), see Proposition 1.1. In such a way we prove
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Corollary 5.1. The function representation ®yr : AN(X) — A(X,pT) is injective on each
minimal left ideal of A\(X). Consequently, each minimal left ideal of A\(X) is topologically
isomorphic to a minimal left ideal of the semigroup A(X,pT).
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Mmicrurh HamiBrpyiry A(X) Beix MAKCUMAJIbHUX 34EIUIEHUX CHUCTEM K 3aMKHEHY I1i/[HAIIBIDYILY.
o6y noBano Toune 306pazents mamisrpyn G(X) ta A(X) B mamisrpymi P(X)P(X) scix Bigobpa-
JKeHb cTeriHb-MHOKUHK P(X) B ceGe. BukopucroByoun 1e 306paskeHHs JI0BEJIEHO, M0 KOXKEH
MminiMaabauil JiBuil imean manisrpynu A(X) Tonosoriuno izomopduuii MiHIMAILHOMY JIBOMY
ineany mamisrpymm pTP'.

Tappunkus B.M. O npedcmasaeruu noayepynn eunepnpocmpancms exarouenus // Kapnar-
ckue Maremarudeckue myonukamun. — 2010. — T.2, Nel. — C. 24-34.

B pabore usy1aercs anarebpantdeckast CTPYKTypPa KOMIIAKTHOW TPABOTOIOJIOTUIECKO TTOTY-
rpynmbl G(X), KOTOpasi COIEP:KUT BCe TMIEPIPOCTPAHCTBA BKJIIOUEHHUs! Ha rpyiie X. Sta
HOJIyIpyna cofep:kut noayrpyiry A(X) Bcex MAKCUMAJIbHBIX CIEIIEHHBIX CUCTEM B KAYECTBE
BaMKHYTOH Hoanosayrpynnsl. Ilocrpoeno tounoe npencrasienue noayrpynn G(X) m A(X)
B moayrpymme P(X)P(X) peex oroGpaskenmii cremenb-mmoxecrsa P(X) B cebs.  Mcmomb3ys
9TO TIPEJICTABJIEHNE JTOKA3aHO, UTO KAaXKJblii MUHUMAJbLHBIH JIeBbli uieas mouayrpymibl A(X)
TOIOJIOTIIECKH H30MOPGhEH MIHIMAILHOMY JEBOMY HI€Ay MOIyTpyImst pTP .



