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A class of atomized measures on compacta, which are generalizations of regular real-valued

measures, is introduced. It has also been shown that the space of normalized (weakly) atomized

measures on a compactum is a free object over this compactum in the category of (strongly)

semiconvex compacta.

Introduction

It has been known for a long that the space PX of probability measures on a compact
Hausdorff space X with the weak∗ topology is a convex compactum, i.e. it can be embedded
into a locally convex topological vector space as a compact convex set. Moreover, it is a free
convex compactum [3] over X, i.e. it contains X as a closed subspace so that each continuous
mapping from X to a convex compactum K can be uniquely extended to an affine continuous
mapping from PX to K.

Some applications require the class of convex compacta to be extended to the class of
so-called semiconvex compacta [8]. The goal of this work is to show that free semiconvex
compacta can also be obtained as spaces of special measures, which we call atomized.

We use the following terminology and denotations : I = [0, 1] is a unit segment, R+ =

[0;+∞), R+ = (0;+∞), Q+ = Q ∩ (0;+∞). A compactum is a (not necessarily metrizable)
(bi)compact Hausdorff topological space.

For basic definitions and facts of the category theory cf. [7]. The category of Tychonoff
spaces Tych and the category of compacta Comp consist of all Tychonoff spaces and all
compact Hausdorff spaces, respectively, and their continuous maps.
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1 Atomized measures

In the sequel X is a compactum, ExpX is the collection of all closed subsets of X,
and expX = ExpX \ {∅}. Each regular real-valued additive measure on X is uniquely
determined by its values on closed subsets of X, hence the following is equivalent to the usual
definition:

Definition. A function m : ExpX → R is a regular additive measure on X if, for all
A,B ∈ ExpX:

(1) m(∅) = 0;
(2) A ⊂ B implies m(A) 6 m(B) (monotonicity);
(3) m(A∪B)+m(A∩B) = m(A)+m(B) (a property which is equivalent to additivity);
(4) for each filtered subcollection A ⊂ ExpX, the equality m(

⋂
A) = infA∈A m(A)

(τ -smoothness, which is equivalent to outer regularity) is valid.

Obviously (1), (2) imply m(ExpX) ⊂ R+. From now on all measures are considered
regular. For a closed subset X0 ⊂ X and a measure m on X, the restriction of m to ExpX0

is a measure as well, and it is denoted by m|X0 for brevity.
We denote |m| = m(X). If |m| = 1 (|m| 6 1), then the measure m is normalized or

a probability measure (resp. a subnormalized measure). We denote by PX the set of all
measures on X, and PX and PX are its subsets that consist of all normalized and all
subnormalized measures respectively. The three sets PX ⊂ PX ⊂ PX are considered with
the weak∗ topologies [3]. Recall that PX and PX are compacta, and PX is not compact,
but it is a Tychonoff space.

For each continuous mapping of compacta f : X → Y and a measure m on X, the set
function m′ : ExpY → R, m′(B) = m(f−1(B)), for all B ⊂

cl
Y , is a measure on Y as well.

We denote m′ by Pf(m) and obtain a mapping Pf : PX → PY , which is continuous. Thus
a functor [7] P : Comp → Tych is obtained. Since m′ is normalized (subnormalized) whenever
m belongs to the respective class, we have subfunctors P : Comp → Comp, P : Comp → Comp

of P . The functor P is the famous probability measure functor [3].
A measure m on a compactum X is purely atomic if there is a finite or countable sequence

(xi, pi)i∈I in X×(0,+∞) such that, for each A ∈ ExpX, m(A) is equal to
∑

{pi | i ∈ I, xi ∈
A}. This implies that

∑
i∈I pi is finite, and it is equal to 1 (is not greater that 1) if and only

if m is normalized (resp. subnormalized). The points xi are called atoms of the measure m,
and pi are their masses. Recall that the Dirac measure δx concentrated in x ∈ X is the set
function

δx(A) =

{
1, x ∈ A,

0, x /∈ A,
A ∈ ExpX.

Then we can write m =
∑

i∈I piδxi
. The latter definitions of atoms and purely atomic

measures differ from the usual ones for arbitrary measure spaces, but agree with them for
regular measures on compacta.

Now assume that we want to count all atoms of a purely atomic measure m separately, i.e.
the measure of a closed set A ⊂ X is a finite or countable list (determined up to permutation)
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of the masses of all atoms that are in A. We even allow for a finite or countable set of atoms
to coexist in one point, provided the sum of their masses is finite, i.e. atoms of m can be
split. The obtained set function is called a purely atomized measure.

The subsets of all purely atomic measures are not closed in either of the three spaces
PX, PX, PX, if X is infinite. Moreover, it is easy to show that they are dense. Therefore
in this case natural attempts to determine a compact Hausdorff topology on the sets of all
normalized or subnormalized purely atomized measures fail. These sets are to be enriched
by “missing” limits of nets. A simpler approach is to assume that our measure can have
a purely atomized part and a non-atomized part which is an ordinary regular measure on
X. The latter one can have its own atoms, but they are not counted separately, just go into
a “common sum”. Thus we obtain what we call a weakly atomized measure. Another (more
complicated) way is to consider non-atomized part in more detail (to say, “atomize” it a little
as well), and it leads to atomized measures.

To properly define our measures, we first define sets, which will be their codomains.
Let us start with measures with finite numbers of atoms. We denote by S the quotient
set of the disjoint union

⋃∞
n=0(0,+∞)n w.r.t. the equivalence relation that identifies finite

sequences of positive numbers if they coincide up to permutation. The equivalence class
of (λ1, λ2, . . . , λn) is denoted by [λ1, λ2, . . . , λn], and

∣∣[λ1, λ2, . . . , λn]
∣∣ = λ1 + λ2 + · · · + λn.

Observe that S is an Abelian monoid with a unit [1], if a multiplication is defined as follows:

[λ1, λ2, . . . , λm] · [µ1, µ2, . . . , µn] = [λ1µ1, λ1µ2, . . . , λmµn]

(all mn pairwise products at the right side). Since |λ · µ| = |λ| · |µ| for all λ, µ ∈ S, the sets

S = {λ ∈ S
∣∣ |λ| = 1} and S = {λ ∈ S

∣∣ |λ| 6 1}

are submonoids of S.
We also define an addition on S by the formula:

[λ1, λ2, . . . , λm] + [µ1, µ2, . . . , µn] = [λ1, λ2, . . . , λm, µ1, µ2, . . . , µn],

making it an Abelian monoid with a unit [ ] (the equivalence class of the empty sequence).
Since “·” distributes over “+”, (S,+, ·) is an Abelian semiring [5].

Three partial orders naturally arise on S (and hence on S and S):
(1) for λ, µ ∈ S, λ 6 µ if λ = [µ1, µ2, . . . , µm], µ = [µ1, µ2, . . . , µm, µm+1, . . . , µn], m 6 n;
(2) for λ, µ ∈ S, λ|µ (λ divides µ) if µ = λ · ν for some ν ∈ S;
(3) for λ, µ ∈ S, λ ≺ µ (µ is a refinement of λ) if λ = [λ1, λ2, . . . , λm], µ = [µ1, µ2, . . . , µn],

m 6 n, and there is a surjection σ : {1, 2, . . . , n} → {1, 2, . . . ,m} such that λi =
∑

σ(j)=i µj

for all 1 6 i 6 m.
Observe that (S,6) is a lattice and a complete lower semilattice, and a function m :

ExpX → S such that:
(1) m(∅) = [ ];
(2) A ⊂ B implies m(A) 6 m(B);
(3) m(A ∪B) +m(A ∩B) = m(A) +m(B);
(4) m(

⋂
A) = infA∈A m(A) for each filtered subcollection A ⊂ ExpX;
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is precisely a purely atomized measure with a finite number of atoms. We call m normalized
(subnormalized) if |m(X)| = 1 (|m(X)| 6 1 respectively).

We denote by Sa the set of all measures on I such that their restrictions to [c, 1] are purely
atomic for all 0 < c 6 1, and the masses of each such c are multiples of c (probably are equal
to 0). It is an easy exercise to show that Sa is closed in PI. Let elements λ̄, µ̄ of PI be
multiplied as follows: λ̄ · µ̄ = P (·)(λ̄⊗ µ̄), where λ̄⊗ µ̄ ∈ P (I×I) is the product measure [11],
and · : I× I → I is the multiplication of reals. Then PI is an Abelian Tychonoff topological
monoid, PI and PI are its compact Hausdorff submonoids [11]. Assume λ̄, µ̄ ∈ Sa, then

λ̄ =
∑
i∈I

λiδλi
+ αδ0, λi > 0 for all i ∈ I,

∑
i∈I

λi < ∞,

and µ̄ =
∑
j∈J

µjδµj
+ βδ0, µj > 0 for all j ∈ J ,

∑
j∈J

µj < ∞.

It is straightforward to verify that

λ̄ · µ̄ =
∑

i∈I,j∈J

λiµjδλiµj
+ (αβ +

∑
i∈I

λi · β + α ·
∑
j∈J

µj)δ0 ∈ Sa
,

therefore Sa ⊂ PI is a closed submonoid.
The intersections

Sa = Sa ∩ PI = {λ̄ ∈ Sa ∣∣ |λ̄| = 1} and Sa = Sa ∩ PI = {λ̄ ∈ Sa ∣∣ |λ̄| 6 1}

are compact Hausdorff topological monoids.
It is easy to see that Sa is closed under the “argumentwise” addition of measures, thus

(Sa
,+, ·) is an Abelian Tychonoff topological semiring. It is also a lattice and a complete

lower semilattice w.r.t. obvious comparison.
For all λ = [λ1, . . . , λm] ∈ S, the measure ia(λ) =

∑m
i=1 λiδλi

is in Sa, and the mapping
ia : S → Sa preserves multiplication, zero and unit, | . . . |, pairwise suprema and arbitrary
infima. It restrictions provide similar embeddings S → Sa and S → Sa. Thus we consider
S, S, and S as submonoids of Sa, Sa, and Sa respectively.

Thus we arrive at a required

Definition. A function m : ExpX → Sa such that:
(1) m(∅) = 0;
(2) A ⊂ B implies m(A) 6 m(B);
(3) m(A ∪B) +m(A ∩B) = m(A) +m(B);
(4) m(

⋂
A) = infA∈A m(A) for each filtered subcollection A ⊂ ExpX;

is called a weakly atomized measure. If m(X)(0) = 0 (hence m(A)(0) = 0 for all A ∈ ExpX),
then we call m purely atomized. A function m is normalized (subnormalized) if |m(X)| = 1

(|m(X)| 6 1 respectively). The correspondence mn : A 7→ m(A)(0) is called the non-
atomized part of m, and ma : A 7→ m(A)−mn(A)δ0 is the purely atomized part of m.

Such m is of the following form: there is a real-valued measure m0 on X and a finite
or countable sequence (xi, pi)i∈I in X × R+ such that, for each A ∈ ExpX, m(A) is equal
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to
∑

{piδpi | i ∈ I, xi ∈ A} +m0(A)δ0. Then ma send each A to
∑

{piδpi | i ∈ I, xi ∈ A}
(and is purely atomized indeed), and mn = m0, hence the non-atomized part is a regular
real-valued measure.

We identify such a weakly atomized measure m : ExpX → Sa with the following real-
valued measure m̂ ∈ P (X × I):

m̂(B) =
∑

{pi | i ∈ I, (xi, pi) ∈ B}+m0

(
pr1(B ∩ (X × {0}))

)
, B ∈ Exp(X × I).

It is a unique real-valued measure m′ ∈ P (X × I) such that m′(A × F ) = m(A)(F ) for all
A ∈ ExpX, F ∈ Exp I. The set P a

X of measures m̂ for all weakly atomized measures m on
X consists of all real-valued measures on X × I which are purely atomic outside of X ×{0},
and masses in all (x, p) ∈ X×(0; 1] are multiples of p. The subset P a

X ⊂ P (X×I) is closed,
as well as the analogous subsets P aX ⊂ P (X × I) and P aX ⊂ P (X × I) that correspond to
subnormalized and normalized atomized measures.

By observing that, for each continuous mapping of compacta f : X → Y , the inclusions
P (f×1I)(P

a
X) ⊂ P

a
Y , P (f×1I)(P

aX) ⊂ P aY , and P (f×1I)(P
aX) ⊂ P aY are valid, we

obtain subfunctors P
a
: Comp → Tych, P a : Comp → Comp, and P a : Comp → Comp, of the

functors P (−×I) : Comp → Tych, P (−×I) : Comp → Comp, and P (−×I) : Comp → Comp.
We call them the functor of weakly atomized measures, the functor of subnormalized weakly
atomized measures, and the functor of normalized weakly atomized measures, respectively.

To proceed, we recall that the Bohr compactification [6] of the multiplicative group
of positive reals is a compact Hausdorff Abelian topological group (bohr R+, ·), together
with a continuous homomorphism bR+ : R+ → bohr R+, such that, for each continuous
homomorphism f : R+ → G into a compact Hausdorff Abelian topological group, there is
a unique continuous homomorphism bohr f : bohr R+ → G such that bohr f ◦ bR+ = f . The
image bR+(R+) is dense in bohr R+. Moreover, it is not difficult to prove the following:

Lemma 1.1. For all g ∈ bohr R+, there is a net (nβ) in N such that (nβ) → +∞,
bR+(nβ) → g.

By Ib we denote the subset

{(t, bR+(t)) | t ∈ (0; 1]} ∪ ({0} × bohr R+)

of the compact Hausdorff Abelian monoid I×bohr R+. Obviously Ib is closed, hence is a com-
pact Hausdorff Abelian monoid as well. Similarly to the above, we make P (Ib) a Tychonoff
Abelian monoid by putting

λ̄ · µ̄ = P (·)(λ̄⊗ µ̄), for λ̄, µ̄ ∈ P (Ib).

Let Sb be the set of all real-valued measures on Ib that are purely atomic outside of {0} ×
bohr R+, and masses of all (t, g), t ∈ (0; 1], are multiples of t. Then Sb ⊂ P (Ib) is a closed
submonoid, and the intersections Sb = Sb ∩ P (Ib), Sb = Sb ∩ P (Ib) are compact Hausdorff
Abelian monoids. An embedding ib : S → Sb is determined by the formula: for all λ =

[λ1, . . . , λm] ∈ S, ib(λ) =
∑m

i=1 λiδ(λi,bR+ (λi)). Its restrictions provide embeddings S → Sb

and S → Sb. The restriction pba of P pr1 : P (I × bohr R+) → PI to Sb is a surjective
homomorphism onto Sa, and its restrictions map Sb onto Sa and Sb onto Sa.
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Lemma 1.2. The set S is dense both in Sa and Sb.

Proof is straightforward.
Since Sb is an Abelian semiring, a lattice and a complete lower semilattice, we use it

the same way as Sa and suggest:

Definition. A function m : ExpX → Sb such that:
(1) m(∅) = 0;
(2) A ⊂ B implies m(A) 6 m(B);
(3) m(A ∪B) +m(A ∩B) = m(A) +m(B);
(4) m(

⋂
A) = infA∈A m(A) for each filtered subcollection A ⊂ ExpX;

is called an atomized measure. If m(X)({0}× bohr R+) = 0 (hence m(A)({0}× bohr R+) =

0 for all A ∈ ExpX), then we call m purely atomized. A function m is normalized
(subnormalized) if |m(X)| = 1 (|m(X)| 6 1 respectively). The correspondence mn : A 7→
m(A)|({0}×bohr R+) is called the non-atomized part of m, and ma = m − mn is the purely
atomized part of m.

Note that the non-atomized part mn is not a real-valued measure, but a measure with
values in the space of real-valued measures on a compact Hausdorff group, namely on {0}×
bohr R+.

We identify again each atomized measure m on a compactum X with a unique real-valued
measure m̂ on X × Ib such that m̂(A× F ) = m(A)(F ) for all A ∈ ExpX, F ∈ Exp Ib. The
set P b

X of all such m̂ consists of all measures on X × Ib ⊂ X × I × bohr R+ that are purely
atomic outside of X × {0} × bohr R+, and masses of all (x, t, g), t > 0, are multiples of t.
The compact Hausdorff subspaces P bX of all subnormalized atomized measures and P bX

of all normalized atomized measures, as well as the functors P
b
: Comp → Tych of atomized

measures, P b : Comp → Comp of subnormalized atomized measures, and P b : Comp → Comp

of normalized atomized measures are defined obviously.
Reasons to introduce such a complicated notion of atomized measure (comparing to the

definition of weakly atomized measure) will be clarified in the next sections.

2 Semiconvex compacta

First recall some definitions and facts from [8].
Let X be a convex compactum (i.e. a convex compact set in a locally convex topological

vector space) and c(x, y, λ) = λx+(1−λ)y, for all x, y ∈ X, λ ∈ I, i.e. c is a pairwise convex
combination. For the sake of brevity we will write λ(x, y) instead of c(x, y, λ). The ternary
operation c : X ×X × I → X satisfies the following properties:

(1) for all x, y ∈ X, λ ∈ I : λ(x, y) = (1− λ)(y, x) (commutative law);
(2) for all x, y, z ∈ X, λ, µ, ν ∈ I, λ+ µ+ ν = 1, µ 6= 0 :

λ(x,
µ

µ+ λ
(y, z)) = (λ+ µ)(

λ

λ+ µ
(x, y), z)

(associative law);
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(3) for all x, y ∈ X : 1(x, y) = x;
(4) each neighborhood U of the diagonal ∆X = {(x, x) | x ∈ X} in X × X contains

a neighborhood B of ∆X such that (x, y), (z, t) ∈ B, λ ∈ I implies (λ(x, z), λ(y, t)) ∈ B;
(5) λ(x, x) = x for all x ∈ X and λ ∈ I (absence of loops).
In the presence of (1)–(3), the property (4) provides local convexity and is equivalent to

the following :
(4’) the topology on X is generated by a family of pseudometrics (dα)α∈A such that

x, y, z, t ∈ X, ε > 0, α ∈ A, dα(x, y) < ε, dα(z, t) < ε, λ ∈ I implies dα(λ(x, z), λ(y, t)) < ε.

Remark. If pseudometrics dα, dβ satisfy (4)′, then the expression max{dα(x, y), dβ(x, y)} is
also a pseudometric, which satisfies (4’). Therefore we can assume that the family (dα)α∈A
is directed and even saturated [2].

Results of Świrszcz [10] imply that any compactum X with an operation c that satisfies
(1)–(5) can be embedded as a convex compact set into a locally convex topological vector
space so that c is a pairwise convex combination. In particular, the hyperspace ccK, of all
non-empty convex closed subsets of a convex compactum K with the Vietoris topology [11],
with the operation c defined as c(A,B, λ) = {λa+(1−λ)b | a ∈ A, b ∈ B}, for all A,B ∈ ccK,
λ ∈ I, satisfies (1)–(5) and is a convex compactum as well.

Unfortunately, if we use the latter formula to define combinations of elements of the
hyperspace expK of all closed non-empty subsets of a convex compactum K, only properties
(1)–(4), but not (5), are valid, hence expK does not become a convex compactum this way.
There are a lot of similar examples, involving, e.g., convolutions of measures, such that (5)
fails. Therefore we will relax the requirements to cover such structures.

A semiconvex compactum is a compactum X with a continuous ternary operation c :

X × X × I → X (we usually call it semiconvex combination and write λ(x, y) instead of
c(x, y, λ)) such that (1)–(4) are valid. In the sequel we assume that a family of pseudometrics
(dα)α∈A on X, whose existence is assured by (4’), is fixed and saturated for each particular X.

Extend the notion of semiconvex combination onto finite number of elements of X. Let
λ1, . . . , λn > 0, λ1 + · · ·+ λn = 1 and x1, . . . , xn ∈ X, then

(λ1, . . . , λn)(x1, . . . , xn) =

{
x1, if λ1 = 1;

λ1(x1, (
λ2

1−λ1
, . . . , λn

1−λ1
)(x2, . . . , xn)), if λ1 6= 1.

If arguments x1, . . . , xn of semiconvex combination are permutted simultaneously with
the respective coefficients λ1, . . . , λn, the value of semiconvex combination does not change.
We can also drop arguments that correspond to zero coefficients. We call a subset of X

semiconvex if it is closed under semiconvex combinations.
By continuity semiconvex combinations are naturally defined also for countable numbers

of elements. Let xi ∈ X, λi ∈ I, i = 1, 2, . . . , be such that
∑∞

i=1 λi = 1. Then the sequence
(λ1, . . . , λn−1, 1 − λ1 − · · · − λn−1)(x1, . . . , xn), n ∈ N, has a limit, which we regard as
the value of (λ1, λ2, . . . )(x1, x2, . . . ). This value is continuous w.r.t. (x1, x2, . . . ) ∈ XN for
a fixed (λ1, λ2, . . . ).
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The constructed in the previous section monoid S naturally acts on X:

[λ1, . . . , λn]x = (λ1, . . . , λn)(x, . . . , x), x ∈ X, [λ1, . . . , λn] ∈ S,

and all correspondences x 7→ sx, for s ∈ S, are non-expanding w.r.t. all pseudometrics dα.
For A ∈ expX and s = [λ1, . . . , λn] ∈ S, we write sA = {sx | x ∈ A} and s ∗ A =

{(λ1, . . . , λn)(x1, . . . , xn) | x1, . . . , xn ∈ A}, and obtain two actions of S on expX. If A is
semiconvex, then so are sA and s ∗ A.

For any subset A ⊂ X the set

SA = {s ∗ A | s ∈ S} = {(λ1, . . . , λn)(x1, . . . , xn) | x1, . . . , xn ∈ A,

n ∈ N, λ1, . . . , λn ∈ I, λ1 + · · ·+ λn = 1}

is a least semiconvex subset in X that contains A. It is called the semiconvex hull of A.
Its closure is a least closed semiconvex subset in X that contains A, and therefore is called
the closed semiconvex hull of A. In particular, Cl(S{a}) is a least closed semiconvex set that
contains a ∈ X.

A mapping f : X → Y between semiconvex compacta is called affine if it preserves
semiconvex combinations, i.e. f(λ(x1, x2)) = λ(f(x1), f(x2)) whenever x1, x2 ∈ X, λ ∈ I.

For the reader’s convenience, until the end of this section we reproduce several statements
from [8], in particular because of changes in notation.

Lemma 2.1. Let a ∈ X, A = Cl(S{a}), then
⋂
s∈S

sA is a unique minimal w.r.t. inclusion

closed semiconvex subset B ⊂ A.

Proof. By Zorn Lemma such a minimal subset B exists. Since, for any s ∈ S, the set sB ⊂ B

is also closed and semiconvex, we obtain sB = B. Then B ⊂ A, B = sB ⊂ sA implies
B ⊂

⋂
s∈S

sA = A0, and the latter set is closed, semiconvex, and satisfies A0 = sA0 for all

s ∈ S.
Let x ∈ A0, ε > 0, α ∈ A, b ∈ B. Since B ⊂ Cl(S{a}), there is s′ ∈ S such that

dα(b, s
′a) 6 ε/2. Choose y ∈ A0 such that x = s′y. There is s′′ ∈ S such that dα(y, s

′′a) 6
ε/2. By non-expansion, obtain dα(x, s

′s′′a) = dα(s
′y, s′s′′a) 6 ε/2, dα(s

′′b, s′s′′a) 6 ε/2.
Then dα(x, s

′′b) 6 ε/2 + ε/2 = ε, s′′b ∈ B, therefore dα(x,B) 6 ε, which implies x ∈ B.
Thus B =

⋂
s∈S

sA.

Due to the above lemma, for all s ∈ S, the correspondence B → B that takes each b to sb

is a non-expanding surjection w.r.t. all pseudometrics dα, α ∈ A. Since any non-expanding
surjection of a metric compactum onto itself is an isometry, for all a, b ∈ X, s ∈ S, α ∈ A,
we have dα(sa, sb) = dα(a, b).

Lemma 2.2. The set B =
⋂
s∈S

sA consists of a single point.

Proof. Putting λ((x, y), (z, t)) = (λ(x, z), λ(y, t)), for all (x, y), (z, t) ∈ B×B, λ ∈ I, we turn
B × B into a semiconvex compactum. For x, y ∈ B, let (x → y) = Cl(S{(x, y)}) ⊂ B × B.
Since S{x} and S{y} are dense in the compactum B, pr1((x → y)) = pr2((x → y)) = B.
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Let (z1, t1), (z2, t2) ∈ S{(x, y)}, i.e. z1 = s1x, t1 = s1y, z2 = s2x, t2 = s2y for some
s1, s2 ∈ S. For all ε > 0, α ∈ A there is s ∈ S such that dα(sx, y) < ε. Then

dα(t1, t2) = dα(s1y, s2y) 6 dα(s1y, s1sx) + dα(s1sx, s2sx) + dα(s2sx, s2y) =

dα(y, sx) + dα(s1x, s2x) + dα(sx, y) = dα(z1, z2) + 2ε,

hence dα(t1, t2) 6 dα(z1, z2). The reverse inequality is valid as well, thus dα(t1, t2) = dα(z1, z2)

for all elements (z1, t1), (z2, t2) of S{(x, y)} and therefore of Cl(S{(x, y)}) = (x → y). It
implies that (x → y) is the graph of a mapping B → B which is an isometry w.r.t. all dα,
α ∈ A, and (y → x) is the graph of an inverse isometry.

Let (z, t1) ∈ (x → y1), (z, t2) ∈ (x → y2). There exist a net of the form (sβx), sβ ∈ S,
such that sβx → z, then sβy1 → t1, sβy2 → t2. Since dα(sβy1, sβy2) = dα(y1, y2), the equality
dα(y1, y2) = dα(t1, t2) holds.

Fix an arbitrary point b ∈ B. For all x, y ∈ B, there is a unique x ∈ B such that
(x → y) = (b → z). Thus we can properly define an operation on B: for z1, z2 ∈ B, let
z = z1 · z2 be such that (z2 → z) = (b → z1). By the above, this operation is an isometry
w.r.t. each dα in each argument separately, hence is a continuous mapping B ×B → B.

Assume that z1 = s1b, z2 = s2b, then (b → z1) = {(x, s1x) | x ∈ B}, therefore z1 · z2 =

s1s2b = s2s1b = z2 · z1. Such z1, z2 are dense in B, and “·” is continuous, hence it is
commutative for all arguments. Similarly the associative law in S implies the associativity
of “·”.

The inverse for x ∈ B is a unique y ∈ B such that (y, b) ∈ (b → x). Uniqueness of
the inverse and the compactness of B imply the continuity of the inversion.

Consequently B is a contractible compact Abelian topological group. It is known [1, 4]
that such a group is trivial, i.e. is a singleton.

The point b ∈ B is unique in A such that λ(b, b) = b for all λ ∈ I. Let bX : X → X be
the map taking each a ∈ X to such a point b ∈ Cl(S{a}). Then bX(X) is a closed subset
of X consisting of all points b ∈ X such that λ(b, b) = b for all λ ∈ I. This set is called
the center of X and denoted Ctr(X).

Theorem 1. The net (sx)s∈(S,|) is uniformly convergent to bX(x), for x ∈ X. The map-
ping bX is an affine and non-expanding w.r.t. all dα, α ∈ A, retraction of the semiconvex
compactum X onto its center Ctr(X).

Proof. Since X is a compactum and all mappings s(−) : X → X are non-expanding, it is
sufficient to prove the pointwise convergence. Let x ∈ X, A = Cl(S{x}). For all s, s′ ∈ S,
s|s′ we have s′A ⊂ sA. Since {bX(x)} =

⋂
s∈S

sA, for each neighborhood U of bX(x) there is

s ∈ S such that sA ⊂ U , hence for all s′ ∈ S such that s|s′ we have s′x ∈ s′A ⊂ U .
All mappings s(−) : X → X are affine, therefore the same is valid for bX. Obviously

bX(x) = x if and only if x ∈ Ctr(X).

This implies that (1)–(5) are valid for Ctr(X), and the center is a convex compactum,
a largest one of all convex compacta that are (algebraically and topologically) embedded
into X.
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Let Ai, i ∈ I, be subsets of a compactum X, F a filter in the index set I. By lim we
denote the upper limit:

lim
F

Ai = {x ∈ X | for all neighborhoods U 3 x and F ∈ F

there is i ∈ F such that Ai ∩ U 6= ∅}.

It is obvious that lim
F

Ai ⊂ X is closed and nonempty whenever all Ai are nonempty. For all

s = [λ1, . . . , λn] ∈ S we denote max s = max{λ1, . . . , λn}.

Lemma 2.3. For any subset A ⊂ X the equality lim
s∈(S,|)

s ∗ A = lim
max s→0

s ∗ A holds.

Proof. Let b ∈ lim
s∈(S,|)

s ∗ A, Ub be a neighborhood of b, and ε > 0. Take an arbitrary s0 ∈ S

such that max s0 < ε. There is s ∈ S such that s|s0, s ∗A∩Ua 6= ∅, hence max s < ε. Thus
b ∈ lim

max s→0
s ∗ A.

Let s = [λ1, . . . , λm] ∈ S. We can (non-uniquely) visualize s as a partition of the unit
segment I into adjacent segments of lengths λ1, . . . , λm. Their ends form an increasing
sequence s′: s′0 = 0, s′1 = λ1, s′2 = λ1+λ2, . . . , s′m = λ1+ · · ·+λm = 1. If t = [µ1, . . . , µn] ∈ S
is such that the respective sequence t′, with t′0 = 0, t′1 = µ1, t′2 = µ1 + µ2, . . . , t′n =

µ1 + · · ·+ µn = 1, is a subsequence of s′, then t ≺ s, i.e. s is a refinement of t.
Now let b ∈ lim

max s→0
s ∗ A, ε > 0, α ∈ A. Since c : X × X × I → X is a contin-

uous mapping of compacta, there is δ > 0 such that, for all x, y, z ∈ X, 0 6 λ < δ,
the inequality dα(λ(x, z), λ(y, z)) < ε/2 holds. Choose arbitrary s0 = [λ1, . . . , λm] ∈ S.
There are t = [µ1, . . . , µn] ∈ S, a1, . . . , an ∈ A such that max t < δ/m, dα(a, b) < ε/2) for
a = (µ1, . . . , µn)(a1, . . . , an). Construct the described above sequences s′0 and t′ for s0 and
t, and let s′ be the union of s′0 and t′ in ascending order. Then s′ represents s ∈ S which is
a refinement both of s0 and of t. Let each segment [ti−1, ti] of length µi is split by elements
of s′ into ki > 1 parts of lengths µ1

i , . . . , µ
ki
i . Calculate the point

c = (µ1
1, . . . , µ

k1
1 , . . . , µ1

i , . . . , µ
ki
i , . . . , µ

1
n, . . . , µ

kn
1 )(a1, . . . , a1︸ ︷︷ ︸

k1 times

, . . . , ai, . . . , ai︸ ︷︷ ︸
ki times

, . . . , an, . . . , an︸ ︷︷ ︸
kn times

).

At most m segments were split into > 2 parts, hence the combinations a and c differ (in
obvious sense) only in arguments such that the sums of the respective coefficients are less
than m · δ/m = δ. By the choice of δ this implies dα(a, c) < ε/2, hence dα(b, c) 6 dα(b, a) +

dα(a, c) < ε/2 + ε/2 = ε. Observe that c ∈ s ∗ A, and by s0|s we obtain b ∈ lim
s∈(S,|)

s ∗ A.

It is easy to see that a largest closed subset A ⊂ X, such that [λ1, . . . , λn](−) : An → A

is surjective for any [λ1, . . . , λn] ∈ S, is equal to
⋂
s∈S

s∗X = lim
s∈(S,|)

s∗X, hence is semiconvex.

Similarly, for a particular λ ∈ (0; 1), a largest closed subset A ⊂ X such that λ : A2 → A is
surjective is equal to

⋂
n∈N

[λ, 1− λ]n ∗X. Obviously

⋂
n∈N

[λ, 1− λ]n ∗X ⊃
⋂
s∈S

s ∗X.



Atomized measures and semiconvex compacta 93

On the other hand, max[λ, 1− λ]n → 0 as n → ∞, therefore⋂
n∈N

[λ, 1− λ]n ∗X ⊂ lim
max s→0

s ∗X,

and by the latter lemma
lim

s∈(S,|)
s ∗X = lim

max s→0
s ∗X.

Therefore all the constructed sets are equal. We call any of them the weak center of X and
denote it by WCtr(X). Since

WCtr(X) =
⋂

n∈N,λ1,...,λn∈I,
λ1+···+λn=1

{(λ1, . . . , λn)(x1, . . . , xn) | x1, . . . , xn ∈ X},

Ctr(X) =
⋂

n∈N,λ1,...,λn∈I,
λ1+···+λn=1

{(λ1, . . . , λn)(x, . . . , x) | x ∈ X},

we obtain Ctr(X) ⊂ WCtr(X).
Recall that X0 = WCtr(X) is semiconvex and closed in X, therefore is a semiconvex

compactum as well. Denote [ 1
n
, . . . , 1

n
](x, . . . , x) = 〈 1

n
〉x. For all m,n ∈ N, the mapping

〈 1
n
〉(−) : X0 → X0 is a non-expanding surjection, hence an isometry, w.r.t. all dα, and

〈 1
mn

〉x = 〈 1
m
〉 ◦ 〈 1

n
〉x = 〈 1

n
〉 ◦ 〈 1

m
〉x for all x ∈ X. Therefore 〈 1

m
〉−1 ◦ 〈 1

n
〉x = 〈 1

km
〉−1 ◦ 〈 1

kn
〉x

for all m,n, k ∈ N, x ∈ X0, and we use the latter expression as a definition of 〈m
n
〉x. In

particular, 〈n〉x = 〈 1
n
〉−1x.

Thus an action of the multiplicative group Q+ on X0 is obtained.

Lemma 2.4. The obtained action Q+ × X0 → X0 is equicontinuous (with x ∈ X0 as
a parameter) w.r.t. all dα and a standard metric on Q+ ⊂ R.

Proof. For each ε > 0, α ∈ A there is 0 < δ < 1 such that dα(λ(a, b), b) < ε whenever
a, b ∈ X, λ ∈ I, λ < δ. Let x ∈ X0, p, q ∈ Q+, p(1 − δ) < q < p/(1 − δ). If p = q, then
〈p〉x = 〈q〉x. If q < p, we can assume that p = m

n
, q = m

n′ , n < n′ < n/(1 − δ). Denote
y = 〈m〉x, then 〈m

n
〉x = [ 1

n
, . . . , 1

n
]y,, 〈m

n′ 〉x = [ 1
n′ , . . . ,

1
n′ ]y, and

[
1

n′ , . . . ,
1

n′ ]y =
n′ − n

n′ ([
1

n′ − n
, . . . ,

1

n′ − n
]y, [

1

n
, . . . ,

1

n
]y).

Observe that 0 < n′−n
n′ < δ, hence

dα(〈p〉x, 〈q〉x) = dα([
1

n
, . . . ,

1

n
]y, [

1

n′ , . . . ,
1

n′ ]y) < ε.

If q > p, then q < p < q/(1− δ), and we similarly prove that the previous inequality is valid.
Thus we have constructed a neighborhood Op = (p(1 − δ), p/(1 − δ)) ∩ Q+ of p such that
q ∈ Op implies dα(〈p〉x, 〈q〉x) < ε for all x ∈ X0.

Therefore an action 〈. . . 〉 of Q+ on X0 can be uniquely extended to a continuous action,
of R+ on X0, for which we preserve the same denotation 〈. . . 〉. We define a new operation
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� : X0 → X0×I → X0 by the formula λ�(x, y) = λ(〈 1
λ
〉x, 〈 1

1−λ
〉y) if 0 < λ < 1, 1�(x, y) = x,

0 � (x, y) = y for all x, y ∈ X0. It is straightforward to verify that for “�” the properties
(1)–(3), (4’), (5) are valid, hence (X0, �) is a convex compactum. We arrive at the following
statement:

Theorem 2. A semiconvex compactum X is a weak center of some semiconvex compactum if
and only if there exist a continuous operation � : X×X×I → X and a continuous action 〈. . . 〉
of (0;+∞) on X such that (X, �) is a convex compactum, all mappings 〈λ〉 : (X, �) → (X, �)
are affine, and, for all x, y ∈ X, λ ∈ (0; 1), the equality λ(x, y) = λ � (〈λ〉x, 〈1− λ〉y) holds.
These “�” and “〈. . . 〉” are uniquely determined.

Remark 2.1. The center Ctr(X) is a subset of WCtr(X) that consists of all points x such
that 〈λ〉x = x for all λ ∈ (0;+∞) and the previously defined action 〈. . . 〉.

Definition. If Ctr(X) = WCtr(X), then we call X a strongly semiconvex compactum.

Here is an alternative definition: a semiconvex compactum X is called strongly semicon-
vex if for any x ∈ X the point [λ1, . . . , λn]x converges to a unique point y ∈ X whenever
λ1, . . . , λn > 0, λ1 + · · · + λn = 1, max{λ1, . . . , λn} → 0. This implies that if f : X → Y

is an affine surjective map of strongly semiconvex compacta, and X is strongly semiconvex,
then Y is strongly semiconvex as well.

Many (but not all) “real-life” examples of semiconvex compacta belong to this class,
e.g. the previously mentioned hyperspace expK of closed non-empty subsets of a convex
compactum K.

By the above, for all x ∈ X, we have dα([λ1, . . . , λn]x,WCtr(X)) → 0 as
max[λ1, . . . , λn] → 0. Now we are going to extend results of [8] and to clarify the behaviour
if the expression [λ1, . . . , λn]x in a simpler case λ1 = · · · = λn = 1

n
.

For all x ∈ X and n ∈ N, let a sequence x̄ in X be defined by the formula x̄n = 〈 1
n
〉x. On

the set XN of all sequences in X we consider a pseudometric d̄α, which is defined as follows:

d̄α((xn), (yn)) = lim
n→∞

dα(xn, yn), (xn), (yn) ∈ XN.

Theorem 3. For each x ∈ X, there is a unique x0 ∈ WCtr(X) such that dα(〈 1n〉x, 〈
1
n
〉x0)→ 0

as n → ∞ for all α ∈ A. The mapping wbX : X → WCtr(X) that sends each x to
the respective x0 is an affine and non-expanding w.r.t. all dα retraction of a semiconvex
compactum X onto its weak center WCtr(X), and satisfies the equality bX ◦ wbX = bX.

Proof. For all α ∈ A, the mapping (X, dα) → (XN, d̄α) that sends each x to x̄, is non-
expanding, and its restriction to WCtr(X) is an isometry because dα(〈 1n〉x1, 〈 1n〉x2) =

dα(x1, x2) for all x1, x2 ∈ WCtr(X). Thus the uniqueness is immediate.
Let x ∈ X, α ∈ A. The sequence (dα(〈 1n〉x,WCtr(X)))n∈N tends to zero, therefore there

is a sequence (yn) in WCtr(X) such that dα(〈 1n〉x, yn) → 0 as n → ∞. For all n ∈ N,
choose xn ∈ WCtr(X) such that 〈 1

n
〉xn = yn. Since WCtr(X) is a compactum, there is

a subsequence (xni
) that converges to some x0 ∈ WCtr(X), hence dα(〈 1

ni
〉x0, yni

) → 0 as
i → ∞. By the triangle inequality for dα, we obtain that dα(〈 1

ni
〉x, 〈 1

ni
〉x0) → 0, i → ∞.
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For each ε > 0, there is i ∈ N such that dα(〈 1
ni
〉x, 〈 1

ni
〉x0) < ε/3. We can also choose

m ∈ N such that, for all x, y ∈ X, λ ∈ I, the inequality λ 6 1
m

implies dα(λ(x, y), y) < ε/3.
Let n > n0 = mni, then n = kni + l, k > m, 0 6 l < ni. We have:

dα(〈
1

kni

〉x, 〈 1

kni

〉x0) = dα(〈
1

k
〉〈 1
ni

〉x, 〈1
k
〉〈 1
ni

〉x0) 6 dα(〈
1

ni

〉x, 〈 1
ni

〉x0) < ε/3.

If l 6= 0, then:

dα(〈
1

n
〉x, 〈 1

n
〉x0) = dα(〈

1

kni + l
〉x, 〈 1

kni + l
〉x0) =

dα(
l

kni + l
(〈1
l
〉x, 〈 1

kni

〉x), l

kni + l
(〈1
l
〉x0, 〈

1

kni

〉x0)) 6

dα(
l

kni + l
(〈1
l
〉x, 〈 1

kni

〉x), 〈 1

kni

〉x) + dα(〈
1

kni

〉x, 〈 1

kni

〉x0)+

dα(〈
1

kni

〉x0,
l

kni + l
(〈1
l
〉x0, 〈

1

kni

〉x0)) < ε/3 + ε/3 + ε/3 = ε,

Hence dα(〈 1n〉x, 〈
1
n
〉x0) for all n > n0. Therefore dα(〈 1n〉x, 〈

1
n
〉x0) → 0, n → ∞, for at

least one x0 ∈ WCtr(X). For a particular pseudometric dα, such x0 form a closed set, and
the family of all such sets is filtered because the family (dα)α∈A is directed. Therefore there
is x0 ∈ WCtr(X) such that (dα(〈 1n〉x, 〈

1
n
〉x0)) → 0, n → ∞, for all α ∈ A. Thus a required

x0 exists and is unique.
Observe that, for all α ∈ A, x, y ∈ X, and x0 = wbX(x), y0 = wbX(y), we have

dα(x0, y0) = d̄α(x̄, ȳ) 6 dα(x0, y0), hence wbX is non-expanding. The equality wbX(x) = x

for x ∈ WCtr(X) and preservation of semiconvex combinations by wbX are obvious.
Let the set N× S be partially ordered as follows: (m, s)|(n, t) if m|n (i.e. m divides n),

s|t. For x ∈ X, consider the net (s[ 1
n
, . . . , 1

n
]x)(n,s)∈(N×S,|). It is obvious that it converges

to bX(x). If s ∈ S is fixed, then (s[ 1
n
, . . . , 1

n
]x)n∈(N,|) uniformly w.r.t. s and x converges to

s(wbX(x)), and (s(wbX(x))s∈(S,|) converges to bX(wbX(x)). Thus bX(x) = bX(wbX(x))

for all x ∈ X.

3 Spaces of atomized measures as free semiconvex compacta

Let SConv, SSConv, and WSConv be the categories that consist of all semiconvex com-
pacta, of all strongly semiconvex compacta, and of all semiconvex compacta that coincide
with their weak centers, respectively, and of all affine continuous mappings of these spaces.
There are obvious forgetful functors:

Conv
Uss

xxqqqqqqqqqq

Us

��

Uw

&&NNNNNNNNNN

SSConv
Uss
s

&&MMMMMMMMMM

Uss

��;
;;

;;
;;

;;
;;

;;
;;

;;
WSConv

Uw
s

xxpppppppppp

Uw

����
��

��
��

��
��

��
��

�

SConv
Us

��
Comp
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Our goal is to construct free objects, and hence left adjoints [7] to these functors. Recall
that a left adjoint to the composition U s ◦ Us : Conv → Comp is known (the probability
measure functor P [3, 10]) and thoroughly invesigated.

The “upper part” is easier. Observe first that, for a morphism f : X → Y in SConv,
the inclusions f(Ctr(X)) ⊂ Ctr(Y ), f(WCtr(X)) ⊂ WCtr(Y ) and the equalities bY ◦ f =

f ◦ bX, wbY ◦ f = f ◦ wbX are valid. Thus we denote by Ctr(f) : Ctr(X) → Ctr(Y )

and WCtr(f) : WCtr(X) → WCtr(Y ) the restrictions of f . They are morphisms in Conv
and WSConv, resp., hence we obtain functors Ctr : SConv → Conv and WCtr : SConv →
WSConv.

Then the following statements, which extend Theorem 3 [8], are at hand.

Theorem 4. The functor Ctr is a left adjoint to the embedding of categories Us : Conv →
SConv, bX : X → Ctr(X) is a component of a natural transformation b : 1SConv → Ctr,
which is a unit of the adjunction. The restrictions of Ctr to SSConv and WSConv are left
adjoints to the embeddings Uss : Conv → SSConv and Uw : Conv → WSConv, respectively.

Similarly:

Theorem 5. The functor WCtr is a left adjoint to the embedding of categories Uw
s :

WSConv → SConv, wbX : X → WCtr(X) is a component of a natural transformation
wb : 1SConv → WCtr, which is a unit of the adjunction.

On other words, Conv ⊂ SConv and WSConv ⊂ SConv are reflective subcategories, and
Ctr and WCtr are reflectors [7].

Remark. We leave as open the problem of explicit construction of a left adjoint to the em-
bedding U ss

s : SSConv → SConv, although its existence is known.

Now we consider the “lower part” of the diagram.

Proposition 3.1. Let X be a compactum, 〈〈. . .〉〉 : (0; +∞) → G be a continuous homo-
morphism into a compact Hausdorff Abelian topological group. Let Z = P (X × I × G),
hλ(x, t, g) = (x, λt, 〈〈λ〉〉g) for all (x, t, g) ∈ Z, λ ∈ (0; 1]. With an operation c : Z×Z×I → Z

that is defined by the formula

c(m1,m2, λ) = λPhλ(m1) + (1− λ)Ph1−λ(m2), 0 < λ < 1,

and c(m1,m2, 1) = m1, c(m1,m2, 0) = m2 for all m1,m2 ∈ Z, Z is a semiconvex compactum.
The weak center of Z is equal to P (X×{0}×G), and the mapping wbZ is equal to Pp0,

where p0 : X × I ×G → X × {0} ×G takes each (x, t, g) to (x, 0, g),

Proof. Properties (1)-(3) are obvious, only (4’) has to be verified. Let the topologies on X

and on G be defined by directed families of pseudometrics (ρβ)β∈B and (θγ)γ∈Γ respectively,
and all θγ be invariant, i.e. θγ(a, b) = θγ(ac, bc) for all a, b, c ∈ G. Then the functions
dβ,γ : Z × Z × I → Z, which are defined by the formula, for β ∈ B, γ ∈ Γ:

dβ,γ(m1,m2) = sup
{
|m1(ϕ)−m2(ϕ)|

∣∣ |ϕ(x1, t1, g1)− ϕ(x2, t2, g2)| < max{ρβ(x1, x2),

|t1 − t2|, θγ(g1, g2)} for all (x1, t1, g1), (x2, t2, g2) ∈ X × I ×G
}
, m1,m2 ∈ Z,
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form a family of pseudometrics, which is required by (4’).
Observe that if m ∈ Z, suppm 3 (x, t, g), t > 0, then m is not equal to any

( 1
n
, . . . , 1

n
)(m1, . . . ,mn), m1, . . . ,mn ∈ Z, whenever 1

n
< t. Hence WCtr(Z) ⊂ P (X ×

{0} ×G). On the other hand, if m ∈ P (X × {0} ×G), 0 < λ < 1, then

m = λ(m1,m2), m1 = P
(
1X × 1I × 〈〈1

λ
〉〉(−)

)
(m), m2 = P

(
1X × 1I × 〈〈 1

1− λ
〉〉(−)

)
(m).

Since m1,m2 ∈ P (X × {0} × G), we obtain WCtr(Z) = P (X × {0} × G). For m ∈ Z,
m0 = Pp0(m), β ∈ B, γ ∈ Γ, we have m0 ∈ P (X × {0} ×G) and dβ,γ(〈 1n〉m, 〈 1

n
〉m0) → 0 as

n → ∞, therefore wbZ(m) = Pp0(m).

We are interested in the two particular cases: G = {e} and G = bohr R+ with 〈〈λ〉〉 =

bR+(λ).

Corollary 3.1. The sets P aX ⊂ P (X×I) ∼= P (X×I×{e}) and P bX ⊂ P (X×I×bohr R+)

are semiconvex w.r.t. the just defined semiconvex combinations.

Proof is straightforward. Hence P aX and P bX are semiconvex compacta, and it is easy
to see that P aX is strongly semiconvex. Moreover, for a continuous mapping of compacta
f : X → Y , the mappings P af : P aX → P aY and P bf : P bX → P bY are affine, thus we
can regard P a and P b as functors Comp → SSConv and Comp → SConv, resp.

There are embeddings ηaX : X ↪→ P aX and ηbX : X ↪→ P bX, namely:

ηaX(x) = δ(x,1), η
bX(x) = δ(x,1,bR+ (1)), x ∈ X.

Theorem 6. For a compactum X, the pairs (P aX, ηaX) and (P bX, ηbX) are free objects
over X in SSConv and SConv, respectively, and the functors P a : Comp → SSConv and
P b : Comp → SConv are left adjoints to U ss : SSConv → Comp and U s : SConv → Comp,
respectively.

Proof. Let Y be a semiconvex compactum with a directed family (dα)α∈A that satisfies (4’),
and f : X → Y a continuous mapping. Assume that f̄ : P bX → Y is an affine continuous
extension of f . Then, for all x1, . . . , xn ∈ X, λ1, . . . , λn ∈ (0; 1] such that λ1 + · · ·+ λn = 1,
we have

n∑
i=1

λiδ(xi, λ1, bR+(λi)) = (λ1, . . . , λn)(η
b(x1), . . . , η

b(xn)),

therefore

f̄
( n∑
i=1

λiδ(xi, λ1, bR+(λi))
)
= (λ1, . . . , λn)(f(x1), . . . , f(xn)).

By continuity

f̄
( ∞∑
i=1

λiδ(xi, λ1, bR+(λi))
)
= (λ1, λ2, . . . )(f(x1), f(x2), . . . )

also for all countable sequences x1, x2, · · · ∈ X, λ1, λ2, · · · ∈ (0; 1] such that
∑∞

i=1 λi = 1.
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Now let m = δ(x,0,g) ∈ P (X × {0} × bohr R+). Take a net (nβ) in N which existence
for g−1 ∈ bohr R+ is guaranteed by Lemma 1.1. Then (nβ) → +∞, bR+( 1

nβ
) → g imply

(x, 1
nβ
, bR+( 1

nβ
)) → (x, 0, g), hence

f̄(nβ
1

nβ

δ(x, 1
nβ

,bR+ ( 1
nβ

))) = 〈 1

nβ

〉f̄(ηbX(x)) = 〈 1

nβ

〉f(x) → f̄(δ(x,0,g)) = f̄(m).

Therefore f̄(m) ∈ Y0 = WCtr(Y ), and the net 〈 1
nβ
〉(wbY (f(x)) in Y0 by Theorem 3

converges to f̄(m) as well. Let Iso(Y0) be the group of all bijections on Y0 that preserve all
dα, with the topology of uniform convergence w.r.t. each of dα. Recall that by Theorem 2
there exist (and are unique) a continuous operation � : Y0 × Y0 × I → Y0 and a continuous
homomorphism 〈. . . 〉 of (0;+∞) into Iso(Y0) such that (Y0, �) is a convex compactum, all
〈λ〉 : (Y0, �) → (Y0, �) are affine, and, for all y1, y2 ∈ Y0, λ ∈ (0; 1), the equality λ(y1, y2) =

λ� (〈λ〉y1, 〈1−λ〉y2) holds. The group Iso(Y0) is compact Hausdorff, hence there is a unique
continuous homomorphism 〈〈. . .〉〉 : bohr R+ → Iso(Y0) such that 〈〈bR+(λ)〉〉 = 〈λ〉 for all
λ ∈ R+. Then 〈 1

nβ
〉(wbY (f(x)) = 〈〈bR+( 1

nβ
)〉〉(wbY (f(x)) → 〈〈g〉〉(wbY (f(x)), thus obtain

f̄(δ(x,0,g)) = 〈〈g〉〉(wbY (f(x)).
Now let m =

∑n
i=1 λiδ(xi,0,gi) ∈ P (X × {0} × bohr R+), λi 6= 0 for i = 1, . . . , n, then

m = (λ1, . . . , λn)
(
δ(x1,0,bR+ (λ−1

1 )g1)
, . . . , δ(xn,0,bR+ (λ−1

n )gn)

)
,

hence

f̄(m) = (λ1, . . . , λn)
(
f̄(δ(x1,0,bR+ (λ−1

1 )g1)
), . . . , f̄(δ(xn,0,bR+ (λ−1

n )gn)
)
)
=

(λ1, . . . , λn)
(
〈〈bR+(λ−1

1 )g1〉〉wbY (f(x1)), . . . , 〈〈bR+(λ−1
n )gn〉〉wbY (f(xn))

)
=

λ1〈λ1〉〈λ−1
1 〉〈〈g1〉〉(wbY (f(x1))) + · · ·+ λn〈λn〉〈λ−1

n 〉〈〈gn〉〉(wbY (f(xn))) =

λ1〈〈g1〉〉(wbY (f(x1))) + · · ·+ λn〈〈gn〉〉(wbY (f(xn))).

Since measures with finite supports are dense in P (X × {0} × bohr R+), there can be
at most one continuous mapping P (X × {0} × bohr R+) → Y0 that agrees with the above
equality, and it is determined by the formula:

f̄(m) = cY0 ◦ P (Hf )(m), m ∈ P (X × {0} × bohr R+),

here cY0 : PY0 → Y0 is a barycenter map which takes each probability measure on the convex
compactum Y0 to its barycenter, and Hf : X × {0} × bohr R+ → Y0 takes each (x, 0, g) to
〈〈g〉〉(wbY (f(x)).

Now we are ready to study a “mixed” case

m = λ0m0 +
N∑
i=1

λiδ(xi, λi, bR+(λi)) ∈ P b(X), m0 ∈ P (X × {0} × bohr R+),

N is either finite or ∞. Such m is a combination of measures of previously considered forms:

m = λ0

(
P
(
1X×{0} × bR+(λ−1

0 )(−)
)
(m0),

N∑
i=1

λi

1− λ0

δ(xi,
λi

1− λ0

, bR+(
λi

1− λ0

))
)
,
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hence

f̄(m) = λ0

(
f̄
(
P
(
1X×{0} × bR+(λ−1

0 )(−)
)
(m0)

)
, (

λ1

1− λ0

,
λ2

1− λ0

, . . . )(f(x1), f(x2), . . . )
)
=

(λ0, λ1, λ2, . . . )(cY0 ◦ P (Hf,λ0)(m0), f(x1), f(x2), . . . ),

here Hf,λ0 : X × {0} × bohr R+ → Y0 takes each (x, 0, g) to 〈λ−1
0 〉〈〈g〉〉(wbY (f(x)).

We obtain formulae which determine f̄ uniquely. It is easy to see that such f̄ is affine.
Due to size limitations we omit a routine but straightforward proof of its continuity. Its idea
is that a “part” of a measure that is “close” to the weak center P (X×{0}× bohr R+) ⊂ P bX

can be retracted by a “small move” into the weak center, on which the continuity of f̄ is
known. Only a finite number of Dirac measures will be “left”, and f̄ also acts continuously
at this “part”.

Thus (P bX, ηbX) is a free semiconvex compactum over a compactum X, and P b is a re-
quired left adjoint to Us.

Observe that, for the projection pr12 : X × I × bohr R+ → X × I, the mapping P pr12 :

P (X × I × bohr R+) → P (X × I) is affine and maps P bX onto P aX. If Y is strongly
semiconvex, then the used action 〈〈. . .〉〉 of bohr R+ on WCtr(Y ) = Ctr(Y ) is trivial, i.e.
〈〈g〉〉 = 1Ctr(Y ) for all g ∈ bohr R+, hence a rapid glance at the formulae shows that f̄(m1) =

f̄(m2) whenever P pr12(m1) = P pr12(m2) ∈ P aX. Therefore there is a unique ¯̄f : P aX → Y

such that ¯̄f ◦ P pr12 |P bX = f̄ . Taking into account P pr12 ◦ηbX = ηaX, we obtain that
(P aX, ηaX) is a free strongly semiconvex compactum over a compactum X, and P a is a left
adjoint functor to U ss.

Now we have left adjoints WCtr to Uw
s and P b to U s and can combine them to obtain

a left adjoint to Uw : WSConv → Comp. Recall that WCtr(P bX) = P (X×{0}×bohr R+) ∼=
P (X × bohr R+), hence the latter space is an object of WSConv.

Corollary 3.2. The functor P (− × bohr R+) : Comp → WSConv is a left adjoint to
Uw : WSConv → Comp, and a free object over a compactum X is of the form (P (X ×
bohr R+), ηwX), ηwX : X → P (X× bohr R+) is defined by the equality ηwX(x) = δ(x,bR+ (1)),
x ∈ X.

Final remarks

Thus we have shown that spaces of normalized (weakly) atomized measures are free
(strongly) semiconvex compacta. We can consider an atomized measure either as a result of
concentration of some part of “mass” in atoms, or, conversely, as a limit of “totally atomized”
distributions of mass. In the latter case, even if some atoms “have dissolved”, there is a reason
to consider “origins” of parts of the “liquid mass”. This has been formalized in a more
complicated definition of atomized measure, which takes into account the compactness of
an underlying space.

Our constructions are functorial, but the respective functors are not as “good” as the prob-
ability measure functor, in particular, they do not preserve the class of singletons and there-
fore do not belong to the introduced by Schepin class of normal functors.
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The obtained adjunctions lead to monads and therefore to respective categories of al-
gebras. Nevertheless, these categories are not of much interest by themselves because by
results of [9] the considered forgetful functors are monadic.

It is also interesting whether there is a simple explicit procedure of “making a semiconvex
compactum stronger”, more constructive than building equalizers.
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публiкацiї. — 2010. — Т.2, №2. — C. 83–100.

Запроваджено класс розпорошених мiр на компактах, якi є узагальненням регулярних
дiйснозначних мiр. Показано також, що простiр нормованих (слабко) розпорошених мiр
на компактi є вiльним об’єктом над цим компактом у категорiї (сильно) напiвопуклих
компактiв.

Никифорчин О.Р. Распыленные меры и полувыпуклые компакты // Карпатские матема-
тические публикации. — 2010. — Т.2, №2. — C. 83–100.

Введен класс распыленных мер на компактах, обобщающих регулярные действитель-
нозначные меры. Также показано, что пространство нормированных (слабо) распылен-
ных мер на компакте является свободным объектом над этим компактом в категории
(сильно) полувыпуклых компактов.


