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We characterize metric spaces that are coarsely equivalent to the macro-Cantor set 2<N.

The well-known Cantor set{ ∞∑
i=1

ki · 3−i | (ki)∞i=1 ∈ {0, 2}N
}
⊂ R

has a macro analog { m∑
i=1

ki · 3i | m ∈ N, (ki)
m
i=1 ∈ {0, 2}m

}
⊂ R,

called the macro-Cantor set (see, e. g., [1]).
The macro-Cantor set plays the same role in the zero-dimensional asymptotic geometry

as the Cantor set does in the zero-dimensional topology. It is well known that every zero-
dimensional compact metric space without isolated points is homeomorphic to the Cantor
set (see e. g. [3]). The main result of this paper is a characterization of metric spaces that
are coarsely equivalent to the macro-Cantor set.

It is convenient to introduce the notion of coarse equivalence with help of multi-valued
maps. By definition, a multi-valued map between sets X, Y is any function f that assigns
to each point x ∈ X a (possibly empty) subset f(x) ⊂ Y . Such a function f assigns to a
subset A ⊂ X the subset f(A) =

⋃
a∈A f(a) of Y .

The oscillation of a multi-map Φ : X → Y between metric spaces is the function ωΦ :

[0,∞) → [0,∞] assigning to each δ ≥ 0 the (finite or infinite) number

ωΦ(δ) = sup{diam(Φ(A)) | A ⊂ X, diam(A) ≤ δ}.
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Definition 1. A multi-valued map Φ : X → Y between metric spaces X,Y is called

• macro-uniform, if ωΦ(δ) is finite for each δ < ∞;

• a coarse equivalence, if Φ(X) = Y , Φ−1(Y ) = X and both multi-valued maps Φ and
Φ−1 are macro-uniform.

Two metric spaces X,Y are called coarsely equivalent if there is a coarse equivalence
f : X → Y . In particular, the macro-Cantor set is coarsely equivalent to the macro-Cantor
cube

2<N = {(xi)i∈ω ∈ {0, 1}ω | ∃n ∈ ω ∀n ≥ m (xn = 0)}

endowed with the metric

d((xi), (yi)) = min{i ∈ ω | xj = yj, for all j > i}.

In the sequel, for a metric space (Y, ρ) and a subset C ⊂ Y by Uε(C) we denote the
ε-neighborhood of C in Y . For any nonempty sets A,B ⊂ Y we put

dist(A,B) = inf{ρ(a, b) | a ∈ A, b ∈ B}.

The following is a characterization theorem for the macro-Cantor set.

Theorem 1. A metric space (Y, ρ) is coarsely equivalent to the macro-Cantor set if and
only if there exist numbers a > 0, n ∈ N and monotonically increasing divergent sequences
(ai)i∈N, (ni)i∈N of real and natural numbers respectively, such that the following holds: for
every i the set Y can be written as the disjoint union of a countable family of sets {Yj}j∈N,
such that for every j, k ∈ N diam(Yj) ≤ ai, dist(Yj, Yk) > ai−1 and the set Yj can be covered
by 2ni+n sets and cannot be covered by less than 2ni sets of diameter not exceeding a.

Proof. Without loss of generality we can assume that ni−1 − ni−2 − n > 2 for every i.
Necessity. Let a metric space (Y, ρ) be coarsely equivalent to the macro-Cantor set X.

Then consider a multi-valued map f : X → Y from the definition of coarse equivalence and
define sequences {ai}i∈N, {bi}i∈N in the following way.

Put b1 = 1. Suppose that we have defined b1, . . . bi and a1, . . . , ai−1. From the definition
of coarse equivalence for f there exist natural numbers ai > ωf (bi) and bi+1 > ωf−1(ai).

Let i ∈ N. We can represent X as the union X =
⋃
j∈N

X i
j, where diam(X i

j) = bi,

Ubi(X
i
j) = X i

j for all j ∈ N. Then for all i, j ∈ N define Y i
j = f(X i

j). It is easy to see that
Y =

⋃
j∈N

Y i
j , diam(Y i

j ) = ai for all j ∈ N, i ∈ N.

Since for all i > 1 dist(X i
j, X

i
k) > bi, i, j ∈ N, we easily obtain that dist(Y i

j , Y
i
k ) > ai−1,

j, k ∈ N.
Then we can see that for any i, j, k ∈ N, i < j, there exists a unique l ∈ N such that

Y i
k ⊂ Y j

l .

Note, that for all i > 1, j ∈ N, the set Y i
j can be written as the union Y i

j =
2bi−b1⋃
k=1

Y 1
lk
. The

set Y i
j can be covered by at most 2bi−b1 sets of diameter a1.
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Similarly, Y i
j =

2bi−b2⋃
k=1

Y 2
lk
. Since the distance between the sets Y 2

p and Y 2
q is greater then

a1, the set Y i
j cannot be covered by less than 2bi−b2 sets of diameter not exceeding a1.

The necessity is proved.
Sufficiency. Let Y be a metric space, numbers a > 0, n ∈ N, and monotonically

increasing sequences (ai)i∈N, (ni)i∈N, of real and natural numbers respectively are from the
conditions of the theorem.

Let X denotes the macro-Cantor set and

X i
j = {x = (x1, x2, x3, . . . ) | xi = η1, xi+1 = η2, . . . , } ,

where
j = 1 + η1 + 2 · η2 + 22 · η3 + · · ·+ ap · 2p−1 + . . . ,

ηk ∈ {0, 1}. It is easy to see that diam(X i
j) < 2i, and for every a < b, c, d, either Xa

c ⊂ Xb
d or

Xa
c ∩Xb

d = ∅.

We will use that Θ(A) is the minimal natural number k such that A can be written as
the disjoint union of k balls of diameter not exceeding a.

For every natural i let Y = Y i
1 ∪ Y i

2 ∪ . . . be a decomposition such that for every natural
j, k, diam(Y i

j ) ≤ ai, dist(Y i
j , Y

i
k ) > ai−1 and 2nj ≤ Θ(Y j

k ) ≤ 2nj+n for every natural j, k. Let
Θj

max = max
k

Θ(Y j
k ).

We assume that
Y k
1 = Y t

1 ∪ Y t
2 ∪ · · · ∪ Y t

r1
,

Y k
2 = Y t

r1+1 ∪ Y t
r1+2 ∪ · · · ∪ Y t

r2
,

. . .

for every natural k, t, k > t.
Step a). Consider a sequence of real numbers (αk) such that 1 < αk < 2,

∏
k∈N

αk = 2,

α0 = 1.
Let us construct sequences of natural numbers (ci)i∈N, (di)i∈N by induction. Let d1 = 1,

and let ci > di be such that

1 +
2ndi

+n · 2nd1
+3n+2 · 8

2nci
≤ α2i+1,

1− 2ndi · 2nd1
+3n+2

2nci+n · 8
≥ 1

α2i+1

,
(a(2i+ 1))

di > ci−1 and for any t > 2ndi ,

t+Θci−1
max ≤ t · α2i,

t−Θci−1
max ≥ t · 1

α2i

.
(a(2i))

Let us consider the following conditions for a multi-valued function f : A → B:

ωf (aci−1
) ≤ ndi , ωf−1(ndi) ≤ aci . (f(i))
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Let p′ = 2nd1
+3n+2.

Step b). During this step for every natural i we have to construct a multi-valued surjective
function fi(A,B)(x) : A → B, which maps the set A ⊂ Y into B ⊂ X. Here A =

Y di
l1

∪ · · · ∪ Y di
lp

, B = X
ndi
k , 1 ≤ p ≤ p′. Also the function fi must satisfy conditions (f(1)),

(f(2)), . . . , (f(i)).
Fix i ∈ N, and let A,B be sets. Let us construct fi(A,B) by induction. Without loss of

generality we can assume that

A = Y di
1 ∪ · · · ∪ Y di

p , B = X
ndi
1 .

It is easy to see that
p · 2ndi ≤ Θ(A) ≤ p · 2ndi

+n.

Base of induction. Let A0
1 = A.

Step j, j ∈ {1, . . . , i− 1}. We see that the set Y is written as a disjoint union of sets

Y = Aj−1
1 ∪ · · · ∪ Aj−1

2
ndi

−ndi−j+1

such that for any k ∈ {1, . . . , 2ndi
−ndi−j+1}

Θ(A)

2ndi
−ndi−j+1

·
2(j−1)∏
t=0

1

αt

≤ Θ(Aj−1
k ) ≤ Θ(A)

2ndi
−ndi−j+1

·
2(j−1)∏
t=0

αt,

the set Aj−1
k is the union of sets from the family {Y ci−j

q }, and it is assumed that

fi(A,B)(Aj−1
k ) = X

ndi−j+1

k , f−1
i (A,B)(X

ndi−j+1

k ) = Aj−1
k .

Consider the set Aj−1
k . We can represent it as the union

Aj−1
1 = Y

ci−j

k1
∪ · · · ∪ Y

ci−j

ks
.

Now write the set X
ndi−j+1

k as the disjoint union of 2ndi−j+1
−ndi−j = ξ sets, X

ndi−j+1

k =

X
ndi−j
e1 ∪ · · · ∪X

ndi−j
ef . We have to divide these sets between the sets Y

ci−j

kr
.

Let β′ : {e1, . . . , ef} → {k1, . . . , ks} be a surjective function. Note that ξ > s. Let

β(kr) = |{et|β′(et) = kr}|. We have to find β′ that minimizes the difference of
Θ(Y

ci−j
kr

)

β(kr)
.

We see that
s∑

l=1

Θ(Y
ci−j

kl
) = Θ(Aj−1

k ). Thus there is β′ such that, for every l ∈ {1, . . . , s},

Θ(Aj−1
k )

ξ
(β(kr)− 2) ≤ Θ(Y

ci−j

kr
) ≤ Θ(Aj−1

k )

ξ
(β(kr) + 2),

Θ(Aj−1
k )

ξ
(1− 2

β(kr)
) ≤

Θ(Y
ci−j

kr
)

β(kr)
≤ Θ(Aj−1

k )

ξ
(1 +

2

β(kr)
).

Now let us look at β(kr):

Θ(Y
ci−j

kr
) · f

Θ(Aj−1
k )

· 1
4
≤ β(kr),
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β(kr) ≥
Θ(Y

ci−j

kr
) · ξ

Θ(Aj−1
k ) · 2

≥ 2nci−j · 2ndi−j+1 · 2ndi

2ndi−j · p · 2ndi
+n · 2ndi−j+1 · 4

≥ 2nci−j

2ndi−j
+n · 4p

.

Then by condition (a(2(i− j) + 1))

(1 +
2

β(kr)
) ≤ 1 +

2ndi−j
+n · 4p

2nci−j
≤ α2(i−j)+1,

(1− 2

β(kr)
) ≥ 1− 2ndi−j · p

2nci−j+n · 4
≥ 1

α2(i−j)+1

.

We see that

Θ(A)

2ndi
−ndi−j

·
2i−1∏

t=2(i−j)+1

1

αt

≤
Θ(Y

ci−j

kr
)

β(kr)
≤ Θ(A)

2ndi
−ndi−j

·
2i−1∏

t=2(i−j)+1

αt.

Now consider the set Y ci−j

kr
and β(kr). The sets X

ndi−j
o1 , . . . , X

ndi−j
oβ(kr) are mapped to the set

Y
ci−j

kr
. Represent the set Y

ci−j

kr
as the disjoint union of sets

Y ci−j−1
q1

∪ · · · ∪ Y ci−j−1
ql

.

Now map them into the sets X
ndi−j
o1 , . . . , X

ndi−j
oβ(kr) to minimize the difference of Θ(Aj

k), where
Aj

k = f−1(X
ndi−j

k ).

This can be done so that

Θ(Y
ci−j

kr
)

β(kr)
−Θci−j−1

max ≤ Θ(Aj
k) ≤

Θ(Y
ci−j

kr
)

β(kr)
+ Θci−j−1

max .

We see that
Θ(Y

ci−j

kr
)

β(kr)
≥ p · 2ndi−j · 1

2
≥ 2ndi−j

−1,

then by condition (a(2(i− j)))

Θ(Y
ci−j

kr
)

β(kr)
+ Θci−j−1

max ≤
Θ(Y

ci−j

kr
)

β(kr)
· α2(i−j),

Θ(Y
ci−j

kr
)

β(kr)
· 1

α2(i−j)

≤
Θ(Y

ci−j

kr
)

β(kr)
−Θci−j−1

max .

Thus,

Θ(A)

2ndi
−ndi−j

·
2i−1∏

t=2(i−j)

1

αt

≤ Θ(Aj
k) ≤

Θ(A)

2ndi
−ndi−j

·
2i−1∏

t=2(i−j)

αt.

Assume that f(Aj
k) = X

di−j

k , f−1(X
di−j

k ) = Aj
k. As a result the following condition

(f(i− j)) holds:
ωf (aci−j−1

) ≤ ndi−j
ωf−1(ndi−j) ≤ aci−j

.
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After step (i− 1) we obtain our function. The set A is written as the union of the family
of sets {Ai−1

k }. For every k

0 < p · 2nd1 ≤ Θ(A)

2ndi
−nd1

·
2i−1∏
t=2

1

αt

≤ Θ(Ai−1
k ),

therefore A
(i−1)
k is nonempty. For every k and for every x ∈ A

(i−1)
k let f(A,B)(x) = X

nd1
k .

Note, that the constructed function satisfies conditions (f(1))–(f(i)).
Step c). Now we have a sequence (fi) of functions. We have to construct function from

Y to X. We can write Y as the union of the sets

Y1 = Y d1
1 , Yi = (Y di

1 ∪ · · · ∪ Y di
2n ) \ Yi−1.

Let X = X1 ∪X2 ∪ . . . , where X1 = X
nd1
1 , and Xi = X

ndi
1 \X

ndi−1

1 for i ∈ N \ {1}. For
every i we have to map (Y di

1 \ Y di−1

1 ) into Xi.
Consider step i. We see that Yi = Y

di−1

l1
∪ · · · ∪ Y

di−1

lt
. Also 2ndi

+n ≤ Θ(Yi) ≤ 2ndi
+2n and

2ndi−1 ≤ Θ(Y
di−1

j ) ≤ 2ndi−1
+n. Then 2ndi

−ndi−1 ≤ t ≤ 2ndi
−ndi−1

+2n.
We have Xi = X

ndi
1 \X

ndi−1

1 = X
ndi−1
m1 ∪· · ·∪X

ndi−1
mu . It is easy to see that u = 2ndi

−ndi−1−1.

Also u < t < up′.
Now we can write Yi as the disjoint union of sets Yi = Y(i,1) ∪ · · · ∪ Y(i,u), where every

Y(i,k) is the union of w sets of the family (Y
di−1

lr
), 1 ≤ w ≤ p′.

Now for every k ∈ {1, . . . , u} using the function fi(Y(i,k), X
ndi−1
mk ) we shall map the set

Y(i,k) into the set X
ndi−1
mk .

The last theorem can be reformulated.

Theorem 2. A metric space (Y, ρ) is coarsely equivalent to the macro-Cantor set if and
only if there exist numbers a > 0, n ∈ N and monotonically increasing divergent sequences
(ai)i∈N, (ni)i∈N of real and natural numbers respectively, such that the following holds: for
every i the set Y can be written as the disjoint union of a countable family of sets {Yj}j∈N,
such that for every j, k ∈ N, diam(Yj) ≤ ai, dist(Yj, Yk) > ai−1 and the set Yj can be covered
by n · ni sets and cannot be covered by less than ni sets of diameter not exceeding a.

Now using Theorem 2 we can prove its more general version.

Theorem 3. A metric space (Y, ρ) is coarsely equivalent to the macro-Cantor set if and
only if there exist monotonically increasing divergent sequences (ai)i∈N∪{0} of reals, (ni)i∈N
and (mi)i∈N of naturals, such that the following holds: for every i the set Y can be written
as the disjoint union of a countable family of sets {Yj}j∈N, such that for every j, k ∈ N
diam(Yj) ≤ ai, dist(Yj, Yk) > ai−1 and the set Yj can be covered by mi sets and cannot be
covered by less than ni sets of diameter not exceeding a0.

Proof. To prove this theorem we will show that for the space Y the conditions from Theorem
2 hold true. We will construct monotonically increasing sequences (bi)i∈N and (ki) of real and
natural numbers respectively, such that for all i ∈ N the set Y can be written as disjoint union
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of a countable family of sets {Zi
j}j∈N, such that for all j, l ∈ N diam(Zi

j) ≤ bi, dist(Z
i
j, Z

i
l ) >

bi−1 and the set Zi
j can be covered by ki sets and cannot be covered by less than k · ki sets

of diameter not exceeding b0 = a0.
By the formulation of the theorem, for all i ∈ N set Y can be written as disjoint union

of a countable family of sets which we will denote by {Y i
j }j∈N.

Define k = max{3, [m1

n1
] + 1}.

Base of induction. Put b1 = a1, k1 = n1, t1 = 1. For all j ∈ N, let Z1
j = Y 1

j . It is easy
to see that, for the family {Z1

j }j∈N, all conditions hold.
i-th step of induction, i > 1. We have a natural number ti−1 and a real number bi−1 such

that bi−1 = ati−1
. We have to find numbers bi > bi−1 and ki, and write Y as disjoint union of a

countable family of sets {Zi
j}j∈N, such that for all j, l ∈ N diam(Zi

j) ≤ bi, dist(Z
i
j, Z

i
l ) > bi−1

and the set Zi
j can be covered by k · ki sets and cannot be covered by less than ki sets of

diameter b0.
Consider the family of sets {Y ti−1+1

j }j∈N. The mutual distances between the distinct
elements of this family are at least ati−1

. Every of these sets can be covered by nti−1+1

sets and cannot be covered by less than mti−1+1 sets of diameter not exceeding b0. Put
ki = mti−1+1.

Take a number ti, such that nti > mti−1+1. Consider the family of sets {Y ti
j }j∈N. The

diameter of each of them is less than ati . Put bi = ati . Each of them can be covered by mti

and cannot be covered by less than nti of sets of diameter b0.
For all u ∈ N consider the set Y ti

u . This set can be represented as disjoint union of a
finite number of sets from the family {Y ti−1+1

j }j∈N. Without loss of generality we can write
Y ti
u = Y

ti−1+1
1 ∪Y ti−1+1

2 ∪· · ·∪Y ti−1+1
v . Each of the sets Y ti−1+1

p , p ∈ {1, . . . , v}, can be covered
by mti−1+1 sets of diameter b0. The set Y ti

u cannot be covered by less than nti > mti−1+1 sets
of diameter b0.

Put p0 = 0. There exist numbers p1, p2, . . . , pq, 0 = p0 < p1 < p2 < · · · < pq < v, such
that the sets Y

ti−1+1
pl−1+1 ∪ Y

ti−1+1
pl−1+2 ∪ · · · ∪ Y

ti−1+1
pl can be covered by 2 · mti−1+1 and cannot be

covered by less than mti−1+1 sets, and the set Y ti−1+1
pq+1 ∪Y

ti−1+1
pq+2 ∪ · · · ∪Y ti−1+1

v can be covered
by mti−1+1 sets of diameter b0. Then define

Zi
u1 = Y

ti−1+1
1 ∪ Y

ti−1+1
2 ∪ · · · ∪ Y ti−1+1

p1
,

Zi
u2 = Y

ti−1+1
p1+1 ∪ Y

ti−1+1
p1+2 ∪ · · · ∪ Y ti−1+1

p2
,

. . .

Zi
u,(q−1) = Y

ti−1+1
pq−2+1 ∪ Y

ti−1+1
pq−2+2 ∪ · · · ∪ Y ti−1+1

pq−1
,

Zi
u,(q) = Y

ti−1+1
pq−1+1 ∪ Y

ti−1+1
pq−1+2 ∪ · · · ∪ Y ti−1+1

pq ∪ Y
ti−1+1
pq+1 ∪ · · · ∪ Y ti−1+1

u .

Put u′ = q.

It is easy to see that the sets Zi
ur, r ∈ {1, . . . , q−1}, can be covered by 2 ·mti−1+1 ≤ k ·ki

sets and cannot be covered by less than mti−1+1 = ki sets of diameter b0. The set Zi
uq cannot

be covered by less than mti−1+1 = ki, can be covered by 3 ·mti−1+1 ≤ k · ki sets of diameter
b0. Also the diameters of these sets are less than ati = bi, and their pairwise distances are
less than ati−1

= bi−1.
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So we represent the set Y as disjoint union of a countable family of sets, Y =
⋃
{Zi

p,q|p ∈
N, q = 1, . . . , p′}, for which all conditions are true. Now we can enumerate these sets by
naturals and we shall represent Y as the disjoint union of the family {Zi

j}j∈N.

Definition 2. A metric space (X, d) is called asymptotically zero-dimensional if for all a > 0

there exists a uniformly bounded a-disjoint cover of X.

A cover U of metric space X is called

• uniformly bounded if its mesh sup{diamU : U ∈ U} is finite.

• a-disjoint if dist(A,B) > a for every A,B ∈ U .

Theorem 4. A metric asymptotically zero-dimensional space (X, ρ) is coarsely equivalent
to macro-Cantor set if and only if there exists number a > 0, and the following conditions
are true:

1) for every n ∈ N there exists r ∈ N, such that for any x ∈ X the r-ball Ur(x) cannot
be covered by less than n balls of radius a,

2) for every r ∈ N there exists m ∈ N, such that each r-ball Ur(x) can be covered by m

balls of radius a.

Proof. Necessity. By the Theorem 3 there exist monotonically increasing sequences
(ai)i∈N∪{0} of reals, (ni)i∈N and (mi)i∈N of natural numbers. Put a = a0. We will show
that conditions 1) and 2) are true.

a) Consider an arbitrary natural n. Then there exists j, such that nj > n. Put d = aj+1.
It is easy to see that condition 1) is true.

b) Consider an arbitrary number d. Then there exists such j, that aj > d. Put m = mj+1.
Easy to see that condition 2) is true.

Sufficiency. Suppose that (X, ρ) is a space and conditions 1) and 2) are true. We shall
construct by induction monotonically increasing sequences (ai)i∈N∪{0} of real, (ni)i∈N and
(mi)i∈N of natural numbers to satisfy conditions of the Theorem 3.

Base of induction. Put a0 = a, m0 = 1.
i-th step of induction, i ∈ N. Put ni = mi−1 + 1. By condition 1) for number ni there

exists d. By definition of asymptotic dimension zero, for the space X there exists a totally
bounded ai−1-disjoint cover. Let b be the mesh of this cover. Put ai = max{b, d, ai−1 + 1}.

It is easy to see that this sequence satisfies the conditions of the Theorem 3.

It is well known that every zero-dimensional compact metric space without isolated points
is homeomorphic to the Cantor set. In our characterization the first condition is an analogue
of “space without isolated points” in metric geometry.

Applying Characterization Theorem 4 one can easily prove the next corollary.

Corollary 1. For every n ∈ N the hyperspace expn(2
<N) is coarsely equivalent to 2<N.

Here for a metric space Y by expn(Y ) we denote the space of all at most n-element
non-empty subsets of Y endowed with the Hausdorff distance

ρH(A,B) = inf{ε > 0 : A ⊂ Uε(B), B ⊂ Uε(A)}.
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Зарiчний I.М. Характеризацiя макро-канторової множини з точнiстю до грубої еквi-
валентностi // Карпатськi математичнi публiкацiї. — 2010. — Т.2, №2. — C. 39–47.

Наведено характеризацiю метричних просторiв, грубо еквiвалентних до макроканторо-
вої множини 2<N.

Заричный И.М. Характеризацыя макро-канторового множества с точностью до грубой
еквивалентности // Карпатские математические публикации. — 2010. — Т.2, №2. — C.
39–47.

Приводится характеризиризацыя метрических пространств, грубо еквивалентных ма-
кроканторову множеству 2<N.


