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Minimax prediction of sequences with periodically stationary
increments

Kozak P.S.1, Luz M.M.2, Moklyachuk M.p.1E<

The problem of optimal estimation of linear functionals constructed from unobserved values
of a stochastic sequence with periodically stationary increments based on its observations at points
k < 0is considered. For sequences with known spectral densities, we obtain formulas for calculating
values of the mean square errors and the spectral characteristics of the optimal estimates of the
functionals. Formulas that determine the least favourable spectral densities and minimax (robust)
spectral characteristics of the optimal linear estimates of functionals are derived in the case where
spectral densities of the sequence are not exactly known while some sets of admissible spectral
densities are given.
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Introduction

The non-stationary and long memory time series models are of constant interest of re-
searchers in the past decade (see, for example, papers by A. Dudek, H. Hurd and W. Wojtow-
icz [6], S. Johansen and M.O. Nielsen [13], V.A. Reisen et al. [33]). These models are used when
analyzing data which arise in different field of economics, finance, climatology, air pollution,
signal processing.

Since the first edition of the book by G.E.P. Box and G.M. Jenkins [4], autoregressive moving
average (ARMA) models integrated of order d are standard tool for time series analysis. These
models are described by the equation

$(B)(1 - B)"x; = 6(B)er. (1)

where ¢, t € Z, are zero mean i.i.d. random variables, (z), 6(z) are polynomials of p and
q degrees respectively with roots outside the unit circle. This integrated ARIMA model is
generalized by adding a seasonal component. A new model is described by the equation (see
[3] for details)

Y(B%)(1— B%)Px; = O(B%)ey, ()

where ¥(z) and ©(z) are polynomials of degrees of P and Q respectively which have roots
outside the unit circle.
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When the ARIMA sequence determined by equation (1) is inserted into (2) instead of &;
we have a general multiplicative model ¥(B*)y(B)(1 — B)¥(1 — B*)Px; = ©(B®)0(B)e; with
parameters (p,d,q) x (P,D,Q)s, d, D € IN*, called SARIMA (p,d,q) x (P, D, Q)s model.

A good performance is shown by models which include a fractional integration, that is
when parameters d and D are fractional. We refer to the paper by S. Porter-Hudak [32] who
studied a seasonal ARFIMA model and applied it to the monetary aggregates used by U.S. Fed-
eral Reserve.

Another type of non-stationarity is described by periodically correlated, or cyclostation-
ary, processes introduced by E. G. Gladyshev [9]. These processes are widely used in signal
processing and communications (see A. Napolitano [29] for a review of the recent works on
cyclostationarity and its applications). Periodic time series may be considered as an extension
of a SARIMA model (see R. Lund [19] for a test assessing if a PARMA model is preferable to a
SARMA one) and are suitable for forecasting stream flows with quarterly, monthly or weekly
cycles (see D. Osborn [30]). C. Baek, R.A. Davis and V. Pipiras [1] introduced a periodic dy-
namic factor model (PDFM) with periodic vector autoregressive (PVAR) factors, in contrast
to seasonal VARIMA factors. 1.V. Basawa , R. Lund and Q. Shao [2] investigated first-order
seasonal autoregressive processes with periodically varying parameters.

The models mentioned above are used in estimation of model’s parameters and forecast
issues. Note, that direct application of the developed results to real data may lead to signifi-
cant increasing of values of errors of estimates due to the presence of outliers, measurement
errors, incomplete information about the spectral, or model structure etc. This is a reason of
increasing interest to robust methods of estimation that are reasonable in such cases. For ex-
ample, V.A. Reisen et al. [34] proposed a semiparametric robust estimator for the fractional
parameters in the SARFIMA model and illustrated its application to forecasting of sulfur diox-
ide SO, pollutant concentrations. C.C. Solci et al. [36] proposed robust estimates of periodic
autoregressive (PAR) model. Robust approaches are successfully applied to the problem of
estimation of linear functionals from unobserved values of stochastic processes. The paper by
U. Grenander [10] should be marked as the first one where the minimax extrapolation problem
for stationary processes was formulated as a game of two players and solved. Y. Hosoya [12],
S.A. Kassam [15], S.A. Kassam and H.V. Poor [16], ]J. Franke [7], S. K. Vastola and H.V. Poor [37],
M.P. Moklyachuk [23, 24] studied minimax extrapolation (forecasting), interpolation (missing
values estimation) and filtering (smoothing) problems for the stationary sequences and pro-
cesses. Recent results of minimax extrapolation problems for stationary vector processes and
periodically correlated processes belong to M.P. Moklyachuk and A.Yu. Masyutka [25,26] and
LI Dubovets’ka and M.P. Moklyachuk [5] respectively. Processes with stationary increments
are investigated by M. Luz and M. Moklyachuk [20,21]. We also mention works by M.P. Mokly-
achuk and M.I. Sidei [27], O.Yu. Masyutka, M.P. Moklyachuk and M.I. Sidei [22,28], who derive
minimax estimates of stationary processes from observations with missed values. P.S. Kozak
and M.P. Moklyachuk [18] studied an interpolation problem for stochastic sequences with pe-
riodically stationary increments.

In this article we present results of investigation of the estimation problem for stochastic
sequences with periodically stationary increments. In Section 1, we give definition of stochas-
tic sequences 77(m) with periodically stationary (periodically correlated) increments. These
non-stationary stochastic sequences combine periodic structure of covariation functions of se-
quences as well as the integrating one. This section also contains a short review of the spectral
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theory of vector-valued stationary increment sequences. Section 2 deals with the classical esti-
mation problem for linear functionals in the case where spectral structure of the sequence 7 ()
is exactly known. Estimates are obtained by representing the sequence 7(m) as a vector se-
quence &(m) with stationary increments and applying the Hilbert space projection technique.
In Section 3, we derive the minimax (robust) estimates in the case, where spectral densities of
sequences are not exactly known while some sets of admissible spectral densities are specified.
In Subsections 3.1-3.4 we describe relations which determine the least favourable spectral den-
sities and the minimax spectral characteristics of the optimal estimates of linear functionals for
some sets of admissible spectral densities which are generalizations of the corresponding sets
of admissible spectral densities described in a survey article by S.A. Kassam and H.V. Poor [16]
for the case of stationary stochastic processes.

1 Stochastic sequences with periodically stationary increments

In this section, we present a brief review of the spectral theory of stochastic sequences with
periodically stationary nth increments.

Consider a stochastic sequence {r(m),m € Z} defined on a probability space (Q), F,P).
Denote by B;, a backward shift operator with the step € Z, such that B, (m) = n(m — u);
B := Bj. We first recall definitions and spectral properties of stochastic sequences with station-
ary nth increments (for more details and references see, e.g., [21, pp. 1-8], [8, pp. 48-60, 261
268], [39, pp. 390-430]). The corresponding results for stochastic processes with continuous
time are described in the articles by M.S. Pinsker and A.M. Yaglom [31] and A.M. Yaglom [38].

Definition 1. For a given stochastic sequence {1 (m), m € Z}, the sequence

7" (m, u) = (1—B,)"y ; < ) m— ), <7> = ﬁ (3)

is called a stochastic nth increment sequence with the step y € Z.

The stochastic nth increment sequence 1) (m, 1) satisfies the following relations:

7" (m, —p) = (=1)"5" (m +np, p), 7™ (m kyp) = Z A™(m —ly,u), k€N,

where coefficients {A4;,1 =0,1,2,..., (k—1)n} are determined by the representation
(1+x4... 42" Z A

Definition 2. The stochastic nth increment sequence 17(”) (m, u) generated by a stochastic se-
quence {n(m), m € Z} is wide sense stationary if the mathematical expectations

En™ (mg, ) = ™ (), En™ (mg +m, u1)n"™ (mo, u2) = D™ (m, 1, o)

exist for all mg, i, m, iy, iy and do not depend on my. The function c™) (i) is called the mean
value of the nth increment sequence 7™ (m, 1) and the function D" (m, uy, i) is called the
structural function of the stationary nth increment sequence (or structural function of nth or-
der of the stochastic sequence {1(m), m € Z}). The stochastic sequence {1(m), m € Z} which
determines the stationary nth increment sequence 7" (m, ) by formula (3) is called a stochas-
tic sequence with stationary nth increments (or integrated sequence of order n).
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The following spectral representation of the structural function of the stationary stochastic
nth increment sequence holds true (see, e.g., [8, pp. 48-60]).

Theorem 1. The mean value ¢ (1) and the structural function D" (m, u1, u2) of the station-
ary stochastic nth increment sequence 17'") (m, i) can be represented in the forms

() = e, (4)
T . ‘ 1

DO (i, ) = [ V(1= eI (1= ) o dE (1), (5)

where c is a constant, F(\) is a left-continuous nondecreasing bounded function such that

F(—m) = 0. The constant ¢ and the function F(A) are determined uniquely by the increment

sequence 7(") (m, 11). On the other hand, a function ¢") () which has form (4) with a constant

¢ and a function D™ (m; yy, po) which has form (5) with a function F(A) which satisfies the in-

dicated conditions are the mean value and the structural function of a stationary nth increment
sequence 1" (m, ).

Note, that we will call by spectral function and spectral density of the stochastic sequence
with stationary increments the spectral function and the spectral density of the corresponding
stationary increment sequence.

Making use of representation (5) and the Karhunen theorem (see [8, pp. 261-268], [14, The-
orem 10]) one can obtain the spectral representation of the stationary nth increment sequence
7\ (m, ) :

n & im —i n 1
0 mp) = [ e Y sz, (),

—7T
where Z, () (A) is a stochastic process with uncorrelated increments on [— 71, 71) connected with
the spectral function F(A) by the relation E\qu(}\z) - ZU(H)(M)\Z = F(Ay) — F(M) < oo,
—T< A <A<

Definition 3. A stochastic sequence {{(m),m € Z} is called a stochastic sequence with pe-
riodically stationary (periodically correlated) increments with period T if the nth increment
sequence {") (m, uT) = (1 — B,r)"{(m) is stationary.

It follows from Definition 3 that the sequence
p(m)=¢(mT+p—-1), p=12,...,T, mecZ, (6)

forms a vector-valued sequence &(m) = {&,(m)}
ments. Really, forallp =1,2,...,T,

p—12,.7/ M € Z, with stationary nth incre-

(”)m, :”_1ln m—1
e ) = 11 (] entm 1)
3 (-0 (el — )T+ p 1) =€ T+ p— 1),

1=0

where ¢ ;(7") (m, i) is the nth increment of the pth component of the vector-valued sequence ¢ (1)
(for more details see [18]).

The following spectral representations of the structural function of the vector-valued sta-
tionary stochastic nth increment sequence and the increment sequence itself hold true (see,
e.g., [8, pp. 48-60, 261-268]).
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Theorem 2. The structural function D" (m, i1, jt2) of the vector-valued stochastic stationary
nth increment sequence ¢ (m, ) can be represented in the form

7T . . .
DOz, ) = [ (1 ey (1 ety dE(N),

where F(A) is the matrix-valued spectral function of the stationary stochastic sequence
&) (m, ). The stationary nth increment sequence ™ (m, ) admits the spectral represen-
tation

é’(n)(m,y> _ /_:[_[ eimA(l o e—iy)\) (ZA)

where ng A) =1{Z, (A)};:l is a (vector-valued) stochastic process with uncorrelated incre-
ments on [—71, 71) connected with the spectral function F(\) by the relation

g(ﬂ ()\)

E(Zp(A2) = Zp(A1))(Zg(A2) — Z4(M1)) = Fpg(A2) = Fpg(A1), —m <A <A <7t

Denote by H = L,(Q), F,P) the Hilbert space of random variables { with zero first moment,
EC = 0, finite second moment, E||> < oo, and the inner product ({,77) = EZ77. Denote by
H(Z™) the subspace of the space H = L, (), F,IP) generated by components (;";(7") (m,u), p =

T
p=1

and denote by H’((f( )) the subspace generated by components Cl(gn)(m,y), p=12..,T,
m < r,r € Z. Let S(EW) = Moy H'(EM).

Since the space S(&")) is a subspace of the Hilbert space H (&), the space H(Z)) admits
the decomposition

1,2,...,T, m € Z, of the stationary stochastic nth increment sequence 5 (n) — {g’,‘;(gn) (m, u)

H(@™M) = (&™) @ R(E™), 7)
where R(¢(") is the orthogonal complement of the subspace (")) in the space H(E™).

Defmltlon 4. A wide sense stationary stochastic nth increment sequence & (m y) =
{(_;"p (m, u) ;:1 is called regular if H(F") = R("M). Itis called singular if H(F") = S(&M).

Making use of the decomposition (7) and Definition 4 we can verify that the following
theorem holds true (see [11, pp. 157-163]).

Theorem 3. A wide-sense stationary stochastic nth increment sequence Z ) (m, u) =
{g’,‘;(gn) (m, P‘)};:l admits a unique representation in the form

& (m, ) = Cé’fﬁ(m,u) + C%'f;(m,m, (8)

where C%”;(m, ), p=12,...,T, is a regular stationary increment sequence and Cg”;(m, ",
p = 1,2,...,T, is a singular stationary increment sequence. Moreover, the increment se-
quences cfl(g;(m, i) and gé"; (k,u),p=1,2,...,T, are orthogonal for all m, k € Z.

The components of representation (8) are defined by the formulas

&8 (m, ) = B[ (m, w)[SEN], & (m ) = & (m ) — &) (m ), p=1,2,...,T.

Consider a stochastic sequence &(u) = {ex(1)}]_,, u € Z of uncorrelated random variables
satisfying the conditions: Eey(u)g;(v) = Skjouv, where Jy; and 6,, are Kronecker symbols, and
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Elex(u)|> =1,k =1,2,...,q,u € Z. Denote by H'(€) the Hilbert space generated by elements

{ex(u): k=1,2,...,9, u<r}.

We will call the sequence €(u) = {ex(u)}]_,, u € Z, innovation sequence of a regular
stationary nth increment sequence ¢ (m, 1) if the condition H' (£(")) = H’ () holds true for
allr € Z.

Since elements {ex(u) : k = 1,2,...,q, u < r} of the innovation sequence form an or-
thonormal basis in the space H'(€) and H'((")) = H’(g) the following theorem holds true

(see [11, pp. 157-163]).

Theorem 4. A stochastic stationary increment sequence &) (m, u) is regular if and only if there
exists an innovation sequence &u) = {ex(u)}]_,, u € Z, and a sequence of matrix-valued

functions ¢\ (k, 1) = {(pl] (k, y)}z 1‘;, k >0, such that Y3 (YL 2;7:1 ]qogl)(k,y)]z < o0 and

Z ! &(m —k). )

Representation (9) is called a canonical moving average representation of the stochastic sta-
tionary increment sequence &™) (m, ).

If the stationary nth increment sequence &) (11, ) admits the canonical representation (9),
then its spectral function F(A) has the spectral density function f(A) = {f;;(A) }I-T,]-:1 admitting
the canonical factorization (see, e.g., [11, pp. 157-163]) f(A) = ®(e~"*)®*(e~™}), where the
function ®(z) = Y5>, ¢(k)z* has analytic in the unit circle {z : |z| < 1} components D;i(z) =
Y oeikzti=1,2,...,T,j=12,...,4.

Define ®,(z) = ¥}, oM (k,u)zF =2, @u(k)z", where @, (k) = @™ (k, 1) are coefficients
from the canonical representation (9). Then the following relation holds true:

|1 _ e—z)\y|2n

Pu(e”M)@(e ™) = f(A). (10)

The one-sided moving average representation (9) and relation (10) are used for finding the
mean square optimal estimate of unobserved values of sequences with nth stationary incre-
ments.

2 Hilbert space projection method of extrapolation

Consider a vector-valued stochastic sequence with stationary nth increments &(m) con-
structed from the sequence {(m) with the help of transformation (6). Let the stationary nth
increment sequence ¢ (m, i) = {(_;";(7") (m, y)};zl has an absolutely continuous spectral func-
tion F(A) and the spectral density f(A) = {f;(A) iT,]':l-
assume that EC") (m,u) =0and u > 0.

Consider the problem of mean square optimal linear estimation of the functionals A =

Y o (@(k) TE(k), AN(_;" = YN (@K ))Tg(k) which depend on the unobserved values of the
stochastic sequence &(k) = {& p(k ) _, with stationary nth increments. Estimates are based on

Without loss of generality we will

observations of the sequence &(k) at pointsk = —1,-2,....
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To solve the stated problem we will require fulfillment of the following conditions. Suppose
that coefficients @(k) = {a,(k)}_;, k > 0, and the linear transformation D¥ to be defined in
Lemma 1 satisfy the conditions

p=1’

Z [@3(k)[| < oo, Z k+1D)[ak)|? < oo, Y [I(DFa)ill < oo, Y (k+1)[|(D'a)il|* < oo. (11)
k=0 k=0 k=0

Here || - || is the Euclidean norm: |[|@(k)|*> = Zzzl |ap( )? for @(k) = {ap(k )}T , and

| (D*a)¢||> = Zzzl |(D*ap)i)|? for (D¥a), = {(D"ap)i)}! p—1 (see Lemma 1 for more details).
Let the spectral density f ()\) satisfy the minimality condition

AZn 1

This is the necessary and suff1c1ent condition under which the mean square errors of the esti-
mates of the functionals Af and A Né are not equal to 0.

The following lemma and corollary describe representations of the functionals AZ and An&
as sums of functionals with finite variances and functionals depending on the observed values
of the sequence &(k) (see [18,20]).

Lemma 1. The functional AZ admits the representation

o . . -1 .
AT=BZ-VE, BE=Y (0(k)T "Wk p), Vi= Y, (@(Kk) k)
k=0 k=—un
vp(k) = i (—1)l<?>bp(ly+k), p=12...,T, k=-1,-2,...,—un,
I=[—k/u]
by(k) = i ap(m)d,(m —k) = (D*ap)y, p=12,...,T, k=0,12,...,
m=k

3(k) = (v1(k),v2(k),...,or(k))T, b(k) = (b1(k),by(k),...,br(k))T, where by [x]’ we denote
the least integer number among the numbers that are grater than or equal to x, coefficients
{d,(k) : k > 0} are determined by the relationship Y 5> d,, (k)x* = (X0 xM)", D¥ is a linear
transformation in the space ¢, determined by the matrix with elements D]f, i k,j=012,...,
such that Di; = dyu(j —k) if 0 < k < jand Di; = 0 for0 < j < k, D'a = {DVap},_;,
ay = (ay(0),ap(1),a,(2),...) ", p=1,2,...,T.

Corollary 1. The functional ANE allows the representation ANE = BNg' — VNE, where BNE =
YN o (On (k) TEW k), VnE = Y W(ﬁN(k))Tg(k) the coefficients oy (k)) = {on,p(k)})_y,
k=-1,-2,...,—un,and by (k)) = {bN,p(k) p—1s k=0,1,...,N, are calculated by the formu-
las

min{[(N—k)/pu],n}

n
on,p(k) = . [Zk:” (—1)l<l>bN,p(ly+k), k=-1,-2,...,—un,
—[_ “I/l,
b, p (k) Za,, m)d,(m —k) = (Dhan,)r, k=0,1,...,N,

where D}, is the linear transformation in the space ¢, determined by an infinite matrix with
the entries (DK,)k,]- =dy(j—k)if0 <k <j<N,and (D )k] =0ifj < kor],k > N,
Dyan = {Dyanp}_1 any = (ap(0),a5(1),ap(2), ..., ap(N),0,..) ", p=1,2,..., T.
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Denote by A(f, AZ) := E|AZ — A)? the mean square error of the estimate AZ of the
functional A¢ and let A(f, B&) := E|BE — BE|?> denote the mean square error of the esti-
mate B¢ of the functional B¢. Since the functional V¢ depends on the observed values ¢(k),

k=—-1,-2,..., —un, the following equalities hold true
A7 =BE- V¢, (13)
A(f; A) = E|AE — AZ|* = E|BE — V& — BE + V§|* = E|BE — BE|* = A(f; BY).

Thus, it is sufficient to find an optimal linear estimate of the functional Bf in order to find
the optimal linear estimate of the functional A¢. This estimate can be found with the help of
the Hilbert space projection method proposed by A.N. Kolmogorov (see [17, p. 228]).

Denote by HO~ (&(") the closed linear subspace generated by the elements {(_;";(7") (k,u): p=
1,2,...,T, k=—1,-2,-3,... } of the Hilbert space H = L,(Q), F,P).

Denote by LI~ (f) the subspace of the Hilbert space Ly (f) of vector-valued functions with
the inner product

g = [ () FgM) dr

which is generated by the functions e (1 — e="A#)"§,/(iA)", 5 = {51;7};:1, I =12..T,
k=-1,-2,-3,..., where 5Zp is Kronecker symbol.
The relation

(n) _ ik _ ,—iAuyn 1 —
& (k, ) / =M (), p =12, T,

—7T

implies one-to-one correspondence between elements C;")(k, u) of the space H°~ (6’;,")) and
elements (1 — e=*#)"(iA) ™" of the space L™ (f).
The functional BE allows the spectral representation

. T o, . _ o ipMn |
58 = [ (Bue) g e ),

where B}l (e = Zfzog(k)ei)‘k =Y 2 o(DFa)e'.
Relation (13) implies that every linear estimate AZ of the functional AZ allows the repre-

sentation .
o~ T — — — 5
AG= | (W) dZen(A) = 3 (@) (k) (14)
- k=—un
where ﬁy (A) = {hp(N) ;:1 is the spectral characteristic of the estimate BZ, which can be found

as a projection of the element Eﬂ (e™)(1 — e~##)" /(iA)" on the subspace LY~ (f). This estimate
is characterized by the following conditions:

hu(A) € L3 (f), (15)
) _ efi)x n .
(Bt i R L1 (16)

From the condition (16) we obtain the following relation

T, . — e ipAyn ) — plHAn
l ) <By(el)‘)% ) ! f(}\)elk)‘% A =0, (17)
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which holds true for all k < —1.
Thus, the spectral characteristic of the estimate BE can be represented in the form
ey (i) (G

()T = Bl g = gy W) Cule™) = L,

where ¢(k) = {cp(k) l{:l’ k > 0, are unknown coefficients to be found.

Condition (15) implies that the spectral characteristic ﬁy()&) can be presented as EH(A) =
h(A)(1 — E_i/\?‘)” /(iA)", R(A) = ¥, 5(k)e~**k. The latter representation of the spectral char-
acteristic /(1) allows us to write the relations

N S (G -1 —ijA gy _ :
/_n [(Bule™) e W]erar=o, j>o0. (18)
Next we define the Fourier coefficients of the function A?"|1 — e #|=2" f=1(A):
1 T )\271
}4‘ = — l)\(]fk)i -1 P>
Hli=o /ne Tl (WA kjzo

Making use of the defined Fourier coefficients, relation (18) can be presented as a system of
linear equations b, (j) = Y32, Fﬁ «Cu(k), j > 0, determining the unknown coefficients ¢, (k),
k> 0.

Rewrite this system in the matrix form

where ¢, = ((¢,(0)) ", (G, (1) T, (@@2)7,...)", a = (@0)",@1)",@2)7,...)7, Fyisa
linear operator in the space ¢, which is determined by a matrix with the T x T matrix entries
(Fu)ik = Fl’f i I,k > 0, the linear transformation D¥ is defined in Lemma 1.

To show that the operator F, is invertible we note that the problem of projection of the

element B of the Hilbert space H on the closed convex set H~ (5;4")) has a unique solution for
each non-zero coefficients {7(0),4(1)),4(2), ...}, satisfying conditions (11). Therefore, equa-
tion (19) has a unique solution for each vector D¥a, which implies existence of the inverse
operator F,; L

So, the coefficients ¢, (k), k > 0, which determine the spectral characteristic EV (A), can be
calculated as ¢, (k) = (F’leVa)k, k > 0, where (F;lDi‘a)k, k > 0, is the kth T-dimension vector
element of the vector F, ' D¥a.

The spectral characteristic EV (A) of the optimal estimate BE of the functional B can be
calculated by the formula

N o — e~ iApn —iA 2002 F-1D#a eik)\ T
(hH(A))T :(BH(EZA))T(l (iA)nH) _( ) ( E{lo_(elz‘l/\y)n )k )

f1A). (0)

The value of the mean square error of the estimate A¢ is calculated by the formula
A(f; AZ) = A(f; BE) = E[BS — BEJ?
1 (i) (Eo(F, ' Dra)ee™) T
T o /—71 (1— ei)\y)n
= (D"a,F, ' D'a).

(iA)" (T o (F ' DFa)eik?)
(1 _ efi)\y)n

f(A) dr (21)
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Next consider the case, where the spectral density f(A) = { fi]-()t)}iT,]-:l of the stochastic

sequence &(n) admits the canonical factorization

|1 _ efi)\y|2n

F) = e(e M@ (e ), E=Sn

fA) = @ule™M)@p(e™™), (22)

—1 oo —1 —1 0 —1 ‘:f
where ®(e™) = Y2 g (k)e ™, @u(e™) = T gu(k)e ™, gu(k) = {p4(k)}_{3, k =

0,1,2,.... Define the matrix-valued function ¥, (e~"*) = {‘I’i]-(e’”‘)}z% by the equation

Y, (e7)®,(e7™) = E,, where E, is the identity g x g matrix.

Formulas for calculation the spectral characteristic and the value of the mean square error
can be presented in terms of the coefficients {¢, (k) : k = 0,1,2,...}. One can check that
relation (17) is satisfied by the function

. _e—iA no ) . .
fin(A) = “W”)(By(e“) (Fule ) TFuleM), 23)

where 7, (¢1') = T2 o(DFAgy )™, (DFAQ, ) = K5 T2 (@ (m)) Ta(m + )y (1K), Aisa
linear symmetric operator, which is determined by the matrix with the entries Ay ; = d@(k + j),
k,j > 0. Note that under the conditions (11) the operators DA and A are compact.

The value of the mean square error is calculated by the formula

A(f; A%) = % /_7; (I;(D?‘AGD;,)keiAk) T <§(DPA¢y)keiAk> dA ”

1 ™
= 5= [ IFue)Par = D Agy |2

The derived results are summarized in the following theorem.

Theorem 5. Let a vector-valued stochastic sequence {5 (m), m € Z} determine a station-
ary stochastic nth increment sequence &™) (m, i) with the spectral density matrix f(A) =
{ fij(A)}iT,j:l/ which satisfy the minimality condition (12). Let coefficients d(j), j > 0, satisfy
conditions (11). Then the optimal linear estimate A\f of the functional Ag based on observa-
tions of the sequence E(m) at pointsm = —1,—2,... is calculated by formula (14). The spectral
characteristic Ey (A) = {hy ()\)};:1 and the value of the mean square error A(f; AZ) of the op-

timal estimate 25 are calculated by formulas (20) and (21) respectively. In the case, when the
spectral density f(A) admits the canonical factorization (22), the spectral characteristic and the
value of the mean square error of the optimal estimate AZ can be calculated by formulas (23)
and (24) respectively.

Theorem 5 allows us to find the optimal estimate A NC of the functional An¢, which de-
pends on the unobserved values 5 (m), m = 0,1,2,...,N, based on observations of the se-
quence ¢&(m) at points m = —1,—2,.... Put@(k) = 0 for k > N. Then we get that the spectral
characteristic EH,N()\) of the optimal estimate

-1

ANE = [ (i 0) T dZg0 ) = T (@ (0)TER) (25)

k=—un
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is calculated by the formula

. . _ ity (—iA) (2 (Fo L DM an)xe™) T
) = B e - R,

where By, y(e") = Y& o(Dhan)ke*k, the linear transformation DY, is defined in Corollary 1,
F, N isalinear operator in the space ¢», which is determined by a matrix with the T x T matrix
entries (Fy,N)l,m =F' 1>00<m<N,and (Fy,N)l,m =0, >0, m > N. The value of the

I,m’
mean square error of the optimal estimate Ay is calculated by formula

A(f, ANE) = A(f, BnE) = E|BNE — BnE)?
1 7 (—i)\)"(ZZO:O(F,:,}VDK@N)WM)T (iA)" (Lo (F, ‘vDian) e
T2 /7 (1 — eiAmyn f) (1—e M”) ?

= (Dyan, F, yDyan). (27)

In the case, when the spectral density f(A) admits the canonical factorization (22), the
spectral characteristic can be calculated by the formula

. _e—iA no .
Fun(A) = %(By ) — (Fu(e) Tun (), 9)
N N N
Fun(et) = k;)(f)ﬁAN%,N)k@iMr (DNANPN K Z Z a(m+1)d, (1 —k),

where ¢, v = (¢4(0), u(1),..., ¢u(N)), Ay is a linear operator determined by the coefficients
i(k), k =0,1,...,N, as follows: (An)r; = d(k+j),0 <k+j <N, (An)t; =0,k+j >N,
0 < k,j < N, D}, is the matrix of the dimension (N +1) x (N + 1), determined by the coeffi-
cients (D}, )k]—dy(]—k)1f0<k<] < N and (D )k]—01f0<]<k<N

The value of the mean square error is calculated by the formula

—_ 1 s N , T/,N _ ‘
MANE = 5 [ (L Ohangae) (L (Dhavguiet )i
N k=0 k=0
1

T . ~
= 5 [ IFun(@)2dr = Dk Angynl®

(29)

Thus, the following theorem holds true.

Theorem 6. Let {¢(m), m € Z} be a stochastic sequence, which determine a stationary
stochastic nth increment sequence &) (m, i) with the spectral density matrix f (A), which sat-
isfy the minimality condition (12). The opt1ma1 linear estimate AnE of the functional AN,
based on observations of the sequence &(m) at points m = —1,—2,..., is calculated by the
formula (25). The spectral characteristic E%N (A) = {hyuNp (A)};:l and the value of the mean

square error A(f; ANE) are calculated by formulas (26) and (27) respectively. In the case, when
the spectral density f(A) admits the canonical factorization (22), the spectral characteristic
E%N()\) and the value of the mean square error of the optimal estimate AnE can be calculated
by formulas (28) and (29) respectively.
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As a corollary from the proposed theorem, one can obtain the mean square optimal esti-
mate of the unobserved value AN,pf =(p(N) = 5(N) dp,p=12,...,T, N >0, of the stochas-
tic sequence with nth stationary increments based on observations of the sequence E(m) at
pointsm = —1,-2,....

Corollary 2. The optimal linear estimate EP(N ) of the unobserved value {,(N), p = 1,...,T,
N > 0, of the stochastic sequence with nth stationary increments from observations of the

sequence 5 (m) at pointsm = —1,—2,... is calculated by the formula
~ T — — _1 R —
N = [y 82 (V) = L @ (k) TEK) (30)
- k=—un

The spectral characteristic Ey,N,p (A) of the estimate is calculated by the formula

. _ (1 _ efi)\y)n N ; T
(hyun,p(A) T = RO <5p k;)dy(N — ke Ak)

B (—iA)" (Lo (Fy ndpn)ke™) T 1)
(1 _ ei)\y)n f /
whered,, n = (d,(N),dy(N —1),d,(N —2),...,d,(0),0,...) . The value of the mean square
error of the optimal estimate is calculated by the formula
A& (N) = A (N, ) = Bl (N, ) = & (N, )P
1 /n<—m>”<zz°:0<F;%de,N>kef“>T (2)" (o hu)se™)
C2m)n (1— ei)\y)n (1-— e—i)\y)n

— <dy,N, F;’:’}\]dy,N> .

(31)

In the case, when the spectral density f(A) admits the canonical factorization (22), the spectral
characteristic and the value of the mean square error of the optimal estimate ¢,(N) can be
calculated by the formulas

- B (1 _ e—z‘Ay)n . » N y T

huNp(A) = ¢ NA {5;7 — (Fu(e™)T <,§O(P”(k)e Ak) 54/ 33)
~ T N ) N ‘ *

MEEN) = o [ @07 L a0 @) L (e ] an

N g (34)
= Z Z |9"H,p/j(k)|2'
k=0j=1

Remark 1. Since for alln > 1 and u > 1 the condition

T |1 _ e—i/\y|2n
/7_[ ‘ In AZn

holds true, there exists a functionwy, (z) = Yo wy (k)z¥, L5 [wy (k) [* < oo, such that (see [11,
pp. 151-157]) |1 — e~ "M#|21 = A2 |w,, (e~**)|2. In particular, the functionwy,(z) can be calculated

by the formula
1 T ei/\ 1z ‘1 _ e—i/\;t’Zn
wy(z) :exp{E /n ei/\—zln 2 d}\}.

dA < o0
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Then the following relation
CIDH(e_”\) = wy (e ™MD (e~ ™). (35)

holds true. Relation (35) implies the following relationship ¢, (k) = Z}‘:o wy(k —7)e(j),
k=0,1,..., thatis ¢, ;;(k) = T _qwu(k—m)p;i(m),i=1,2,...,T,j=1,2,...,9,k=0,1,....
This relation can be represented in the form ¢, = W¥g, where g, = (¢(0), ¢ (1), 9u(2), .. l T
=l
A i=1,T"

=0,1,2,..., and ¢(k) = {(pij(k)};j:_‘%, k =0,1,2,..., and where W is a linear operator
determined by the matrix with elements (W"); = wy(j — k) if 0 < k < jand (W¥);; = 0 if
0<j<k

and ¢ = (¢(0), ¢(1), ¢(2),...)" are vectors composed from matrices ¢, (k) = {¢,,;;(k)

Consider the problem of mean square optimal linear estimation of the functionals A =
Y2 0a @ (k)g(k), A = YN a9 (k)(k), which depend on unobserved values of a stochastic
sequence (k) with periodically stationary increments. Estimates are based on observations of
the sequence (k) at points k = —1,-2,....

The functional A can be represented in the form

%) [} T
A = kzoa@ K)gk) = Y Y a®mT +p—1)¢(mT +p—1)

m=0 p=1
o T [e)
=Y Y ay(m)é,(m) =Y (d@(m)) " E(m) = AE,
m=0 p=1 m=0

where form € Z

(m) = (Ga(m), &a(m), ..., er(m))", Gp(m) =¢(mT+p—-1), p=12,...,T,  (36)
d(m) = (ay(m),az(m),...,ar(m))", ay(m) =a®mT+p-1), p=12...,T. (37

Making use of the introduced notations and statements of Theorem 5 we can claim that the
following theorem holds true.

Theorem 7. Let a stochastic sequence ( (k) with periodically stationary increments generate by
(36) a vector-valued stochastic sequence g (m), which determine a stationary stochastic nth in-
crement sequence &) (m, i) with the spectral density matrix f(A) = { fij(A) iT,]-:l that satisfy
the minimality condition (12). Let coefficients d(k),k > 0, determined by formula (37), satisfy
conditions (11). Then the optimal linear estimate g@ of the functional A{ based on observa-
tions of the sequence {(m) at pointsm = —1,—2,... is calculated by formula (14). The spectral

characteristic Ey (A) = {hy ()\)};:1 and the value of the mean square error A(f; A7) of the op-

timal estimate Ag are calculated by formulas (20) and (21) respectively. In the case, when the
spectral density matrix f(A) admits the canonical factorization (22), the spectral characteris-
tic and the value of the mean square error of the optimal estimate A¢ can be calculated by
formulas (23) and (24) respectively.

The functional Ay, can be represented in the form

M N T
Ang = Y a9 ®)zk) = Yo Y a@mT +p—1)5(mT +p—1) =
k=0 m=0p=1

N N
=Y Y a,(m)éy(m) =Y (@(m))" E(m) = ANE,

m=0p=1 m=0
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where N = [M/T], &(m) is determined by formula (36), @(m) = (ay(m), ay(m),...,ar(m))7,

ap(m):a(g)(mT—i-p—l), 0<m<N,1<p<T, mT+p—-1<M,

apy(N)=0, M+1<NT+p-1<(N+1T-1,1<p<T. (38)

Making use of the introduced notations and statements of Theorem 6 we can claim that the
following theorem holds true.

Theorem 8. Let a stochastic sequence ((k) with periodically stationary increments generate by
(36) a vector-valued stochastic sequence &(m), which determine a stationary stochastic nth in-
crement sequence &™) (m, 1) with the spectral density matrix f(A) = { fij(A) iT,]':l that satisfy
the minimality condition (12). Let coefficients d(k),k > 0, be determined by formula (38). The
optimal linear estimate AmC of the functional Ayl = ANE based on observations of the se-
quence {(m) at pointsm = —1,—2,... is calculated by formula (25). The spectral characteristic
E%N(A) = {hyn,pA) }5:1 and the value of the mean square error A(f; Ay() are calculated by
formulas (26) and (27) respectively. In the case, when the spectral density matrix f(A) ad-
mits the canonical factorization (22), the spectral characteristic EH,N(A) and the value of the
mean square error of the optimal estimate A M{ can be calculated by formulas (28) and (29)
respectively.

As a corollary from the proposed theorem, one can obtain the mean square optimal esti-
mate of the unobserved value {(M), M > 0, of a stochastic sequence {(m) with periodically
stationary increments based on observations of the sequence {(m) at points m = —1,—2,....
Making use of the notations {(M) = §,(N) = E(N)(Sp, N =[M/T],p=M+1— NT, and the
obtained results we can conclude that the following corollary holds true.

Corollary 3. Let a stochastic sequence { (k) with periodically stationary increments generate by
formula (36) a vector-valued stochastic sequence 5 (m), which determine a stationary stochastic
nth increment sequence ¢\") (m, i) with the spectral density matrix f(A) = { fij(A) z‘T,j:1 that
satisfy the minimality condition (12). The optimal linear estimate CT\M) of the unobserved
value {(M), M > 0, of a stochastic sequence {(m) with periodically stationary increments
based on observations of the sequence {(m) at pointsm = —1, =2, ... is calculated by formula
(30). The spectral characteristic Eﬂ,N,p (A) of the estimate is calculated by the formula (31). The
value of the mean square error of the optimal estimate is calculated by the formula (32). In
the case, when the spectral density f(A) admits the canonical factorization (22), /th£ spectral

characteristic and the value of the mean square error of the optimal estimate {(M) can be
calculated by the formulas (33), (34).

3 Minimax (robust) method of extrapolation

Values of the mean square errors and the spectral characteristics of the optimal estimates of
the functionals A¢ and An¢ depending on the unobserved values of a stochastic sequence
&(m), which determine a stationary stochastic nth increment sequence & (1, ) with the
spectral density matrix f(A), based on observations of the sequence &(m) at points
m = —1,—-2,..., can be calculated by formulas (20), (21) and (26), (27) respectively, provided
the spectral density f(A) of the stochastic sequence & (m) is exactly known. If the spectral den-

sity f(A) admits the canonical factorization (22), formulas (23), (24) and (28), (29) can be used
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for calculating values of the mean square errors and the spectral characteristics, respectively.
However, in practical cases spectral densities of sequences usually are not exactly known. If in
such cases a set D of admissible spectral densities is defined, the minimax method of estima-
tion of functionals depending on unobserved values of stochastic sequences with stationary
increments may be applied. This method consists of finding an estimate that minimizes the
maximal values of the mean square errors for all spectral densities from a given class D of
admissible spectral densities simultaneously.

Definition 5. For a given class of spectral densities D a spectral density fy(A) € D is called
the least favourable in D for the optimal linear estimation of the functional A¢ if the following

relation A(fo) = A(hyu(fo); fo) = maxgep A(hyu(f); f) holds true.

Definition 6. For a given class of spectral densities D a spectral characteristic h°(A) of the op-
timal linear estimate of the functional A¢ is called minimax-robust if the following conditions
(M) € Hp = Nfep LY (f), minyep,, maxsep A(h; f) = maxsep A(KY; f) are satisfied.

Taking into account the introduced definitions and the derived relations we can verify that
the following lemmas hold true.

Lemma 2. A spectral density fo(A) € D satisfying the minimality condition (12) is the least
favourable density in the class D for the optimal linear extrapolation of the functional AZ based
on observations of the sequence E(m) at pointsm = —1,—2, ... if the operator Fg, defined by
the Fourier coefficients of the function f; LA /|1 — M2, determines a solution to the
constrained optimization problem

rjpEaD><<D”a, F,'DVa) = (D'a, (F)) "' D"a). (39)

The minimax spectral characteristic h® = h, (f°) is calculated by formula (20) if h,(f°) € Hp.

Lemma 3. A spectral density fo(A) € D, which admits the canonical factorization (22), is the
least favourable density in the class D for the optimal linear extrapolation of the functional
A€ based on observations of the sequence ¢(m) at points m = —1,—2,... if the coefficients
{¢°(k) : k > 0} of the canonical factorization fo(1) = (Y5> ¢° (k)e ) (T2 ¢°(k)e =) * of
the spectral density f°(A) determine a solution to the constrained optimization problem

|D¥Agu||> — max, f(A) = <§(p(k)ei)‘k> (éqo(k)e”‘k> eD. (40)

The minimax spectral characteristic h® = hy(fy) is calculated by formula (23) if h,(f°) € Hp.

Lemma 4. A spectral density fy(A) € D, which admits the canonical factorization (22), is
the least favourable density in the class D for the optimal linear extrapolation of the func-
tional AnE based on observations of the sequence ¢(m) at points m = —1,—2,... if the coef-
ficients {¢°(k) : k = 0,1,...,N} from the canonical factorization fo(A) = (LN, ¢°(k)e~*)
x (Lo 9°(k)e=™k)* of the spectral density fy(A) determine a solution to the constrained op-
timization problem |D\ANg, N[> — max, f(A) = (i, @(k)e ) (TN (k)e=M)* € D.
The minimax spectral characteristic h° = hy,(fy) is calculated by formula (28) if hy, n(f°) € Hp.
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For more detailed analysis of properties of the least favourable spectral densities and mini-
max-robust spectral characteristics we observe that the minimax spectral characteristic #° and
the least favourable spectral density fy form a saddle point of the function A(%; f) on the set
Hp x D. The saddle point inequalities A(%; fo) > A(K°; fo) > AW f) V f € D,Vh € Hp hold
true if i° = hy,(fo), hu(fo) € Hp and f; is a solution of the constrained optimization problem

A(f) = =A(hu(fo); f) — inf, f€D, (41)

where the functional A(hy(fo); f) is calculated by the formula

T (—iA) (Y ((FO)~1DHa) kM) T
Ahy(fo); f) = 21n / (—id) (zkz(i(%iy)n DT )
% f()_l()‘) (i)‘)n(Z}iozo((F’g)*lDHa)keik)\) i

(1 _ efi)xy)n
or by the formula

7T _efi)u n ) . T '
A(hu(fo); f) = %/_n%<Z(DHA¢2)kEMk> 0 (o)

< seege My (L et )an
(_ i )\) n = q)y k
in the case, when the spectral density admits the canonical factorization (22).

The constrained optimization problem (41) is equivalent to the unconstrained optimization
problem Ap(f) = A(f) + 6(f|D) — inf, where §(f|D) is the indicator function of the set D,
namely 0(f|D) = 0if f € D and 6(f|D) = +ooif f ¢ D. A solution fy of the unconstrained
optimization problem is characterized by the condition 0 € dAp(fy), which is the necessary
and sufficient condition under which a point fj belongs to the set of minimums of the convex
functional Ap(f) (see, e.g., [35, Chapter 6]). This condition makes it possible to find the least
favourable spectral densities in some special classes of spectral densities D.

Note, that the form of the functional A(f) allows us to apply the Lagrange method of in-
definite multipliers for investigating the constrained optimization problem (41). Therefore, the
complexity of optimization problem is determined by the complexity of calculating subdiffer-
entials of the indicator functions of sets of admissible spectral densities.

3.1 Least favourable spectral density in classes with integral restrictions

Consider the prediction problem for the functional AZ, which depends on unobserved val-
ues of a sequence &(m), with stationary increments based on observations of the sequence at
points m = —1,—2,... under the condition that the sets of admissible spectral densities D,
k=1,2,3,4, are defined as follows:

1 T |1 — piAM|2n
T ‘1 1/\;4’211

pp= {0 5z |7 B = p,

3 s |1 1A;1|2n
D3 = {5 [ B e r = e k=TT,

_ sz|2n

pi={r): 5 7 B B sy = p,
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where p, pi, k = 1, T are given numbers, P, By, are given positive-definite Hermitian matrices.
Define C’(¢) = T2 ((F9) " DFa)yel™ and #(e") = X2 o(DF A0 )se ™.
From the condition 0 € dAp(fy) we find the following equations, which determine the least
favourable spectral densities for these given sets of admissible spectral densities.
For the first set of admissible spectral densities D}, we derive equation

~£0, =0, . ‘1 _ei)\y‘Zn o ‘1 sz,Zn
Ci (e’)‘)(cﬁr ()" = WfO(A)““ A ——fo(A), (42)
where @ is a vector of Lagrange multipliers.

For the second set of admissible spectral densities D3, we derive equation

0, 0, . 1_eiA;12n 1_ei)\y2n
LS = B h A, @

where a2 are Lagrange multipliers, 6y are Kronecker symbols.
For the third set of admissible spectral densities D3, we derive equation

1 — eiAp|2n 1 — eiAn|2n
el ey = e ponsr P ), (@)

where a2 is a Lagrange multiplier.
For the fourth set of admissible spectral densities D3, we derive equation

’1 _ eiAy’Zn

2
(M) (L)) = w2<wfo(?»)> , 45)

where a? is a Lagrange multiplier.
In the case, when the spectral density admits the canonical factorization (22), we have the
following equations, correspondingly

Fu(eM)((e™)” = (@) (e” ")) i@ (e=h), (46)
G )( u(e )) (@R (e™™)) " {afda 11 DY (e ), (47)
Fu(e™)(Fu(e™)" = a®(@p(e™)) "B @Y (e=™), (48)
Pale “)( n(e™)" = (@) (e™)) T DY (e ). (49)

The following theorem holds true.

Theorem 9. The least favourable spectral densities fy(A) in the classes D’O‘, k=1,2,3,4, for
the optimal linear extrapolation of the functional A from observations of the sequence ¢ (m)
at points m = —1,-2,... are determined by the minimality condition (12), equations (42)-
(45) respectively, the constrained optimization problem (39) and restrictions on densities from
the corresponding classes Dk k = 1,2,3,4. The minimax-robust spectral characteristic of the
optimal estimate of the functional A€ is determined by the formula (20). In the case, when
spectral densities admit the canonical factorization (22), the least favourable spectral densities
fo(A) are determined by the minimality condition (12), equations (46)—(49), respectively, the
constrained optimization problem (40), and restrictions on densities from the corresponding
classes DS, k =1,2,3,4. The minimax-robust spectral characteristic of the optimal estimate of
the functional A(f is determined by the formula (23).
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3.2 Least favourable spectral density in classes with inequality restrictions

Consider the prediction problem for the functional AZ, which depends on unobserved val-
ues of a sequence ¢(m), with stationary increments based on observations of the sequence
at points m = —1,—2,... under the condition that the sets of admissible spectral densities

D%}k, k=1,2,3,4, are defined as follows:
T _ez’A 2n
DY’ = {f(?»)  V(A) < f(A) U@, % / %m) dA = Q}f
|1 — piAn|2n
DY = {f(?») T V)] < T )] < U], o [ %Tr F())A = q},

el |2n

DY’ = {f()\) P opk(A) < fre(A) < ugk(A), E/Z 1 AP Sk (A)dA = g k= 1’T}'

T ‘1 _ ei/\;t’Zn

7954={f@>: (B2 V) < (B f1)) < (B UW), - [ i <Bz'f<”>“:"}'

Here spectral densities V(A), U()) are known and fixed, g, g, k = 1, T are given numbers, Q,
B, are given positive definite Hermitian matrices.

From the condition 0 € dAp(fy) we find the following equations, which determine the least
favourable spectral densities for these given sets of admissible spectral densities.

For the first set of admissible spectral densities D}, we derive equation

‘1 - ei/\;t’Zn ’1 - ei/\y‘Zn

6£°<e“><6£°<e“>>*=Wfom><ﬁﬁ L) + T2(A) = — o), (50

where B is a vector of Lagrange multipliers, ['1(A) < 0 and T'j(A) = 0if fy(A) > V(A),
Fz()\) > 0 and Fz()\) =0 lffo()t) < U(A)
For the second set of admissible spectral densities DY?, we derive equation

) . . _ piAp|2n 2
EOEM (EEM)* = (B + 1) +72(0) (%ﬂ)w) , (51)

where B2 is Lagrange multiplier, 71 (A) < 0and 71(A) = 0if Tr [fo(A)] > Tr [V(A)], 72(A) >0

and 72(A) = 0if Tr [fo(A)] < Tr [U(A)].
For the third set of admissible spectral densities Du3, we derive equation

. . . . 1— iAp|2n 1— iAp|2n
EO () (G0 () = %ﬁ)w{(ﬁ% () + vzkm»akz}z,l:l%fom, 52)

where ,3% are Lagrange multipliers, dy; are Kronecker symbols, y1x(A) < 0 and 7y, (A) = 0 if
fieA) > vi(A), vk (A) > 0and o (A) = 0if £} (A) < ugre(A).
For the fourth set of admissible spectral densities DU*, we derive equation
~F0, 260, ara 1 — eiMu|2n 1 — eirp|2n
CLENER ) = B+ 1) + 50— AWB] T h(), 6

where B2 is Lagrange multiplier, 7/(A) < 0 and 9}(A) = 0 if (By, fo(A)) > (B2, V(A)),
Y5(A) > 0and 75(A) = 01if (By, fo(A)) < (Bz, U(A)).
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In the case, when the spectral density admits the canonical factorization (22), we have the
following equations, correspondingly

PuleM)(Tu(e) = (@n(e™)) " (Bp 1(A)+Fz(?»))<1>2(6‘“), (54)
Pae)(Fue™)" = (B +711(A) + 720)) (@) (™) T B (e=1), (55)
Pa(eM) T(e™)" = (@) (e™) LB +1e(A) +

) + Y2k (A) 3t Y oy B (=), (56)
Pu(e®)(Fpe™)” = (B2 +71(A) +75(0)(@h(e™™)) "By Bh(e™). (57)
The following theorem holds true.

Theorem 10. The least favourable spectral densities fy(A) in the classes D‘L/Ik, k=1,2,3,4, for
the optimal linear extrapolation of the functional AZ from observations of the sequence &(m)
at pointsm = —1, -2, ... are determined by the minimality condition (12), equations (50)—53),
respectively, the constrained optimization problem (39), and restrictions on densities from the
corresponding classes D%,Ik, k = 1,2,3,4. The minimax-robust spectral characteristic of the
optimal estimate of the functional A€ is determined by the formula (20). In the case, when
spectral densities admit the canonical factorization (22), the least favourable spectral densities
fo(A) are determined by the minimality condition (12), equations (54)—(57), respectively, the
constrained optimization problem (40) and restrictions on densities from the corresponding
D%,Ik, k = 1,2,3,4. The minimax-robust spectral characteristic of the optimal estimate of the
functional Ag is determined by the formula (23).

3.3 Least favourable spectral density in classes of “e-contaminated” densities

Consider the prediction problem for the functional AZ, which depends on unobserved val-
ues of a sequence &(m), with stationary increments based on observations of the sequence at
points m = —1,—2,... under the condition that the sets of admissible spectral densities Dé‘,
k=1,2,3,4, are defined as follows:

1A;1|2n

Dl — {f(A): T [F(A)] = TrLflS( Iy e o), 2n/n 1- Wl = }

1 T 1)\ 2n
22 = {5+ fiuh) = 25 e, o [T S ey ir = k-1,
D3 = f(A): (B, f(A)) = By, W(A TP dn =
2= s @) = ELE) em w5 7 BT B fa)a =y,
7T _ei)L 2n
Dt = {0 0 = - e, 5o [ BT s an = p

—7T
Here f1(A) is a fixed spectral density, W(A) is an unknown spectral density, p, px, k = 1, T, are
given numbers, P is a given positive-definite Hermitian matrices.
From the condition 0 € dAp(fy) we find the following equations, which determine the least
favourable spectral densities for these given sets of admissible spectral densities.
For the first set of admissible spectral densities D}, we derive equation

. R . _ ei)\ 2n 2
M (E (M) = (@ +1i(A)) (%ﬂ)w) , 58)
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where a? is Lagrange multiplier, v1(A) < 0and 71(A) = 0if Tr [fo(A)] > (1 —&)Tr [f1(A)].
For the second set of admissible spectral densities D?, we derive equation

- ; R ; . 1— ei)\ﬂ 2n 1— ei)\y 2n
LS = B e + AN a i T h(), 69

where a7 are Lagrange multipliers, 7} (1) < 0and v}(A) = 0if £ (A) > (1 —¢)fL (7).
For the third set of admissible spectral densities D3, we derive equation

) . ) _ piAp|2n _
ey =@ +rm S pos L ), e

where a? is a Lagrange multiplier, 7} (1) < 0and 7 (A) = 0if (B, fo(A)) > (1 —¢)(By, f1(A)).
For the fourth set of admissible spectral densities DZ, we derive equation

R . . . l/\ 2n zA 2n
Pty - s e rranE B hsw, @

where & is a vector of Lagrange multipliers, I'(A) < 0and I'(A) = 0if fo(A) > (1 —¢)f1(A).
In the case, when the spectral density admits the canonical factorization (22), we have the
following equations, correspondingly

Fae™)(Fe)” = (@2 + (W) (@ (e™) ) (e~ ), (62)
PaleM)(T(e™)" = (@he™)" {(Dé%+%1(?\))5kz}kz 1P (e7), (63)
FaeM)(T(e™) = (&2 + 71 (D)) (@G (e™™)) "B @ (e~7), (64)
PuleM)(Tu(e)) = (@(e™™)) " @ & +T(1))®h (). (65)

The following theorem holds true.

Theorem 11. The least favourable spectral densities fy(A) in the classes Dé‘, k=1,2,3,4, for
the optimal linear extrapolation of the functional A from observations of the sequence ¢ (m)
at points m = —1,-2,... are determined by the minimality condition (12), equations (58)—
(61), respectively, the constrained optimization problem (39) and restrictions on densities from
the corresponding classes Dé‘, k = 1,2,3,4. The minimax-robust spectral characteristic of the
optimal estimate of the functional AZ is determined by the formula (20). In the case, when
spectral densities admit the canonical factorization (22), the least favourable spectral densities
fo(A) are determined by the minimality condition (12), equations(62)—(65), respectively, the
constrained optimization problem (40) and restrictions on densities from the corresponding
classes Dé‘, k =1,2,3,4. The minimax-robust spectral characteristic of the optimal estimate of
the functional Ag’,? is determined by the formula (23).

3.4 Least favourable spectral density in classes which describe “§-neighborhood” models

Consider the prediction problem for the functional AZ, which depends on unobserved val-
ues of a sequence ¢(m ) with stationary increments based on observations of the sequence at
points m = —1,—2,... under the condition that the sets of admissible spectral densities D%;,
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k=1,2,3,4, are defined as follows:

27

T _ei)x 2n
Di; = {f(A) o %me ~ A dA < 5},

T piAK|2n
Di; = {f()\) 27{/, 1 ‘Mz:| fic(A) — fe (M) dA < 6, k=1, }’

T ‘1 _ 1/\;4’211

Dh = {50+ 5 [ B B ) — A A < o},
T — piAp|2n ) _
Dt = {105 5 [ P L ~ Al < 8] i =TT,

27
Here f1(A) is a fixed spectral density, 6, 6, k = 1, T, (5{ ,i,j = 1,T, are given numbers.
From the condition 0 € dAp(fy) we find the following equations, which determine the least
favourable spectral densities for these given sets of admissible spectral densities.
For the first set of admissible spectral densities D} 5» we derive equations

; - . _ LiAu|2n 2
é}{o(eZA)(C;{O(eZA))* _ [32’)”2()\) <%f0()\)> , (66)
T _ ,iAu|2n
%/n%wr(fo()w_fl(A))“M:(S, (67)

where p? is Lagrange multiplier, |12(A)| < 1, y2(A) = sign (Tr (fo(A) — f1(A))) = Tr (fo(A) —
f(A) #0

For the second set of admissible spectral densities D35, we derive equations

5 . . . 1— iAp|2n 1— iAp|2n
EO () (Ef0 () = %ﬁ)(mﬁ%ﬁm}ilzl%ﬁw (68)
T |1 — piAn|2n
3 | )~ 1 =4, (69

where 2 are Lagrange multipliers, [y2(A)| < 1and 77(A) = sign (£ (A) — fL(A)) : fA(A) —

For the third set of admissible spectral densities D3;, we derive equations

5 . o . 1— iAp|2n 1— iAp|2n

EO () (Ef0(e))* = ﬁ%w%fomw; %ﬁm 70)
1 T |1 — plAH|2n
o e ) - il 1 =, &

where B2 is a Lagrange multiplier, |7v5(A)] < 1, v5(A) = sign (Ba, fo(A) — f1(A)) : (Ba, fo(A) —
fi(A)) #0.

For the fourth set of admissible spectral densities Df;, we derive equations

11— eiM#|2n |1 — eiAn2n

éﬁo(e”‘)(é{:o(em))* = WfOMHﬁij(M’YijO‘)Hj AP ———fo(A), (72)

1 T ’1 _ei)\y’2n 0 . j
27 /n W!ﬁy@) — fi(A)|dA =, 73)
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where B;; are Lagrange multipliers, [y;;(A)] < 1, 9;j(A) = ( Z.j()t) - 1-1]-()&))/| 2()&) - 5()&)| :
D) = fEA) #£0,i,j=1T.
In the case, when the spectral density admits the canonical factorization (22), we have the
following equations, correspondingly

Pa(eM) (T(e™)" = Br2(A) (@) (e=™)) T @) (=), (74)
Pa(eM)(a(e™) = (@4 (e™) {1 (Vo1 PU(e™), (75)
a(eM)(Ta(e™) = Bra(A) (@) (e™™)) "B @ (e~ ™), (76)
Pa(e™) (Tu(e™)" = (@0 (™)) T{Bii(A)7ii(A) };—1 PY (e~ ). (77)

The following theorem holds true.

Theorem 12. The least favourable spectral densities fo(A) in the classes Dll‘ sk =1,2,3,4, for
the optimal linear extrapolation of the functional A from observations of the sequence ¢ (m)
at points m = —1,-2,... are determined by the minimality condition (12), equations (66)—
(73), respectively, the constrained optimization problem (39) and restrictions on densities from
the corresponding classes D'l‘ sk =1,2,3,4. The minimax-robust spectral characteristic of the
optimal estimate of the functional AZ is determined by the formula 20. In the case, when
spectral densities admit the canonical factorization (22), the least favourable spectral densities
fo(A) are determined by the minimality condition (12), equations (74)<77), respectively, the
constrained optimization problem (40), and restrictions on densities from the corresponding
classes D’l‘ s k= 14 2,3,4. The minimax-robust spectral characteristic of the optimal estimate of
the functional A¢ is determined by the formula (23).

4 Conclusions

In this article, we present results of investigation of stochastic sequences with periodically
stationary increments. We give definition of the increment sequence and introduce stochastic
sequences with periodically stationary (periodically correlated, cyclostationary) increments.
These non-stationary stochastic sequences combine periodic structure of covariation functions
of sequences as well as integrating one. A short review of the spectral theory of vector-valued
increment sequences is presented.

We describe methods of solution of the forecasting problem for linear functionals, which
are constructed from unobserved values of a sequence with periodically stationary increments.
Estimates are obtained by representing the sequence under investigation as a vector-valued
sequence with stationary increments. The problem is investigated in the case of spectral cer-
tainty, where the spectral density of the sequence is exactly known. In this case, we propose an
approach based on the Hilbert space projection method. We derive formulas for calculating the
spectral characteristics and the mean-square errors of the optimal estimates of the functionals.
In the case of spectral uncertainty, where the spectral density is not exactly known while, in-
stead, a set of admissible spectral densities is specified, the minimax-robust method is applied.
We propose a representation of the mean square error in the form of a linear functional in L
with respect to spectral densities, which allows us to solve the corresponding constrained op-
timization problem and describe the minimax (robust) estimates of the functionals. Formulas
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that determine the least favourable spectral densities and minimax (robust) spectral character-
istic of the optimal linear estimates of the functionals are derived for a collection of specific
classes of admissible spectral densities.

These least favourable spectral density matrices are solutions of the optimization problem
Ap(f) = —=A(h(fo); f) + 6(f|D) — inf, which is characterized by the condition 0 € dAp(fp),
where dAp (fo) is the subdifferential of the convex functional Ap(f) at point fy. The form of
the functional A(h(fp); f) is convenient for application of the Lagrange method of indefinite
multipliers for finding solution to the optimization problem. The complexity of solution of
the problem is determined by the complexity of calculating of subdifferentials of the indicator
functions d(f|D) of sets D. Making use of the method of Lagrange multipliers and the form
of subdifferentials of the indicator functions, we describe relations that determine the least
favourable spectral densities in some special classes of spectral densities. These are: classes Dy
of densities with the integral restrictions, classes D15, which describe the “J-neighborhood”
models in the space L; of a fixed bounded spectral density, classes D¢, which describe the
“g-contaminated” models of a fixed bounded spectral density, classes D}, which describe the
“strip” models of spectral densities.
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AOCAIAXY€EThCS 3apa4a ONTUMAABHOIO B CepeAHbOKBAAPATMUYHOMY CeHCi OLIHIOBaHHSI AiHiVHIX
dyHKIIOHAAIB, IITO 3aA€XaTh BiA HEBIAOMMX 3Ha9eHb CTOXACTMYHOI MIOCAIAOBHOCTI, i3 mepioAMdHO
CTalliOHAPHMMM IPVPOCTAMM 3a CTIOCTEPeXeHHSIMIU OCAIAOBHOCTI B Toukax k < 0. 3HaitaeHO dpop-
MYAM AASL OGUMCACHHS CePEAHBOKBAAPATIIHMX ITOXMOOK Ta CHEKTPAABHMX XapaKTePUCTUK OITH-
MaABHMX OIIHOK (PYHKIIIOHAAIB Yy TOMY BMIIAAKY, KOAM CIIeKTpaAbHA IIIABHICTb IIOCAIAOBHOCTI TO-
uHO BiaoMa. MiniMakcHWMI (pobacTHIIT) METOA OLIHIOBAHHS 3aCTOCOBAHO y TOMY BUIIAAKY, KOAM CIIe-
KTpaAbHA IIIABHICTD IIOCAIAOBHOCTEN TOUHO HEBiAOMI, a 3aAaHi MHOXXIHM AOIYCTUMIX CIIEKTPaAb-
HUX IDiAbHOCTeN. DOpMyAH, IO BU3HAYAIOTh HaVIMEHIN CIIPUSTAMBI CIEKTPaAbHI IIIABHICTI Ta Mi-
HiMaKCHi CIIeKTPaAbHI XapaKTepUCTUKM ONTMMaABHMX OLIHOK (PYHKIIIOHAAIB, 3aIIpOIIOHOBaHI AAS
3aAQHMX MHOXXVH AOITY CTUMMX CIIeKTPaAbHMX IIiABHOCTEVA.

Kntouosi cioéa i ppasu: TMOCAIAOBHICTD i3 IepiOAMYHO CcTallioHApHMMM IIPUPOCTaMM, MiHiMaKCHa
oliHKa, pobacTHa OIiHKa, cepeAHbOKBaApaTHUHA MOXMOKA, HalMEHII CIPMSATAMBA CIIEKTpaAbHa
IIiABHICTD, MiHIMaKCHa CIIeKTpaAbHA XapaKTepUCTHUKA.



