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Minimax prediction of sequences with periodically stationary
increments

Kozak P.S.1, Luz M.M.2, Moklyachuk M.P.1,

The problem of optimal estimation of linear functionals constructed from unobserved values

of a stochastic sequence with periodically stationary increments based on its observations at points

k < 0 is considered. For sequences with known spectral densities, we obtain formulas for calculating

values of the mean square errors and the spectral characteristics of the optimal estimates of the

functionals. Formulas that determine the least favourable spectral densities and minimax (robust)

spectral characteristics of the optimal linear estimates of functionals are derived in the case where

spectral densities of the sequence are not exactly known while some sets of admissible spectral

densities are given.
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Introduction

The non-stationary and long memory time series models are of constant interest of re-

searchers in the past decade (see, for example, papers by A. Dudek, H. Hurd and W. Wojtow-

icz [6], S. Johansen and M.O. Nielsen [13], V.A. Reisen et al. [33]). These models are used when

analyzing data which arise in different field of economics, finance, climatology, air pollution,

signal processing.

Since the first edition of the book by G.E.P. Box and G.M. Jenkins [4], autoregressive moving

average (ARMA) models integrated of order d are standard tool for time series analysis. These

models are described by the equation

ψ(B)(1 − B)dxt = θ(B)εt. (1)

where εt, t ∈ Z, are zero mean i.i.d. random variables, ψ(z), θ(z) are polynomials of p and

q degrees respectively with roots outside the unit circle. This integrated ARIMA model is

generalized by adding a seasonal component. A new model is described by the equation (see

[3] for details)

Ψ(Bs)(1 − Bs)Dxt = Θ(Bs)εt, (2)

where Ψ(z) and Θ(z) are polynomials of degrees of P and Q respectively which have roots

outside the unit circle.
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When the ARIMA sequence determined by equation (1) is inserted into (2) instead of εt

we have a general multiplicative model Ψ(Bs)ψ(B)(1 − B)d(1 − Bs)Dxt = Θ(Bs)θ(B)εt with

parameters (p, d, q)× (P, D, Q)s, d, D ∈ N
∗, called SARIMA (p, d, q)× (P, D, Q)s model.

A good performance is shown by models which include a fractional integration, that is

when parameters d and D are fractional. We refer to the paper by S. Porter-Hudak [32] who

studied a seasonal ARFIMA model and applied it to the monetary aggregates used by U.S. Fed-

eral Reserve.

Another type of non-stationarity is described by periodically correlated, or cyclostation-

ary, processes introduced by E. G. Gladyshev [9]. These processes are widely used in signal

processing and communications (see A. Napolitano [29] for a review of the recent works on

cyclostationarity and its applications). Periodic time series may be considered as an extension

of a SARIMA model (see R. Lund [19] for a test assessing if a PARMA model is preferable to a

SARMA one) and are suitable for forecasting stream flows with quarterly, monthly or weekly

cycles (see D. Osborn [30]). C. Baek, R.A. Davis and V. Pipiras [1] introduced a periodic dy-

namic factor model (PDFM) with periodic vector autoregressive (PVAR) factors, in contrast

to seasonal VARIMA factors. I.V. Basawa , R. Lund and Q. Shao [2] investigated first-order

seasonal autoregressive processes with periodically varying parameters.

The models mentioned above are used in estimation of model’s parameters and forecast

issues. Note, that direct application of the developed results to real data may lead to signifi-

cant increasing of values of errors of estimates due to the presence of outliers, measurement

errors, incomplete information about the spectral, or model structure etc. This is a reason of

increasing interest to robust methods of estimation that are reasonable in such cases. For ex-

ample, V.A. Reisen et al. [34] proposed a semiparametric robust estimator for the fractional

parameters in the SARFIMA model and illustrated its application to forecasting of sulfur diox-

ide SO2 pollutant concentrations. C.C. Solci et al. [36] proposed robust estimates of periodic

autoregressive (PAR) model. Robust approaches are successfully applied to the problem of

estimation of linear functionals from unobserved values of stochastic processes. The paper by

U. Grenander [10] should be marked as the first one where the minimax extrapolation problem

for stationary processes was formulated as a game of two players and solved. Y. Hosoya [12],

S.A. Kassam [15], S.A. Kassam and H.V. Poor [16], J. Franke [7], S. K. Vastola and H.V. Poor [37],

M.P. Moklyachuk [23, 24] studied minimax extrapolation (forecasting), interpolation (missing

values estimation) and filtering (smoothing) problems for the stationary sequences and pro-

cesses. Recent results of minimax extrapolation problems for stationary vector processes and

periodically correlated processes belong to M.P. Moklyachuk and A.Yu. Masyutka [25, 26] and

I.I. Dubovets’ka and M.P. Moklyachuk [5] respectively. Processes with stationary increments

are investigated by M. Luz and M. Moklyachuk [20,21]. We also mention works by M.P. Mokly-

achuk and M.I. Sidei [27], O.Yu. Masyutka, M.P. Moklyachuk and M.I. Sidei [22,28], who derive

minimax estimates of stationary processes from observations with missed values. P.S. Kozak

and M.P. Moklyachuk [18] studied an interpolation problem for stochastic sequences with pe-

riodically stationary increments.

In this article we present results of investigation of the estimation problem for stochastic

sequences with periodically stationary increments. In Section 1, we give definition of stochas-

tic sequences η(m) with periodically stationary (periodically correlated) increments. These

non-stationary stochastic sequences combine periodic structure of covariation functions of se-

quences as well as the integrating one. This section also contains a short review of the spectral
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theory of vector-valued stationary increment sequences. Section 2 deals with the classical esti-

mation problem for linear functionals in the case where spectral structure of the sequence η(m)

is exactly known. Estimates are obtained by representing the sequence η(m) as a vector se-

quence ~ξ(m) with stationary increments and applying the Hilbert space projection technique.

In Section 3, we derive the minimax (robust) estimates in the case, where spectral densities of

sequences are not exactly known while some sets of admissible spectral densities are specified.

In Subsections 3.1–3.4 we describe relations which determine the least favourable spectral den-

sities and the minimax spectral characteristics of the optimal estimates of linear functionals for

some sets of admissible spectral densities which are generalizations of the corresponding sets

of admissible spectral densities described in a survey article by S.A. Kassam and H.V. Poor [16]

for the case of stationary stochastic processes.

1 Stochastic sequences with periodically stationary increments

In this section, we present a brief review of the spectral theory of stochastic sequences with

periodically stationary nth increments.

Consider a stochastic sequence {η(m), m ∈ Z} defined on a probability space (Ω,F , P).

Denote by Bµ a backward shift operator with the step µ ∈ Z, such that Bµη(m) = η(m − µ);

B := B1. We first recall definitions and spectral properties of stochastic sequences with station-

ary nth increments (for more details and references see, e.g., [21, pp. 1–8], [8, pp. 48–60, 261–

268], [39, pp. 390–430]). The corresponding results for stochastic processes with continuous

time are described in the articles by M.S. Pinsker and A.M. Yaglom [31] and A.M. Yaglom [38].

Definition 1. For a given stochastic sequence {η(m), m ∈ Z}, the sequence

η(n)(m, µ) = (1 − Bµ)
nη(m) =

n

∑
l=0

(−1)l

(
n

l

)
η(m − lµ),

(
n

l

)
=

n!

l!(n − l)!
, (3)

is called a stochastic nth increment sequence with the step µ ∈ Z.

The stochastic nth increment sequence η(n)(m, µ) satisfies the following relations:

η(n)(m,−µ) = (−1)nη(n)(m + nµ, µ), η(n)(m, kµ) =
(k−1)n

∑
l=0

Alη
(n)(m − lµ, µ), k ∈ N,

where coefficients {Al , l = 0, 1, 2, . . . , (k − 1)n} are determined by the representation

(1 + x + . . . + xk−1)n =
(k−1)n

∑
l=0

Alx
l .

Definition 2. The stochastic nth increment sequence η(n)(m, µ) generated by a stochastic se-

quence {η(m), m ∈ Z} is wide sense stationary if the mathematical expectations

Eη(n)(m0, µ) = c(n)(µ), Eη(n)(m0 + m, µ1)η
(n)(m0, µ2) = D(n)(m, µ1, µ2)

exist for all m0, µ, m, µ1, µ2 and do not depend on m0. The function c(n)(µ) is called the mean

value of the nth increment sequence η(n)(m, µ) and the function D(n)(m, µ1, µ2) is called the

structural function of the stationary nth increment sequence (or structural function of nth or-

der of the stochastic sequence {η(m), m ∈ Z}). The stochastic sequence {η(m), m ∈ Z} which

determines the stationary nth increment sequence η(n)(m, µ) by formula (3) is called a stochas-

tic sequence with stationary nth increments (or integrated sequence of order n).
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The following spectral representation of the structural function of the stationary stochastic

nth increment sequence holds true (see, e.g., [8, pp. 48–60]).

Theorem 1. The mean value c(n)(µ) and the structural function D(n)(m, µ1, µ2) of the station-

ary stochastic nth increment sequence η(n)(m, µ) can be represented in the forms

c(n)(µ) = cµn, (4)

D(n)(m; µ1, µ2) =
∫ π

−π
eiλm(1 − e−iµ1λ)n(1 − eiµ2λ)n 1

λ2n
dF(λ), (5)

where c is a constant, F(λ) is a left-continuous nondecreasing bounded function such that

F(−π) = 0. The constant c and the function F(λ) are determined uniquely by the increment

sequence η(n)(m, µ). On the other hand, a function c(n)(µ) which has form (4) with a constant

c and a function D(n)(m; µ1, µ2) which has form (5) with a function F(λ) which satisfies the in-

dicated conditions are the mean value and the structural function of a stationary nth increment

sequence η(n)(m, µ).

Note, that we will call by spectral function and spectral density of the stochastic sequence

with stationary increments the spectral function and the spectral density of the corresponding

stationary increment sequence.

Making use of representation (5) and the Karhunen theorem (see [8, pp. 261–268], [14, The-

orem 10]) one can obtain the spectral representation of the stationary nth increment sequence

η(n)(m, µ) :

η(n)(m, µ) =
∫ π

−π
eimλ(1 − e−iµλ)n 1

(iλ)n
dZη(n)(λ),

where Zη(n)(λ) is a stochastic process with uncorrelated increments on [−π, π) connected with

the spectral function F(λ) by the relation E|Zη(n)(λ2) − Zη(n)(λ1)|
2 = F(λ2) − F(λ1) < ∞,

−π ≤ λ1 < λ2 < π.

Definition 3. A stochastic sequence {ζ(m), m ∈ Z} is called a stochastic sequence with pe-

riodically stationary (periodically correlated) increments with period T if the nth increment

sequence ζ(n)(m, µT) = (1 − BµT)
nζ(m) is stationary.

It follows from Definition 3 that the sequence

ξp(m) = ζ(mT + p − 1), p = 1, 2, . . . , T, m ∈ Z, (6)

forms a vector-valued sequence ~ξ(m) =
{

ξp(m)
}

p=1,2,...,T
, m ∈ Z, with stationary nth incre-

ments. Really, for all p = 1, 2, . . . , T,

ξ
(n)
p (m, µ) =

n

∑
l=0

(−1)l

(
n

l

)
ξp(m − lµ)

=
n

∑
l=0

(−1)l

(
n

l

)
ζ((m − lµ)T + p − 1) = ζ(n)(mT + p − 1, µT),

where ξ
(n)
p (m, µ) is the nth increment of the pth component of the vector-valued sequence~ξ(m)

(for more details see [18]).

The following spectral representations of the structural function of the vector-valued sta-

tionary stochastic nth increment sequence and the increment sequence itself hold true (see,

e.g., [8, pp. 48–60, 261–268]).
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Theorem 2. The structural function D(n)(m, µ1, µ2) of the vector-valued stochastic stationary

nth increment sequence ~ξ(n)(m, µ) can be represented in the form

D(n)(m; µ1, µ2) =
∫ π

−π
eiλm(1 − e−iµ1λ)n(1 − eiµ2λ)n 1

λ2n
dF(λ),

where F(λ) is the matrix-valued spectral function of the stationary stochastic sequence
~ξ(n)(m, µ). The stationary nth increment sequence ~ξ(n)(m, µ) admits the spectral represen-

tation
~ξ(n)(m, µ) =

∫ π

−π
eimλ(1 − e−iµλ)n 1

(iλ)n
d~Zξ(n)(λ),

where ~Zξ(n)(λ) = {Zp(λ)}T
p=1 is a (vector-valued) stochastic process with uncorrelated incre-

ments on [−π, π) connected with the spectral function F(λ) by the relation

E(Zp(λ2)− Zp(λ1))(Zq(λ2)− Zq(λ1)) = Fpq(λ2)− Fpq(λ1), −π ≤ λ1 < λ2 < π.

Denote by H = L2(Ω,F , P) the Hilbert space of random variables ζ with zero first moment,

Eζ = 0, finite second moment, E|ζ|2 < ∞, and the inner product (ζ, η) = Eζη. Denote by

H(~ξ(n)) the subspace of the space H = L2(Ω,F , P) generated by components ξ
(n)
p (m, µ), p =

1, 2, . . . , T, m ∈ Z, of the stationary stochastic nth increment sequence ~ξ(n) = {ξ
(n)
p (m, µ)}T

p=1,

and denote by Hr(~ξ(n)) the subspace generated by components ξ
(n)
p (m, µ), p = 1, 2, . . . , T,

m 6 r, r ∈ Z. Let S(~ξ(n)) =
⋂

r∈Z Hr(~ξ(n)).

Since the space S(~ξ(n)) is a subspace of the Hilbert space H(~ξ(n)), the space H(~ξ(n)) admits

the decomposition

H(~ξ(n)) = S(~ξ(n))⊕ R(~ξ(n)), (7)

where R(~ξ(n)) is the orthogonal complement of the subspace S(~ξ(n)) in the space H(~ξ(n)).

Definition 4. A wide sense stationary stochastic nth increment sequence ~ξ(n)(m, µ) =

{ξ
(n)
p (m, µ)}T

p=1 is called regular if H(~ξ(n)) = R(~ξ(n)). It is called singular if H(~ξ(n)) = S(~ξ(n)).

Making use of the decomposition (7) and Definition 4 we can verify that the following

theorem holds true (see [11, pp. 157–163]).

Theorem 3. A wide-sense stationary stochastic nth increment sequence ~ξ(n)(m, µ) =

{ξ
(n)
p (m, µ)}T

p=1 admits a unique representation in the form

ξ
(n)
p (m, µ) = ξ

(n)
S,p(m, µ) + ξ

(n)
R,p(m, µ), (8)

where ξ
(n)
R,p(m, µ), p = 1, 2, . . . , T, is a regular stationary increment sequence and ξ

(n)
S,p(m, µ),

p = 1, 2, . . . , T, is a singular stationary increment sequence. Moreover, the increment se-

quences ξ
(n)
R,p(m, µ) and ξ

(n)
S,p(k, µ), p = 1, 2, . . . , T, are orthogonal for all m, k ∈ Z.

The components of representation (8) are defined by the formulas

ξ
(n)
S,p(m, µ) = E[ξ

(n)
p (m, µ)|S(~ξ(n))], ξ

(n)
R,p(m, µ) = ξ

(n)
p (m, µ)− ξ

(n)
S,p(m, µ), p = 1, 2, . . . , T.

Consider a stochastic sequence~ε(u) = {εk(u)}
q
k=1, u ∈ Z of uncorrelated random variables

satisfying the conditions: Eεk(u)ε j(v) = δkjδuv, where δkj and δuv are Kronecker symbols, and
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E|εk(u)|
2 = 1, k = 1, 2, . . . , q, u ∈ Z. Denote by Hr(~ε) the Hilbert space generated by elements

{εk(u) : k = 1, 2, . . . , q, u ≤ r}.

We will call the sequence ~ε(u) = {εk(u)}
q
k=1, u ∈ Z, innovation sequence of a regular

stationary nth increment sequence ~ξ(n)(m, µ) if the condition Hr(~ξ(n)) = Hr(~ε) holds true for

all r ∈ Z.

Since elements {εk(u) : k = 1, 2, . . . , q, u ≤ r} of the innovation sequence form an or-

thonormal basis in the space Hr(~ε) and Hr(~ξ(n)) = Hr(~ε) the following theorem holds true

(see [11, pp. 157–163]).

Theorem 4. A stochastic stationary increment sequence~ξ(n)(m, µ) is regular if and only if there

exists an innovation sequence ~ε(u) = {εk(u)}
q
k=1, u ∈ Z, and a sequence of matrix-valued

functions ϕ(n)(k, µ) = {ϕ
(n)
ij (k, µ)}

j=1,q

i=1,T
, k ≥ 0, such that ∑

∞
k=0 ∑

T
i=1 ∑

q
j=1 |ϕ

(n)
ij (k, µ)|2 < ∞ and

~ξ(n)(m, µ) =
∞

∑
k=0

ϕ(n)(k, µ)~ε(m − k). (9)

Representation (9) is called a canonical moving average representation of the stochastic sta-

tionary increment sequence ~ξ(n)(m, µ).

If the stationary nth increment sequence ξ(n)(m, µ) admits the canonical representation (9),

then its spectral function F(λ) has the spectral density function f (λ) = { fij(λ)}
T
i,j=1 admitting

the canonical factorization (see, e.g., [11, pp. 157–163]) f (λ) = Φ(e−iλ)Φ∗(e−iλ), where the

function Φ(z) = ∑
∞
k=0 ϕ(k)zk has analytic in the unit circle {z : |z| ≤ 1} components Φij(z) =

∑
∞
k=0 ϕij(k)z

k , i = 1, 2, . . . , T, j = 1, 2, . . . , q.

Define Φµ(z) = ∑
∞
k=0 ϕ(n)(k, µ)zk = ∑

∞
k=0 ϕµ(k)zk , where ϕµ(k) = ϕ(n)(k, µ) are coefficients

from the canonical representation (9). Then the following relation holds true:

Φµ(e
−iλ)Φ∗

µ(e
−iλ) =

|1 − e−iλµ|2n

λ2n
f (λ). (10)

The one-sided moving average representation (9) and relation (10) are used for finding the

mean square optimal estimate of unobserved values of sequences with nth stationary incre-

ments.

2 Hilbert space projection method of extrapolation

Consider a vector-valued stochastic sequence with stationary nth increments ~ξ(m) con-

structed from the sequence ζ(m) with the help of transformation (6). Let the stationary nth

increment sequence ~ξ(n)(m, µ) = {ξ
(n)
p (m, µ)}T

p=1 has an absolutely continuous spectral func-

tion F(λ) and the spectral density f (λ) = { fij(λ)}
T
i,j=1. Without loss of generality we will

assume that E~ξ(n)(m, µ) = 0 and µ > 0.

Consider the problem of mean square optimal linear estimation of the functionals A~ξ =

∑
∞
k=0(~a(k))

⊤~ξ(k), AN
~ξ = ∑

N
k=0(~a(k))

⊤~ξ(k) which depend on the unobserved values of the

stochastic sequence ~ξ(k) = {ξp(k)}T
p=1 with stationary nth increments. Estimates are based on

observations of the sequence ~ξ(k) at points k = −1,−2, . . . .
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To solve the stated problem we will require fulfillment of the following conditions. Suppose

that coefficients ~a(k) = {ap(k)}T
p=1, k ≥ 0, and the linear transformation Dµ to be defined in

Lemma 1 satisfy the conditions
∞

∑
k=0

‖~a(k)‖ < ∞,
∞

∑
k=0

(k + 1)‖~a(k)‖2
< ∞,

∞

∑
k=0

‖(Dµa)k‖ < ∞,
∞

∑
k=0

(k + 1)‖(Dµa)k‖
2
< ∞. (11)

Here ‖ · ‖ is the Euclidean norm: ‖~a(k)‖2 = ∑
T
p=1 |ap(k)|2 for ~a(k) = {ap(k)}T

p=1 and

‖(Dµa)k‖
2 = ∑

T
p=1 |(Dµap)k)|

2 for (Dµa)k = {(Dµap)k)}
T
p=1 (see Lemma 1 for more details).

Let the spectral density f (λ) satisfy the minimality condition
∫ π

−π
Tr

[
λ2n

|1 − eiλµ|2n
f−1(λ)

]
dλ < ∞. (12)

This is the necessary and sufficient condition under which the mean square errors of the esti-

mates of the functionals A~ξ and AN
~ξ are not equal to 0.

The following lemma and corollary describe representations of the functionals A~ξ and AN
~ξ

as sums of functionals with finite variances and functionals depending on the observed values

of the sequence ~ξ(k) (see [18, 20]).

Lemma 1. The functional A~ξ admits the representation

A~ξ = B~ξ − V~ξ, B~ξ =
∞

∑
k=0

(~b(k))⊤~ξ(n)(k, µ), V~ξ =
−1

∑
k=−µn

(~v(k))⊤~ξ(k),

vp(k) =
n

∑
l=[−k/µ]′

(−1)l

(
n

l

)
bp(lµ + k), p = 1, 2, . . . , T, k = −1,−2, . . . ,−µn,

bp(k) =
∞

∑
m=k

ap(m)dµ(m − k) = (Dµap)k, p = 1, 2, . . . , T, k = 0, 1, 2, . . . ,

~v(k) = (v1(k), v2(k), . . . , vT(k))
⊤ , ~b(k) = (b1(k), b2(k), . . . , bT(k))

⊤ , where by [x]′ we denote

the least integer number among the numbers that are grater than or equal to x, coefficients

{dµ(k) : k ≥ 0} are determined by the relationship ∑
∞
k=0 dµ(k)xk = (∑∞

j=0 xµj)n, Dµ is a linear

transformation in the space ℓ2 determined by the matrix with elements D
µ
k,j, k, j = 0, 1, 2, . . . ,

such that D
µ
k,j = dµ(j − k) if 0 ≤ k ≤ j and D

µ
k,j = 0 for 0 ≤ j < k, Dµa = {Dµap}T

p=1,

ap = (ap(0), ap(1), ap(2), . . .)⊤, p = 1, 2, . . . , T.

Corollary 1. The functional AN
~ξ allows the representation AN

~ξ = BN
~ξ − VN

~ξ, where BN
~ξ =

∑
N
k=0(

~bN(k))
⊤~ξ(n)(k, µ), VN

~ξ = ∑
−1
k=−µn(~vN(k))

⊤~ξ(k), the coefficients ~vN(k)) = {vN,p(k)}
T
p=1,

k = −1,−2, . . . ,−µn, and~bN(k)) = {bN,p(k)}
T
p=1, k = 0, 1, . . . , N, are calculated by the formu-

las

vN,p(k) =
min{[(N−k)/µ],n}

∑
l=[−k/µ]′

(−1)l

(
n

l

)
bN,p(lµ + k), k = −1,−2, . . . ,−µn,

bN,p(k) =
N

∑
m=k

ap(m)dµ(m − k) = (D
µ
NaN,p)k, k = 0, 1, . . . , N,

where D
µ
N is the linear transformation in the space ℓ2 determined by an infinite matrix with

the entries (D
µ
N)k,j = dµ(j − k) if 0 ≤ k ≤ j ≤ N, and (D

µ
N)k,j = 0 if j < k or j, k > N,

D
µ
NaN = {D

µ
NaN,p}

T
p=1, aN,p = (ap(0), ap(1), ap(2), . . . , ap(N), 0, . . .)⊤, p = 1, 2, . . . , T.
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Denote by ∆( f , Â~ξ) := E|A~ξ − Â~ξ|2 the mean square error of the estimate Â~ξ of the

functional A~ξ and let ∆( f , B̂~ξ) := E|B~ξ − B̂~ξ|2 denote the mean square error of the esti-

mate B̂~ξ of the functional B~ξ. Since the functional V~ξ depends on the observed values ~ξ(k),

k = −1,−2, . . . ,−µn, the following equalities hold true

Â~ξ = B̂~ξ − V~ξ, (13)

∆( f ; Â~ξ) = E|A~ξ − Â~ξ|2 = E|B~ξ − V~ξ − B̂~ξ + V~ξ|2 = E|B~ξ − B̂~ξ|2 = ∆( f ; B̂~ξ).

Thus, it is sufficient to find an optimal linear estimate of the functional B~ξ in order to find

the optimal linear estimate of the functional A~ξ. This estimate can be found with the help of

the Hilbert space projection method proposed by A.N. Kolmogorov (see [17, p. 228]).

Denote by H0−(~ξ(n)) the closed linear subspace generated by the elements {ξ
(n)
p (k, µ) : p =

1, 2, . . . , T, k = −1,−2,−3, . . . } of the Hilbert space H = L2(Ω,F , P).

Denote by L0−
2 ( f ) the subspace of the Hilbert space L2( f ) of vector-valued functions with

the inner product

〈g1; g2〉L2
=

∫ π

−π
(g1(λ))

⊤ f (λ)g2(λ) dλ,

which is generated by the functions eiλk(1 − e−iλµ)nδl/(iλ)
n , δl = {δlp}

T
p=1, l = 1, 2, . . . , T,

k = −1,−2,−3, . . . , where δlp is Kronecker symbol.

The relation

ξ
(n)
p (k, µ) =

∫ π

−π
eiλk(1 − e−iλµ)n 1

(iλ)n
dZp(λ), p = 1, 2, . . . , T,

implies one-to-one correspondence between elements ξ
(n)
p (k, µ) of the space H0−(~ξ

(n)
µ ) and

elements eiλk(1 − e−iλµ)n(iλ)−n of the space L0−
2 ( f ).

The functional B~ξ allows the spectral representation

B~ξ =
∫ π

−π

(
~Bµ(e

iλ)
)⊤ (1 − e−iµλ)n

(iλ)n
d~Zξ(n)(λ),

where ~Bµ(eiλ) = ∑
∞
k=0

~b(k)eiλk = ∑
∞
k=0(Dµa)keiλk.

Relation (13) implies that every linear estimate Â~ξ of the functional A~ξ allows the repre-

sentation

Â~ξ =
∫ π

−π
(~hµ(λ))

⊤d~Zξ(n)(λ)−
−1

∑
k=−µn

(~vµ(k))
⊤~ξ(k), (14)

where~hµ(λ) = {hp(λ)}T
p=1 is the spectral characteristic of the estimate B̂~ξ, which can be found

as a projection of the element ~Bµ(eiλ)(1 − e−iλµ)n/(iλ)n on the subspace L0−
2 ( f ). This estimate

is characterized by the following conditions:

~hµ(λ) ∈ L0−
2 ( f ), (15)

(
~Bµ(e

iλ)
(1 − e−iλµ)n

(iλ)n
−~hµ(λ)

)
⊥ L0−

2 ( f ). (16)

From the condition (16) we obtain the following relation

∫ π

−π

(
~Bµ(e

iλ)
(1 − e−iµλ)n

(iλ)n
−~hµ(λ)

)⊤
f (λ)e−ikλ (1 − eiµλ)n

(−iλ)n
dλ = 0, (17)
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which holds true for all k 6 −1.

Thus, the spectral characteristic of the estimate B̂~ξ can be represented in the form

(~hµ(λ))
⊤ = (~Bµ(e

iλ))⊤
(1 − e−iλµ)n

(iλ)n
−

(−iλ)n(~Cµ(eiλ))⊤

(1 − eiλµ)n
f−1(λ), ~Cµ(e

iλ) =
∞

∑
k=0

~cµ(k)e
ikλ,

where~c(k) = {cp(k)}T
p=1, k > 0, are unknown coefficients to be found.

Condition (15) implies that the spectral characteristic ~hµ(λ) can be presented as ~hµ(λ) =
~h(λ)(1 − e−iλµ)n/(iλ)n ,~h(λ) = ∑

∞
k=1~s(k)e

−iλk. The latter representation of the spectral char-

acteristic~hµ(λ) allows us to write the relations

∫ π

−π

[
(~Bµ(e

iλ))⊤ −
λ2n(~Cµ(eiλ))⊤

(1 − e−iλµ)n(1 − eiλµ)n
f−1(λ)

]
e−ijλ dλ = 0, j > 0. (18)

Next we define the Fourier coefficients of the function λ2n|1 − eiλµ|−2n f−1(λ):

F
µ
k,j =

1

2π

∫ π

−π
eiλ(j−k) λ2n

|1 − eiλµ|2n
f−1(λ) dλ, k, j ≥ 0.

Making use of the defined Fourier coefficients, relation (18) can be presented as a system of

linear equations ~bµ(j) = ∑
∞
k=0 F

µ
j,k~cµ(k), j ≥ 0, determining the unknown coefficients ~cµ(k),

k ≥ 0.

Rewrite this system in the matrix form

Dµa = Fµcµ, (19)

where cµ = ((~cµ(0))⊤, (~cµ(1))⊤ , (~cµ(2))⊤, . . .)⊤, a = ((~a(0))⊤ , (~a(1))⊤ , (~a(2))⊤, . . .)⊤, Fµ is a

linear operator in the space ℓ2, which is determined by a matrix with the T × T matrix entries

(Fµ)l,k = F
µ
l,k, l, k ≥ 0, the linear transformation Dµ is defined in Lemma 1.

To show that the operator Fµ is invertible we note that the problem of projection of the

element B~ξ of the Hilbert space H on the closed convex set H0−(~ξ
(n)
µ ) has a unique solution for

each non-zero coefficients {~a(0),~a(1)),~a(2), . . .}, satisfying conditions (11). Therefore, equa-

tion (19) has a unique solution for each vector Dµa, which implies existence of the inverse

operator F−1
µ .

So, the coefficients ~cµ(k), k ≥ 0, which determine the spectral characteristic~hµ(λ), can be

calculated as~cµ(k) = (F−1
µ Dµa)k, k ≥ 0, where (F−1

µ Dµa)k, k ≥ 0, is the kth T-dimension vector

element of the vector F−1
µ Dµa.

The spectral characteristic ~hµ(λ) of the optimal estimate B̂~ξ of the functional B~ξ can be

calculated by the formula

(~hµ(λ))
⊤ = (~Bµ(e

iλ))⊤
(1 − e−iλµ)n

(iλ)n
−

(−iλ)n(∑∞
k=0(F

−1
µ Dµa)keikλ)⊤

(1 − eiλµ)n
f−1(λ). (20)

The value of the mean square error of the estimate Â~ξ is calculated by the formula

∆( f ; Â~ξ) = ∆( f ; B̂~ξ) = E|B~ξ − B̂~ξ|2

=
1

2π

∫ π

−π

(−iλ)n(∑∞
k=0(F

−1
µ Dµa)keikλ)⊤

(1 − eiλµ)n
f (λ)

(iλ)n (∑∞
k=0(F

−1
µ Dµa)keikλ)

(1 − e−iλµ)n
dλ

= 〈Dµa, F−1
µ Dµa〉.

(21)
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Next consider the case, where the spectral density f (λ) = { fij(λ)}
T
i,j=1 of the stochastic

sequence ~ξ(m) admits the canonical factorization

f (λ) = Φ(e−iλ)Φ∗(e−iλ),
|1 − e−iλµ|2n

λ2n
f (λ) = Φµ(e

−iλ)Φ∗
µ(e

−iλ), (22)

where Φ(e−iλ) = ∑
∞
k=0 ϕ(k)e−ikλ, Φµ(e−iλ) = ∑

∞
k=0 ϕµ(k)e−ikλ, ϕµ(k) = {ϕij(k)}

j=1,q

i=1,T
, k =

0, 1, 2, . . . . Define the matrix-valued function Ψµ(e−iλ) = {Ψij(e
−iλ)}

j=1,T

i=1,q
by the equation

Ψµ(e−iλ)Φµ(e−iλ) = Eq, where Eq is the identity q × q matrix.

Formulas for calculation the spectral characteristic and the value of the mean square error

can be presented in terms of the coefficients {ϕµ(k) : k = 0, 1, 2, . . . }. One can check that

relation (17) is satisfied by the function

~hµ(λ) =
(1 − e−iλµ)n

(iλ)n
(~Bµ(e

iλ)− (Ψµ(e
−iλ))⊤~rµ(e

iλ)), (23)

where~rµ(eiλ) = ∑
∞
k=0(DµAϕµ)keiλk, (DµAϕµ)k = ∑

∞
m=0 ∑

∞
l=k(ϕµ(m))⊤~a(m+ l)dµ(l − k), A is a

linear symmetric operator, which is determined by the matrix with the entries Ak,j =~a(k + j),

k, j ≥ 0. Note that under the conditions (11) the operators DµA and A are compact.

The value of the mean square error is calculated by the formula

∆( f ; Â~ξ) =
1

2π

∫ π

−π

( ∞

∑
k=0

(DµAϕµ)keiλk

)⊤( ∞

∑
k=0

(DµAϕµ)keiλk

)
dλ

=
1

2π

∫ π

−π
‖~rµ(e

iλ)‖2 dλ = ‖DµAϕµ‖
2.

(24)

The derived results are summarized in the following theorem.

Theorem 5. Let a vector-valued stochastic sequence {~ξ(m), m ∈ Z} determine a station-

ary stochastic nth increment sequence ~ξ(n)(m, µ) with the spectral density matrix f (λ) =

{ fij(λ)}
T
i,j=1, which satisfy the minimality condition (12). Let coefficients ~a(j), j > 0, satisfy

conditions (11). Then the optimal linear estimate Â~ξ of the functional A~ξ based on observa-

tions of the sequence ~ξ(m) at points m = −1,−2, . . . is calculated by formula (14). The spectral

characteristic~hµ(λ) = {hp(λ)}T
p=1 and the value of the mean square error ∆( f ; Â~ξ) of the op-

timal estimate Â~ξ are calculated by formulas (20) and (21) respectively. In the case, when the

spectral density f (λ) admits the canonical factorization (22), the spectral characteristic and the

value of the mean square error of the optimal estimate Âξ can be calculated by formulas (23)

and (24) respectively.

Theorem 5 allows us to find the optimal estimate ÂN
~ξ of the functional AN

~ξ, which de-

pends on the unobserved values ~ξ(m), m = 0, 1, 2, . . . , N, based on observations of the se-

quence ~ξ(m) at points m = −1,−2, . . . . Put~a(k) = 0 for k > N. Then we get that the spectral

characteristic~hµ,N(λ) of the optimal estimate

ÂN
~ξ =

∫ π

−π
(~hµ,N(λ))

⊤d~Zξ(n)(λ)−
−1

∑
k=−µn

(~vN(k))
⊤~ξ(k) (25)
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is calculated by the formula

(~hµ,N(λ))
⊤ = (~Bµ,N(e

iλ))⊤
(1 − e−iλµ)n

(iλ)n
−

(−iλ)n(∑∞
k=0(F

−1
µ,N D

µ
NaN)keikλ)⊤

(1 − eiλµ)n
f−1(λ), (26)

where Bµ,N(e
iλ) = ∑

N
k=0(D

µ
NaN)keiλk, the linear transformation D

µ
N is defined in Corollary 1,

Fµ,N is a linear operator in the space ℓ2, which is determined by a matrix with the T × T matrix

entries (Fµ,N)l,m = F
µ
l,m, l ≥ 0, 0 ≤ m ≤ N, and (Fµ,N)l,m = 0, l ≥ 0, m > N. The value of the

mean square error of the optimal estimate ÂNξ is calculated by formula

∆( f , ÂN
~ξ) = ∆( f , B̂N

~ξ) = E|BN
~ξ − B̂N

~ξ|2

=
1

2π

∫ π

−π

(−iλ)n(∑∞
k=0(F

−1
µ,N D

µ
NaN)keikλ)⊤

(1 − eiλµ)n
f (λ)

(iλ)n (∑∞
k=0(F

−1
µ,N D

µ
NaN)keikλ)

(1 − e−iλµ)n
dλ

= 〈D
µ
NaN , F−1

µ,ND
µ
NaN〉. (27)

In the case, when the spectral density f (λ) admits the canonical factorization (22), the

spectral characteristic can be calculated by the formula

~hµ,N(λ) =
(1 − e−iλµ)n

(iλ)n
(~Bµ,N(e

iλ)− (Ψµ(e
−iλ))⊤~rµ,N(e

iλ)), (28)

~rµ,N(e
iλ) =

N

∑
k=0

(D̃
µ
NAN ϕµ,N)keikλ, (D̃

µ
NAN ϕµ,N)k =

N

∑
m=0

N

∑
l=k

(ϕµ(m))⊤~a(m + l)dµ(l − k),

where ϕµ,N = (ϕµ(0), ϕµ(1), . . . , ϕµ(N)), AN is a linear operator determined by the coefficients

~a(k), k = 0, 1, . . . , N, as follows: (AN)k,j = ~a(k + j), 0 ≤ k + j ≤ N, (AN)k,j = 0, k + j > N,

0 ≤ k, j ≤ N, D̃
µ
N is the matrix of the dimension (N + 1)× (N + 1), determined by the coeffi-

cients (D̃
µ
N)k,j = dµ(j − k) if 0 ≤ k ≤ j ≤ N and (D̃

µ
N)k,j = 0 if 0 ≤ j < k ≤ N.

The value of the mean square error is calculated by the formula

∆( f ; ÂN
~ξ) =

1

2π

∫ π

−π

( N

∑
k=0

(D̃
µ
NAN ϕµ,N)keikλ

)⊤( N

∑
k=0

(D̃
µ
NAN ϕµ,N)keikλ

)
dλ

=
1

2π

∫ π

−π
‖~rµ,N(e

iλ)‖2 dλ = ‖D̃
µ
NAN ϕµ,N‖

2.

(29)

Thus, the following theorem holds true.

Theorem 6. Let {~ξ(m), m ∈ Z} be a stochastic sequence, which determine a stationary

stochastic nth increment sequence ~ξ(n)(m, µ) with the spectral density matrix f (λ), which sat-

isfy the minimality condition (12). The optimal linear estimate ÂN
~ξ of the functional AN

~ξ,

based on observations of the sequence ~ξ(m) at points m = −1,−2, . . ., is calculated by the

formula (25). The spectral characteristic~hµ,N(λ) = {hµ,N,p(λ)}
T
p=1 and the value of the mean

square error ∆( f ; ÂN
~ξ) are calculated by formulas (26) and (27) respectively. In the case, when

the spectral density f (λ) admits the canonical factorization (22), the spectral characteristic
~hµ,N(λ) and the value of the mean square error of the optimal estimate ÂN

~ξ can be calculated

by formulas (28) and (29) respectively.
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As a corollary from the proposed theorem, one can obtain the mean square optimal esti-

mate of the unobserved value AN,p
~ξ = ξp(N) = ~ξ(N)δp, p = 1, 2, . . . , T, N ≥ 0, of the stochas-

tic sequence with nth stationary increments based on observations of the sequence ~ξ(m) at

points m = −1,−2, . . . .

Corollary 2. The optimal linear estimate ξ̂p(N) of the unobserved value ξp(N), p = 1, . . . , T,

N ≥ 0, of the stochastic sequence with nth stationary increments from observations of the

sequence ~ξ(m) at points m = −1,−2, . . . is calculated by the formula

ξ̂p(N) =
∫ π

−π
(~hµ,N,p(λ))

⊤d~Zξ(n)(λ)−
−1

∑
k=−µn

(~vN(k))
⊤~ξ(k). (30)

The spectral characteristic~hµ,N,p(λ) of the estimate is calculated by the formula

(~hµ,N,p(λ))
⊤ =

(1 − e−iλµ)n

(iλ)n

(
δp

N

∑
k=0

dµ(N − k)eiλk

)⊤

−
(−iλ)n(∑∞

k=0(F
−1
µ,Ndµ,N)keikλ)⊤

(1 − eiλµ)n
f−1(λ),

(31)

where dµ,N = (dµ(N), dµ(N − 1), dµ(N − 2), . . . , dµ(0), 0, . . .)⊤. The value of the mean square

error of the optimal estimate is calculated by the formula

∆( f ; ξ̂p(N)) = ∆( f ; ξ̂
(n)
p (N, µ)) = E|ξ

(n)
p (N, µ)− ξ̂

(n)
p (N, µ)|2

=
1

2π

∫ π

−π

(−iλ)n(∑∞
k=0(F

−1
µ,Ndµ,N)keikλ)⊤

(1 − eiλµ)n
f (λ)

(iλ)n (∑∞
k=0(F

−1
µ,Ndµ,N)keikλ)

(1 − e−iλµ)n
dλ

= 〈dµ,N , F−1
µ,Ndµ,N〉.

(32)

In the case, when the spectral density f (λ) admits the canonical factorization (22), the spectral

characteristic and the value of the mean square error of the optimal estimate ξ̂p(N) can be

calculated by the formulas

~hµ,N,p(λ) =
(1 − e−iλµ)n

(iλ)n
eiNλ

[
δp − (Ψµ(e

−iλ))⊤
( N

∑
k=0

ϕµ(k)e
−iλk

)⊤

δp

]
, (33)

∆( f ; ξ̂p(N)) =
1

2π

∫ π

−π

[
(δp)

⊤
N

∑
k=0

ϕµ(k)e
−iλk

][
(δp)

⊤
N

∑
k=0

ϕµ(k)e
−iλk

]∗
dλ

=
N

∑
k=0

q

∑
j=1

|ϕµ,p,j(k)|
2 .

(34)

Remark 1. Since for all n ≥ 1 and µ ≥ 1 the condition
∫ π

−π

∣∣∣ ln
|1 − e−iλµ|2n

λ2n

∣∣∣dλ < ∞

holds true, there exists a function wµ(z) = ∑
∞
k=0 wµ(k)zk , ∑

∞
k=0 |wµ(k)|2 < ∞, such that (see [11,

pp. 151–157]) |1 − e−iλµ|2n = λ2n|wµ(e−iλ)|2. In particular, the function wµ(z) can be calculated

by the formula

wµ(z) = exp

{
1

4π

∫ π

−π

eiλ + z

eiλ − z
ln

|1 − e−iλµ|2n

λ2n
dλ

}
.
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Then the following relation

Φµ(e
−iλ) = wµ(e

−iλ)Φ(e−iλ). (35)

holds true. Relation (35) implies the following relationship ϕµ(k) = ∑
k
j=0 wµ(k − j)ϕ(j),

k = 0, 1, . . . , that is ϕµ,ij(k) = ∑
k
m=0 wµ(k−m)ϕij(m), i = 1, 2, . . . , T, j = 1, 2, . . . , q, k = 0, 1, . . . .

This relation can be represented in the form ϕµ = Wµϕ, where ϕµ = (ϕµ(0), ϕµ(1), ϕµ(2), . . .)⊤

and ϕ = (ϕ(0), ϕ(1), ϕ(2), . . .)⊤ are vectors composed from matrices ϕµ(k) = {ϕµ,ij(k)}
j=1,q

i=1,T
,

k = 0, 1, 2, . . . , and ϕ(k) = {ϕij(k)}
j=1,q

i=1,T
, k = 0, 1, 2, . . . , and where Wµ is a linear operator

determined by the matrix with elements (Wµ)j,k = wµ(j − k) if 0 ≤ k ≤ j and (Wµ)j,k = 0 if

0 ≤ j < k.

Consider the problem of mean square optimal linear estimation of the functionals Aζ =

∑
∞
k=0 a(ζ)(k)ζ(k), AMζ = ∑

N
k=0 a(ζ)(k)ζ(k), which depend on unobserved values of a stochastic

sequence ζ(k) with periodically stationary increments. Estimates are based on observations of

the sequence ζ(k) at points k = −1,−2, . . . .

The functional Aζ can be represented in the form

Aζ =
∞

∑
k=0

a(ζ)(k)ζ(k) =
∞

∑
m=0

T

∑
p=1

a(ζ)(mT + p − 1)ζ(mT + p − 1)

=
∞

∑
m=0

T

∑
p=1

ap(m)ξp(m) =
∞

∑
m=0

(~a(m))⊤~ξ(m) = A~ξ,

where for m ∈ Z

~ξ(m) = (ξ1(m), ξ2(m), . . . , ξT(m))⊤, ξp(m) = ζ(mT + p − 1), p = 1, 2, . . . , T, (36)

~a(m) = (a1(m), a2(m), . . . , aT(m))⊤, ap(m) = a(ζ)(mT + p − 1), p = 1, 2, . . . , T. (37)

Making use of the introduced notations and statements of Theorem 5 we can claim that the

following theorem holds true.

Theorem 7. Let a stochastic sequence ζ(k) with periodically stationary increments generate by

(36) a vector-valued stochastic sequence ~ξ(m), which determine a stationary stochastic nth in-

crement sequence ~ξ(n)(m, µ) with the spectral density matrix f (λ) = { fij(λ)}
T
i,j=1 that satisfy

the minimality condition (12). Let coefficients~a(k), k > 0, determined by formula (37), satisfy

conditions (11). Then the optimal linear estimate Âζ of the functional Aζ based on observa-

tions of the sequence ζ(m) at points m = −1,−2, . . . is calculated by formula (14). The spectral

characteristic~hµ(λ) = {hp(λ)}T
p=1 and the value of the mean square error ∆( f ; Âζ) of the op-

timal estimate Âζ are calculated by formulas (20) and (21) respectively. In the case, when the

spectral density matrix f (λ) admits the canonical factorization (22), the spectral characteris-

tic and the value of the mean square error of the optimal estimate Âξ can be calculated by

formulas (23) and (24) respectively.

The functional AMζ can be represented in the form

AMζ =
M

∑
k=0

a(ζ)(k)ζ(k) =
N

∑
m=0

T

∑
p=1

a(ζ)(mT + p − 1)ζ(mT + p − 1) =

=
N

∑
m=0

T

∑
p=1

ap(m)ξp(m) =
N

∑
m=0

(~a(m))⊤~ξ(m) = AN
~ξ,
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where N = [M/T], ~ξ(m) is determined by formula (36),~a(m) = (a1(m), a2(m), . . . , aT(m))⊤,

ap(m) = a(ζ)(mT + p − 1), 0 ≤ m ≤ N, 1 ≤ p ≤ T, mT + p − 1 ≤ M,

ap(N) = 0, M + 1 ≤ NT + p − 1 ≤ (N + 1)T − 1, 1 ≤ p ≤ T.
(38)

Making use of the introduced notations and statements of Theorem 6 we can claim that the

following theorem holds true.

Theorem 8. Let a stochastic sequence ζ(k) with periodically stationary increments generate by

(36) a vector-valued stochastic sequence ~ξ(m), which determine a stationary stochastic nth in-

crement sequence ~ξ(n)(m, µ) with the spectral density matrix f (λ) = { fij(λ)}
T
i,j=1 that satisfy

the minimality condition (12). Let coefficients~a(k), k > 0, be determined by formula (38). The

optimal linear estimate ÂMζ of the functional AMζ = AN
~ξ based on observations of the se-

quence ζ(m) at points m = −1,−2, . . . is calculated by formula (25). The spectral characteristic
~hµ,N(λ) = {hµ,N,p(λ)}

T
p=1 and the value of the mean square error ∆( f ; ÂMζ) are calculated by

formulas (26) and (27) respectively. In the case, when the spectral density matrix f (λ) ad-

mits the canonical factorization (22), the spectral characteristic ~hµ,N(λ) and the value of the

mean square error of the optimal estimate ÂMζ can be calculated by formulas (28) and (29)

respectively.

As a corollary from the proposed theorem, one can obtain the mean square optimal esti-

mate of the unobserved value ζ(M), M ≥ 0, of a stochastic sequence ζ(m) with periodically

stationary increments based on observations of the sequence ζ(m) at points m = −1,−2, . . . .

Making use of the notations ζ(M) = ξp(N) = ~ξ(N)δp, N = [M/T], p = M + 1 − NT, and the

obtained results we can conclude that the following corollary holds true.

Corollary 3. Let a stochastic sequence ζ(k) with periodically stationary increments generate by

formula (36) a vector-valued stochastic sequence~ξ(m), which determine a stationary stochastic

nth increment sequence ~ξ(n)(m, µ) with the spectral density matrix f (λ) = { fij(λ)}
T
i,j=1 that

satisfy the minimality condition (12). The optimal linear estimate ζ̂(M) of the unobserved

value ζ(M), M ≥ 0, of a stochastic sequence ζ(m) with periodically stationary increments

based on observations of the sequence ζ(m) at points m = −1,−2, . . . is calculated by formula

(30). The spectral characteristic~hµ,N,p(λ) of the estimate is calculated by the formula (31). The

value of the mean square error of the optimal estimate is calculated by the formula (32). In

the case, when the spectral density f (λ) admits the canonical factorization (22), the spectral

characteristic and the value of the mean square error of the optimal estimate ζ̂(M) can be

calculated by the formulas (33), (34).

3 Minimax (robust) method of extrapolation

Values of the mean square errors and the spectral characteristics of the optimal estimates of

the functionals A~ξ and AN
~ξ depending on the unobserved values of a stochastic sequence

~ξ(m), which determine a stationary stochastic nth increment sequence ~ξ(n)(m, µ) with the

spectral density matrix f (λ), based on observations of the sequence ~ξ(m) at points

m = −1,−2, . . . , can be calculated by formulas (20), (21) and (26), (27) respectively, provided

the spectral density f (λ) of the stochastic sequence ~ξ(m) is exactly known. If the spectral den-

sity f (λ) admits the canonical factorization (22), formulas (23), (24) and (28), (29) can be used
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for calculating values of the mean square errors and the spectral characteristics, respectively.

However, in practical cases spectral densities of sequences usually are not exactly known. If in

such cases a set D of admissible spectral densities is defined, the minimax method of estima-

tion of functionals depending on unobserved values of stochastic sequences with stationary

increments may be applied. This method consists of finding an estimate that minimizes the

maximal values of the mean square errors for all spectral densities from a given class D of

admissible spectral densities simultaneously.

Definition 5. For a given class of spectral densities D a spectral density f0(λ) ∈ D is called

the least favourable in D for the optimal linear estimation of the functional A~ξ if the following

relation ∆( f0) = ∆(hµ( f0); f0) = max f∈D ∆(hµ( f ); f ) holds true.

Definition 6. For a given class of spectral densities D a spectral characteristic h0(λ) of the op-

timal linear estimate of the functional Aξ is called minimax-robust if the following conditions

h0(λ) ∈ HD =
⋂

f∈D L0−
2 ( f ), minh∈HD

max f∈D ∆(h; f ) = max f∈D ∆(h0; f ) are satisfied.

Taking into account the introduced definitions and the derived relations we can verify that

the following lemmas hold true.

Lemma 2. A spectral density f0(λ) ∈ D satisfying the minimality condition (12) is the least

favourable density in the class D for the optimal linear extrapolation of the functional A~ξ based

on observations of the sequence ~ξ(m) at points m = −1,−2, . . . if the operator F0
µ, defined by

the Fourier coefficients of the function f−1
0 (λ)λ2n/|1 − eiλµ|2n, determines a solution to the

constrained optimization problem

max
f∈D

〈Dµa, F−1
µ Dµa〉 = 〈Dµa, (F0

µ)
−1Dµa〉. (39)

The minimax spectral characteristic h0 = hµ( f 0) is calculated by formula (20) if hµ( f 0) ∈ HD.

Lemma 3. A spectral density f0(λ) ∈ D, which admits the canonical factorization (22), is the

least favourable density in the class D for the optimal linear extrapolation of the functional

A~ξ based on observations of the sequence ~ξ(m) at points m = −1,−2, . . . if the coefficients

{ϕ0(k) : k ≥ 0} of the canonical factorization f0(λ) = (∑∞
k=0 ϕ0(k)e−iλk)(∑∞

k=0 ϕ0(k)e−iλk)∗ of

the spectral density f 0(λ) determine a solution to the constrained optimization problem

‖DµAϕµ‖
2 → max, f (λ) =

( ∞

∑
k=0

ϕ(k)e−iλk

)( ∞

∑
k=0

ϕ(k)e−iλk

)∗

∈ D. (40)

The minimax spectral characteristic h0 = hµ( f0) is calculated by formula (23) if hµ( f 0) ∈ HD.

Lemma 4. A spectral density f0(λ) ∈ D, which admits the canonical factorization (22), is

the least favourable density in the class D for the optimal linear extrapolation of the func-

tional AN
~ξ based on observations of the sequence ~ξ(m) at points m = −1,−2, . . . if the coef-

ficients {ϕ0(k) : k = 0, 1, . . . , N} from the canonical factorization f0(λ) = (∑N
k=0 ϕ0(k)e−iλk)

×(∑N
k=0 ϕ0(k)e−iλk)∗ of the spectral density f0(λ) determine a solution to the constrained op-

timization problem ‖D
µ
NAN ϕµ,N‖

2 → max, f (λ) = (∑N
k=0 ϕ(k)e−iλk)(∑N

k=0 ϕ(k)e−iλk)∗ ∈ D.

The minimax spectral characteristic h0 = hµ( f0) is calculated by formula (28) if hµ,N( f 0) ∈ HD.
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For more detailed analysis of properties of the least favourable spectral densities and mini-

max-robust spectral characteristics we observe that the minimax spectral characteristic h0 and

the least favourable spectral density f0 form a saddle point of the function ∆(h; f ) on the set

HD ×D. The saddle point inequalities ∆(h; f0) ≥ ∆(h0; f0) ≥ ∆(h0; f ) ∀ f ∈ D, ∀ h ∈ HD hold

true if h0 = hµ( f0), hµ( f0) ∈ HD and f0 is a solution of the constrained optimization problem

∆̃( f ) = −∆(hµ( f0); f ) → inf, f ∈ D, (41)

where the functional ∆(hµ( f0); f ) is calculated by the formula

∆(hµ( f0); f ) =
1

2π

∫ π

−π

(−iλ)n(∑∞
k=0((F

0
µ)

−1Dµa)keikλ)⊤

(1 − eiλµ)n
f−1
0 (λ) f (λ)

× f−1
0 (λ)

(iλ)n(∑∞
k=0((F

0
µ)

−1Dµa)keikλ)

(1 − e−iλµ)n
dλ

or by the formula

∆(hµ( f0); f ) =
1

2π

∫ π

−π

(1 − e−iλµ)n

(iλ)n

( ∞

∑
k=0

(DµAϕ0
µ)keiλk

)⊤

Ψ0
µ(e

−iλ)

× f (λ)(Ψ0
µ(e

−iλ))∗
(1 − eiλµ)n

(−iλ)n

( ∞

∑
k=0

(DµAϕ0
µ)keiλk

)
dλ

in the case, when the spectral density admits the canonical factorization (22).

The constrained optimization problem (41) is equivalent to the unconstrained optimization

problem ∆D( f ) = ∆̃( f ) + δ( f |D) → inf, where δ( f |D) is the indicator function of the set D,

namely δ( f |D) = 0 if f ∈ D and δ( f |D) = +∞ if f /∈ D. A solution f0 of the unconstrained

optimization problem is characterized by the condition 0 ∈ ∂∆D( f0), which is the necessary

and sufficient condition under which a point f0 belongs to the set of minimums of the convex

functional ∆D( f ) (see, e.g., [35, Chapter 6]). This condition makes it possible to find the least

favourable spectral densities in some special classes of spectral densities D.

Note, that the form of the functional ∆̃( f ) allows us to apply the Lagrange method of in-

definite multipliers for investigating the constrained optimization problem (41). Therefore, the

complexity of optimization problem is determined by the complexity of calculating subdiffer-

entials of the indicator functions of sets of admissible spectral densities.

3.1 Least favourable spectral density in classes with integral restrictions

Consider the prediction problem for the functional A~ξ, which depends on unobserved val-

ues of a sequence ~ξ(m), with stationary increments based on observations of the sequence at

points m = −1,−2, . . . under the condition that the sets of admissible spectral densities Dk
0,

k = 1, 2, 3, 4, are defined as follows:

D1
0 =

{
f (λ) :

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
f (λ) dλ = P

}
,

D2
0 =

{
f (λ) :

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
Tr [ f (λ)] dλ = p

}
,

D3
0 =

{
f (λ) :

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
fkk(λ) dλ = pk, k = 1, T

}
,

D4
0 =

{
f (λ) :

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
〈B1, f (λ)〉 dλ = p

}
,
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where p, pk, k = 1, T are given numbers, P, B1, are given positive-definite Hermitian matrices.

Define ~C
f 0
µ (eiλ) = ∑

∞
k=0((F

0
µ)

−1Dµa)keikλ and~r 0
µ(e

iλ) = ∑
∞
k=0(DµAϕ0

µ)keiλk.

From the condition 0 ∈ ∂∆D( f0) we find the following equations, which determine the least

favourable spectral densities for these given sets of admissible spectral densities.

For the first set of admissible spectral densities D1
0 , we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ =

|1 − eiλµ|2n

|λ|2n
f0(λ)~α~α

∗ |1 − eiλµ|2n

|λ|2n
f0(λ), (42)

where~α is a vector of Lagrange multipliers.

For the second set of admissible spectral densities D2
0 , we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ =

|1 − eiλµ|2n

|λ|2n
f0(λ){α2

k δkl}
T
k,l=1

|1 − eiλµ|2n

|λ|2n
f0(λ), (43)

where α2
k are Lagrange multipliers, δkl are Kronecker symbols.

For the third set of admissible spectral densities D3
0, we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ = α2 |1 − eiλµ|2n

|λ|2n
f0(λ)B⊤

1
|1 − eiλµ|2n

|λ|2n
f0(λ), (44)

where α2 is a Lagrange multiplier.

For the fourth set of admissible spectral densities D4
0 , we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ = α2

(
|1 − eiλµ|2n

|λ|2n
f0(λ)

)2

, (45)

where α2 is a Lagrange multiplier.

In the case, when the spectral density admits the canonical factorization (22), we have the

following equations, correspondingly

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (Φ0
µ(e

−iλ))⊤~α~α∗Φ0
µ(e

−iλ), (46)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (Φ0
µ(e

−iλ))⊤{α2
kδkl}

T
k,l=1Φ0

µ(e
−iλ), (47)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = α2(Φ0
µ(e

−iλ))⊤B⊤
1 Φ0

µ(e
−iλ), (48)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = α2(Φ0
µ(e

−iλ))⊤Φ0
µ(e

−iλ). (49)

The following theorem holds true.

Theorem 9. The least favourable spectral densities f0(λ) in the classes Dk
0, k = 1, 2, 3, 4, for

the optimal linear extrapolation of the functional A~ξ from observations of the sequence ~ξ(m)

at points m = −1,−2, . . . are determined by the minimality condition (12), equations (42)–

(45) respectively, the constrained optimization problem (39) and restrictions on densities from

the corresponding classes Dk
0, k = 1, 2, 3, 4. The minimax-robust spectral characteristic of the

optimal estimate of the functional A~ξ is determined by the formula (20). In the case, when

spectral densities admit the canonical factorization (22), the least favourable spectral densities

f0(λ) are determined by the minimality condition (12), equations (46)–(49), respectively, the

constrained optimization problem (40), and restrictions on densities from the corresponding

classes Dk
0, k = 1, 2, 3, 4. The minimax-robust spectral characteristic of the optimal estimate of

the functional A~ξ is determined by the formula (23).
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3.2 Least favourable spectral density in classes with inequality restrictions

Consider the prediction problem for the functional A~ξ, which depends on unobserved val-

ues of a sequence ~ξ(m), with stationary increments based on observations of the sequence

at points m = −1,−2, . . . under the condition that the sets of admissible spectral densities

DU
V

k
, k = 1, 2, 3, 4, are defined as follows:

DU
V

1
=

{
f (λ) : V(λ) ≤ f (λ) ≤ U(λ),

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
f (λ) dλ = Q

}
,

DU
V

2
=

{
f (λ) : Tr [V(λ)] ≤ Tr [ f (λ)] ≤ Tr [U(λ)],

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
Tr [ f (λ)]dλ = q

}
,

DU
V

3
=

{
f (λ) : vkk(λ) ≤ fkk(λ) ≤ ukk(λ),

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
fkk(λ)dλ = qk, k = 1, T

}
,

DU
V

4
=

{
f (λ) : 〈B2, V(λ)〉 ≤ 〈B2, f (λ)〉 ≤ 〈B2, U(λ)〉,

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
〈B2, f (λ)〉 dλ = q

}
.

Here spectral densities V(λ), U(λ) are known and fixed, q, qk, k = 1, T are given numbers, Q,

B2 are given positive definite Hermitian matrices.

From the condition 0 ∈ ∂∆D( f0) we find the following equations, which determine the least

favourable spectral densities for these given sets of admissible spectral densities.

For the first set of admissible spectral densities DU
V

1
, we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ =

|1 − eiλµ|2n

|λ|2n
f0(λ)(~β~β

∗ + Γ1(λ) + Γ2(λ))
|1 − eiλµ|2n

|λ|2n
f0(λ), (50)

where ~β is a vector of Lagrange multipliers, Γ1(λ) ≤ 0 and Γ1(λ) = 0 if f0(λ) > V(λ),

Γ2(λ) ≥ 0 and Γ2(λ) = 0 if f0(λ) < U(λ).

For the second set of admissible spectral densities DU
V

2
, we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ = (β2 + γ1(λ) + γ2(λ))

(
|1 − eiλµ|2n

|λ|2n
f0(λ)

)2

, (51)

where β2 is Lagrange multiplier, γ1(λ) ≤ 0 and γ1(λ) = 0 if Tr [ f0(λ)] > Tr [V(λ)], γ2(λ) ≥ 0

and γ2(λ) = 0 if Tr [ f0(λ)] < Tr [U(λ)].

For the third set of admissible spectral densities DU
V

3
, we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗=

|1 − eiλµ|2n

|λ|2n
f0(λ){(β2

k + γ1k(λ) + γ2k(λ))δkl}
T
k,l=1

|1 − eiλµ|2n

|λ|2n
f0(λ), (52)

where β2
k are Lagrange multipliers, δkl are Kronecker symbols, γ1k(λ) ≤ 0 and γ1k(λ) = 0 if

f 0
kk(λ) > vkk(λ), γ2k(λ) ≥ 0 and γ2k(λ) = 0 if f 0

kk(λ) < ukk(λ).

For the fourth set of admissible spectral densities DU
V

4
, we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ = (β2 + γ′

1(λ) + γ′
2(λ))

|1 − eiλµ|2n

|λ|2n
f0(λ)B⊤

2
|1 − eiλµ|2n

|λ|2n
f0(λ), (53)

where β2 is Lagrange multiplier, γ′
1(λ) ≤ 0 and γ′

1(λ) = 0 if 〈B2, f0(λ)〉 > 〈B2, V(λ)〉,

γ′
2(λ) ≥ 0 and γ′

2(λ) = 0 if 〈B2, f0(λ)〉 < 〈B2, U(λ)〉.
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In the case, when the spectral density admits the canonical factorization (22), we have the

following equations, correspondingly

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (Φ0
µ(e

−iλ))⊤(~β~β∗ + Γ1(λ) + Γ2(λ))Φ0
µ(e

−iλ), (54)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (β2 + γ1(λ) + γ2(λ))(Φ
0
µ(e

−iλ))⊤ Φ0
µ(e

−iλ), (55)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (Φ0
µ(e

−iλ))⊤{(β2
k + γ1k(λ) + γ2k(λ))δkl}

T
k,l=1 Φ0

µ(e
−iλ), (56)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (β2 + γ′
1(λ) + γ′

2(λ))(Φ
0
µ(e

−iλ))⊤B⊤
2 Φ0

µ(e
−iλ). (57)

The following theorem holds true.

Theorem 10. The least favourable spectral densities f0(λ) in the classes DU
V

k
, k = 1, 2, 3, 4, for

the optimal linear extrapolation of the functional A~ξ from observations of the sequence ~ξ(m)

at points m = −1,−2, . . . are determined by the minimality condition (12), equations (50)–(53),

respectively, the constrained optimization problem (39), and restrictions on densities from the

corresponding classes DU
V

k
, k = 1, 2, 3, 4. The minimax-robust spectral characteristic of the

optimal estimate of the functional A~ξ is determined by the formula (20). In the case, when

spectral densities admit the canonical factorization (22), the least favourable spectral densities

f0(λ) are determined by the minimality condition (12), equations (54)–(57), respectively, the

constrained optimization problem (40) and restrictions on densities from the corresponding

DU
V

k
, k = 1, 2, 3, 4. The minimax-robust spectral characteristic of the optimal estimate of the

functional A~ξ is determined by the formula (23).

3.3 Least favourable spectral density in classes of “ε-contaminated” densities

Consider the prediction problem for the functional A~ξ, which depends on unobserved val-

ues of a sequence ~ξ(m), with stationary increments based on observations of the sequence at

points m = −1,−2, . . . under the condition that the sets of admissible spectral densities Dk
ε ,

k = 1, 2, 3, 4, are defined as follows:

D1
ε =

{
f (λ) : Tr [ f (λ)] =

Tr [ f1(λ)]

(1 − ε)−1
+ εTr [W(λ)],

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
Tr [ f (λ)] dλ = p

}
,

D2
ε =

{
f (λ) : fkk(λ) =

f 1
kk(λ)

(1 − ε)−1
+ εwkk(λ),

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
fkk(λ) dλ = pk, k = 1, T

}
,

D3
ε =

{
f (λ) : 〈B1, f (λ)〉 =

〈B1, f1(λ)〉

(1 − ε)−1
+ ε〈B1, W(λ)〉,

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
〈B1, f (λ)〉dλ = p

}
,

D4
ε =

{
f (λ) : f (λ) = (1 − ε) f1(λ) + εW(λ),

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
f (λ) dλ = P

}
.

Here f1(λ) is a fixed spectral density, W(λ) is an unknown spectral density, p, pk, k = 1, T, are

given numbers, P is a given positive-definite Hermitian matrices.

From the condition 0 ∈ ∂∆D( f0) we find the following equations, which determine the least

favourable spectral densities for these given sets of admissible spectral densities.

For the first set of admissible spectral densities D1
ε , we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ = (α2 + γ1(λ))

(
|1 − eiλµ|2n

|λ|2n
f0(λ)

)2

, (58)
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where α2 is Lagrange multiplier, γ1(λ) ≤ 0 and γ1(λ) = 0 if Tr [ f0(λ)] > (1 − ε)Tr [ f1(λ)].

For the second set of admissible spectral densities D2
ε , we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ =

|1 − eiλµ|2n

|λ|2n
f0(λ){(α

2
k + γ1

k(λ))δkl}
T
k,l=1

|1 − eiλµ|2n

|λ|2n
f0(λ), (59)

where α2
k are Lagrange multipliers, γ1

k(λ) ≤ 0 and γ1
k(λ) = 0 if f 0

kk(λ) > (1 − ε) f 1
kk(λ).

For the third set of admissible spectral densities D3
ε , we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ = (α2 + γ′

1(λ))
|1 − eiλµ|2n

|λ|2n
f0(λ))B⊤

1
|1 − eiλµ|2n

|λ|2n
f0(λ), (60)

where α2 is a Lagrange multiplier, γ′
1(λ) ≤ 0 and γ′

1(λ) = 0 if 〈B1, f0(λ)〉 > (1 − ε)〈B1, f1(λ)〉.

For the fourth set of admissible spectral densities D4
ε , we derive equation

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ =

|1 − eiλµ|2n

|λ|2n
f0(λ)(~α ·~α∗ + Γ(λ))

|1 − eiλµ|2n

|λ|2n
f0(λ), (61)

where~α is a vector of Lagrange multipliers, Γ(λ) ≤ 0 and Γ(λ) = 0 if f0(λ) > (1 − ε) f1(λ).

In the case, when the spectral density admits the canonical factorization (22), we have the

following equations, correspondingly

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (α2 + γ1(λ))(Φ
0
µ(e

−iλ))⊤Φ0
µ(e

−iλ), (62)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (Φ0
µ(e

−iλ))⊤{(α2
k + γ1

k(λ))δkl}
T
k,l=1Φ0

µ(e
−iλ), (63)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (α2 + γ′
1(λ))(Φ

0
µ(e

−iλ))⊤B⊤
1 Φ0

µ(e
−iλ), (64)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (Φ0
µ(e

−iλ))⊤(~α ·~α∗ + Γ(λ))Φ0
µ(e

−iλ). (65)

The following theorem holds true.

Theorem 11. The least favourable spectral densities f0(λ) in the classes Dk
ε , k = 1, 2, 3, 4, for

the optimal linear extrapolation of the functional A~ξ from observations of the sequence ~ξ(m)

at points m = −1,−2, . . . are determined by the minimality condition (12), equations (58)–

(61), respectively, the constrained optimization problem (39) and restrictions on densities from

the corresponding classes Dk
ε , k = 1, 2, 3, 4. The minimax-robust spectral characteristic of the

optimal estimate of the functional A~ξ is determined by the formula (20). In the case, when

spectral densities admit the canonical factorization (22), the least favourable spectral densities

f0(λ) are determined by the minimality condition (12), equations(62)–(65), respectively, the

constrained optimization problem (40) and restrictions on densities from the corresponding

classes Dk
ε , k = 1, 2, 3, 4. The minimax-robust spectral characteristic of the optimal estimate of

the functional A~ξ is determined by the formula (23).

3.4 Least favourable spectral density in classes which describe “δ-neighborhood” models

Consider the prediction problem for the functional A~ξ, which depends on unobserved val-

ues of a sequence ~ξ(m), with stationary increments based on observations of the sequence at

points m = −1,−2, . . . under the condition that the sets of admissible spectral densities Dk
1δ,
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k = 1, 2, 3, 4, are defined as follows:

D1
1δ =

{
f (λ) :

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
‖Tr( f (λ) − f1(λ))| dλ ≤ δ

}
,

D2
1δ =

{
f (λ) :

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
| fkk(λ)− f 1

kk(λ)| dλ ≤ δk, k = 1, T

}
,

D3
1δ =

{
f (λ) :

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
|〈B2, f (λ)− f1(λ)〉| dλ ≤ δ

}
,

D4
1δ =

{
f (λ) :

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
| fij(λ)− f 1

ij(λ)| dλ ≤ δ
j
i , i, j = 1, T

}
.

Here f1(λ) is a fixed spectral density, δ, δk, k = 1, T, δ
j
i , i, j = 1, T, are given numbers.

From the condition 0 ∈ ∂∆D( f0) we find the following equations, which determine the least

favourable spectral densities for these given sets of admissible spectral densities.

For the first set of admissible spectral densities D1
1δ, we derive equations

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ = β2γ2(λ)

(
|1 − eiλµ|2n

|λ|2n
f0(λ)

)2

, (66)

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
|Tr ( f0(λ)− f1(λ))| dλ = δ, (67)

where β2 is Lagrange multiplier, |γ2(λ)| ≤ 1, γ2(λ) = sign (Tr ( f0(λ) − f1(λ))) : Tr ( f0(λ) −

f1(λ)) 6= 0.

For the second set of admissible spectral densities D2
1δ, we derive equations

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ =

|1 − eiλµ|2n

|λ|2n
f0(λ){β2

k γ2
k(λ)δkl}

T
k,l=1

|1 − eiλµ|2n

|λ|2n
f0(λ), (68)

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
| f 0

kk(λ)− f 1
kk(λ)| dλ = δk, (69)

where β2
k are Lagrange multipliers, |γ2

k(λ)| ≤ 1 and γ2
k(λ) = sign ( f 0

kk(λ)− f 1
kk(λ)) : f 0

kk(λ)−

f 1
kk(λ) 6= 0, k = 1, T.

For the third set of admissible spectral densities D3
1δ, we derive equations

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ = β2γ′

2(λ)
|1 − eiλµ|2n

|λ|2n
f0(λ)B⊤

2
|1 − eiλµ|2n

|λ|2n
f0(λ), (70)

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
|〈B2, f0(λ)− f1(λ)〉| dλ = δ, (71)

where β2 is a Lagrange multiplier, |γ′
2(λ)| ≤ 1, γ′

2(λ) = sign 〈B2, f0(λ)− f1(λ)〉 : 〈B2, f0(λ)−

f1(λ)〉 6= 0.

For the fourth set of admissible spectral densities D4
1δ, we derive equations

~C
f 0
µ (eiλ)(~C

f 0
µ (eiλ))∗ =

|1 − eiλµ|2n

|λ|2n
f0(λ){βij(λ)γij(λ)}

T
i,j=1

|1 − eiλµ|2n

|λ|2n
f0(λ), (72)

1

2π

∫ π

−π

|1 − eiλµ|2n

|λ|2n
| f 0

ij(λ)− f 1
ij(λ)| dλ = δ

j
i , (73)
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where βij are Lagrange multipliers, |γij(λ)| ≤ 1, γij(λ) = ( f 0
ij(λ)− f 1

ij(λ))/| f 0
ij(λ)− f 1

ij(λ)| :

f 0
ij(λ)− f 1

ij(λ) 6= 0, i, j = 1, T.

In the case, when the spectral density admits the canonical factorization (22), we have the

following equations, correspondingly

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = β2γ2(λ)(Φ
0
µ(e

−iλ))⊤Φ0
µ(e

−iλ), (74)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (Φ0
µ(e

−iλ))⊤{β2
kγ2

k(λ)δkl}
T
k,l=1Φ0

µ(e
−iλ), (75)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = β2γ′
2(λ)(Φ

0
µ(e

−iλ))⊤B⊤
2 Φ0

µ(e
−iλ), (76)

~r 0
µ(e

iλ)(~r 0
µ(e

iλ))∗ = (Φ0
µ(e

−iλ))⊤{βij(λ)γij(λ)}
T
i,j=1Φ0

µ(e
−iλ). (77)

The following theorem holds true.

Theorem 12. The least favourable spectral densities f0(λ) in the classes Dk
1δ, k = 1, 2, 3, 4, for

the optimal linear extrapolation of the functional A~ξ from observations of the sequence ~ξ(m)

at points m = −1,−2, . . . are determined by the minimality condition (12), equations (66)–

(73), respectively, the constrained optimization problem (39) and restrictions on densities from

the corresponding classes Dk
1δ, k = 1, 2, 3, 4. The minimax-robust spectral characteristic of the

optimal estimate of the functional A~ξ is determined by the formula 20. In the case, when

spectral densities admit the canonical factorization (22), the least favourable spectral densities

f0(λ) are determined by the minimality condition (12), equations (74)–(77), respectively, the

constrained optimization problem (40), and restrictions on densities from the corresponding

classes Dk
1δ, k = 1, 2, 3, 4. The minimax-robust spectral characteristic of the optimal estimate of

the functional A~ξ is determined by the formula (23).

4 Conclusions

In this article, we present results of investigation of stochastic sequences with periodically

stationary increments. We give definition of the increment sequence and introduce stochastic

sequences with periodically stationary (periodically correlated, cyclostationary) increments.

These non-stationary stochastic sequences combine periodic structure of covariation functions

of sequences as well as integrating one. A short review of the spectral theory of vector-valued

increment sequences is presented.

We describe methods of solution of the forecasting problem for linear functionals, which

are constructed from unobserved values of a sequence with periodically stationary increments.

Estimates are obtained by representing the sequence under investigation as a vector-valued

sequence with stationary increments. The problem is investigated in the case of spectral cer-

tainty, where the spectral density of the sequence is exactly known. In this case, we propose an

approach based on the Hilbert space projection method. We derive formulas for calculating the

spectral characteristics and the mean-square errors of the optimal estimates of the functionals.

In the case of spectral uncertainty, where the spectral density is not exactly known while, in-

stead, a set of admissible spectral densities is specified, the minimax-robust method is applied.

We propose a representation of the mean square error in the form of a linear functional in L1

with respect to spectral densities, which allows us to solve the corresponding constrained op-

timization problem and describe the minimax (robust) estimates of the functionals. Formulas
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that determine the least favourable spectral densities and minimax (robust) spectral character-

istic of the optimal linear estimates of the functionals are derived for a collection of specific

classes of admissible spectral densities.

These least favourable spectral density matrices are solutions of the optimization problem

∆D( f ) = −∆(h( f0); f ) + δ( f |D) → inf, which is characterized by the condition 0 ∈ ∂∆D( f0),

where ∂∆D( f0) is the subdifferential of the convex functional ∆D( f ) at point f0. The form of

the functional ∆(h( f0); f ) is convenient for application of the Lagrange method of indefinite

multipliers for finding solution to the optimization problem. The complexity of solution of

the problem is determined by the complexity of calculating of subdifferentials of the indicator

functions δ( f |D) of sets D. Making use of the method of Lagrange multipliers and the form

of subdifferentials of the indicator functions, we describe relations that determine the least

favourable spectral densities in some special classes of spectral densities. These are: classes D0

of densities with the integral restrictions, classes D1δ, which describe the “δ-neighborhood”

models in the space L1 of a fixed bounded spectral density, classes Dε, which describe the

“ε-contaminated” models of a fixed bounded spectral density, classes DU
V , which describe the

“strip” models of spectral densities.

References

[1] Baek C., Davis R.A., Pipiras V. Periodic dynamic factor models: estimation approaches and applications. Electron.

J. Stat. 2018, 12 (2), 4377–4411. doi:10.1214/18-EJS1518

[2] Basawa I.V., Lund R., Shao Q. First-order seasonal autoregressive processes with periodically varying parameters.

Statist. Probab. Lett. 2004, 67 (4), 299–306. doi:10.1016/j.spl.2004.02.001

[3] Box G.E.P., Jenkins G.M., Reinsel G.C., Ljung G.M. Time series analysis: forecasting and control. 5rd ed.,

John Wiley & Sons, Hoboken, 2016.

[4] Box G.E.P., Jenkins G.M. Time series analysis: forecasting and control. Holden-Day, San Francisco, 1970.

[5] Dubovets’ka I.I., Moklyachuk M.P. Extrapolation of periodically correlated processes from observations with noise.

Theory Probab. Math. Statist. 2014, 88, 67–83. doi:10.1090/S0094-9000-2014-00919-9

[6] Dudek A., Hurd H., Wojtowicz W. Periodic autoregressive moving average methods based on Fourier representation

of periodic coefficients. Wiley Interdiscip. Rev. Comput. Stat. 2016, 8 (3), 130–149. doi:10.1002/wics.1380

[7] Franke J. Minimax-robust prediction of discrete time series. Z. Wahrscheinlichkeitstheor. Verw. Geb. 1985, 68 (3),

337–364. doi:10.1007/BF00532645

[8] Gikhman I.I., Skorokhod A.V. Introduction to the theory of random processes. Fizmatlit, Moscow, 1965. (in

Russian)

[9] Gladyshev E.G. Periodically correlated random sequences. Dokl. Akad. Nauk SSSR 1961, 137 (5), 1026–1029. (in

Russian)

[10] Grenander U. A prediction problem in game theory. Ark. Mat. 1957, 3 (4), 371–379. doi:10.1007/BF02589429

[11] Hannan E.J. Multiple time series. John Wiley & Sons, New York, 1970.

[12] Hosoya Y. Robust linear extrapolations of second-order stationary processes. Ann. Probab. 1978, 6 (4), 574–584.

doi:10.1214/aop/1176995479

[13] Johansen S., Nielsen M.O. The role of initial values in conditional sum-of-squares estimation of nonstationary frac-

tional time series models. Econometric Theory 2016, 32 (5), 1095–1139. doi:10.1017/S0266466615000110
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Козак П.С., Луз М.М., Моклячук М.П. Мiнiмаксний прогноз послiдовностей iз перiодично стацiо-

нарними приростами // Карпатськi матем. публ. — 2021. — Т.13, №2. — C. 352–376.

Дослiджується задача оптимального в середньоквадратичному сенсi оцiнювання лiнiйних

функцiоналiв, що залежать вiд невiдомих значень стохастичної послiдовностi, iз перiодично

стацiонарними приростами за спостереженнями послiдовностi в точках k < 0. Знайдено фор-

мули для обчислення середньоквадратичних похибок та спектральних характеристик опти-

мальних оцiнок функцiоналiв у тому випадку, коли спектральна щiльнiсть послiдовностi то-

чно вiдома. Мiнiмаксний (робастний) метод оцiнювання застосовано у тому випадку, коли спе-

ктральна щiльнiсть послiдовностей точно невiдомi, а заданi множини допустимих спектраль-

них щiльностей. Формули, що визначають найменш сприятливi спектральнi щiльнiстi та мi-

нiмакснi спектральнi характеристики оптимальних оцiнок функцiоналiв, запропонованi для

заданих множин допустимих спектральних щiльностей.

Ключовi слова i фрази: послiдовнiсть iз перiодично стацiонарними приростами, мiнiмаксна

оцiнка, робастна оцiнка, середньоквадратична похибка, найменш сприятлива спектральна

щiльнiсть, мiнiмаксна спектральна характеристика.


