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Rainbow degree-jump coloring of graphs
Mphako-Banda E.G.}, Kok J.2, Naduvath S.2

In this paper, we introduce a new notion called the rainbow degree-jump coloring of a graph.
For a vertex v € V(G), let the degree-jump closed neighbourhood of this vertex be defined as
Nieglv] = {u : d(v,u) < d(v)}. A proper coloring of a graph G is said to be a rainbow degree-jump
coloring of G if for all v in V(G), c¢(Nge,[v]) contains at least one of each color class. We determine
a necessary and sufficient condition for a graph G to permit a rainbow degree-jump coloring. We
also determine the rainbow degree-jump chromatic number, denoted by x,4;(G), for certain classes
of cycle related graphs.
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Introduction

For general notations and concepts in graphs and digraphs see [1, 3,9]. Unless mentioned
otherwise all graphs G are simple, connected and finite.

For a set of distinct colors C = {cy, ¢, ¢3,. .., ¢p}, a vertex coloring of a graph G is an assign-
ment ¢ : V(G) — C. A vertex coloring is said to be a proper vertex coloring of a graph G if no
two distinct adjacent vertices have the same color. The cardinality of a minimum set of solid
colors in a proper vertex coloring of G is called the chromatic number of G and is denoted x(G).
A coloring with exactly x(G) colors may be called a x-coloring or a chromatic coloring of G. By
the term ¢(G), we mean the set ¢(V(G)) and hence we have ¢(G) = C and |c(G)| = |C|. For a
set of vertices X C V(G), the coloring of the induced subgraph (X) is denoted by ¢((X)) and
this coloring will be permitted by ¢ : V(G) — C.

Index labeling the elements of a graph such as the vertices say, v1,v2,v3, ..., v, or written
asv; 1<i<mnorasv;i=1,273,...,n,iscalled a minimum parameter indexing of G. Similarly,
a minimum parameter coloring of a graph G is a proper coloring of G which consists of the colors
ci, 1 <i< /¢, where? = x(G). The set of vertices of G having the color ¢; is said to be the color
class of c; in G and is denoted by C;. Unless stated otherwise, we consider minimum parameter
coloring throughout this paper.

Recall that the neighbourhood (or open neighbourhood) of a vertex v € V(G), denoted by
N(v), is the set N(v) = {u : vu € E(G),u # v}. Similarly, the closed neighbourhood of v,
denoted by N|[v], is the set N[v] = N(v) U{v}. A rainbow neighbourhood in a graph G is a closed
neighbourhood of a vertex v in G for which ¢(N[v]) contains at least one color from each color
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class with respect to the chromatic coloring under consideration. For some initial works on the
rainbow neighbourhoods of graphs, we refer to [4-7].

1 Rainbow degree-jump coloring

The concept of a rainbow neighbourhoods in a graph is specialised to what is called the
rainbow degree-jump coloring of a graph. Let the degree-jump closed neighbourhood of v, denoted
by Nyee[v], be defined as Nyeg[v] = {u : d(v,u) < d(v)}. Then the notion of degree-jump
coloring of a graph G is defined as follows.

Definition 1. A rainbow degree-jump coloring of a graph G is a proper coloring of G such that
the degree-jump closed neighbourhood c(Ng.e[v]) of every vertex v in V(G) contains at least
one of each color in the coloring set.

Definition 2. The maximum number of colors in a proper coloring of a graph G which re-
sults in every vertex to yield a rainbow degree-jump coloring is called the rainbow degree-jump
chromatic number of G. This new invariant is denoted by x,4;(G).

Clearly, the following are immediate observations on the rainbow degree-jump chromatic
number of a graph G.

(i) xnj(G) > x(G);
(ii) x:aj(G) = x(G) for bipartite graphs with some pendant vertices and complete graphs;

(ii) if G has a pendant vertex v then N, [v] = N{o].

For these graphs, the restriction on any rainbow degree-jump coloring of G is d(v,u) < 1.
Hence, x,4i(G) = x(G).

Not all graphs permit a rainbow degree-jump coloring. For example, any proper coloring
of a complete graph K;, n > 3, is an n-coloring. If pendant vertices are attached to obtain a
thorny complete graph Gj;, then each pendant vertex v has Ny.¢[v] = N[v]. Hence,

|c(Naeglv])| =2 <3 < n.
Theorem 1. For two graphs G and H of order n and m respectively, we have
Xrajf(G+H) =n+m,
where G + H is the join of G and H.

Proof. For all vertices v in V(G) we have dg py(v) = dg(v) + m, for all vertices u in V(H)
we have dg;g(u) = dy(u) + n, and all pairs of vertices in G + H are at a distance at most 2.
Also, the degree of all vertices in G + H are greater than or equal to 2 and hence we have
|Naeg[v]| =n+mforallv € V(G + H). Hence, the result. O

Recall that a clique of a graph G is an induced complete subgraph in G. The clique number
w(G) is the order of the largest clique of G. Then, we have the following result.
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Theorem 2. If a graph G permits a rainbow degree-jump coloring, then we have
min{|c(Ngeg[0])] : d(v) = 6(G)} = w(G).

Proof. Let £ = min{[c(Ngg[v])| : d(v) = 6(G)}. Note that any proper coloring of a largest
induced complete graph of G requires w colors and x(G) > w(G). Since a rainbow degree-
jump coloring is defined in terms of well-defined conditions set on all vertices and the vertex
degrees, we have / = x,4(G) > x(G) > w(G). It implies that if a graph permits a rainbow
degree-jump coloring, then a corresponding proper ¢-coloring exists such that £ > w(G). This
completes the proof. O

Recall that a weakly perfect graph is a graph for which w(G) = x(G). Then the following
result is an immediate consequence of the above theorem.

Corollary 1. For a graph G, if min{|c(Ngeg([0])| : d(v) = 6(G)} = w(G), then x(G) = w(G)
and G is weakly perfect.

Theorem 3. For a cycle graph Cy, n > 3, we have 3 < x,4;(Cy) < 5.

Proof. 1t is easy to verify that x,4j(C3) = 3, x;4j(C4) = 4 and x,4;(C5) = 5. For n € Z3, any
cycle C, permits a proper 3-coloring such that for every vertex v in V(Cy), ¢(Ngeg[v]) contains
colors ¢y, ¢, 3. Hence, x4j(Cn) > 3. Since max |c(Ng,,[v])| = 5 for every vertex v in V(Cy), it
follows that 3 < x,4(Cn) < 5. a

For the next corollary, let us partition the subset of positive integers as follows
Neg={n:n>6}=XUXp, where Xy ={a:5|a}, Xp={a:51a}.

Corollary 2. (i) Forn € Xy, x;4j(Cu) = 5;
(ii) Ifn € Xy, then 3 < x;4(Cy) < 4.

Proof. (i) Let the vertices of a cycle graph C,, be labeled by vy, v, v3, . .., v, consecutively in the
clockwise direction. Also, let n = 5k, k > 1. As [Ng,[v]| = 5, for every vertex v in V(Cy),
we have x,4;(Cy) < 5. However, the coloring defined by c(v;) = c;, where j = i (mod 5), with
respect to which the color string cy, ¢y, ¢3, ¢4, ¢c5 consecutively repeated k times, is a permissible
rainbow degree-jump coloring. Hence, we have x,;;(Cy) = 5.

(ii) This result follows as a direct consequence of Theorem 3 and Part (i) written above. [J

Lemma 1. A graph G having at least one pendant vertex with x(G) > 3 does not permit a
rainbow degree-jump coloring.

Proof. A pendant vertex v € V(G) has Ny[v] = N[v]. Hence, |c(Ny[v])| = 2 < 3. Therefore, G
does not permit a rainbow degree-jump coloring. O

1.1 Rainbow neighbourhood jump-coloring of some cycle related graphs

Recall the definitions of certain cycle related graph classes (see [2,8]) as given below.

(i) A wheel graph denoted by W ,,, is the graph defined by W; ,, = K; + C,,. The cycle C;, of
the wheel W ,, is called its rim.
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(ii) A double wheel graph, denoted by DW; ,, is the graph obtained from two equal order
wheel graphs by merging the central vertices to have a common central vertex.

(iii) A helm graph, denoted H,, is the graph obtained from a wheel graph W, , by attaching a
pendant vertex to each vertex of its rim.

(iv) A closed helm graph, denoted by CH,, is the graph obtained from a helm graph H, by
adding an edge between the pendant vertices such that these edges joining pendant ver-
tices induces a cycle (external cycle).

(v) A prism graph 11, is the Cartesian product of a path of length 2 and a cycle. That is,
]._In - Cnljpz.

(vi) A web graph, denoted by W,,, is the graph obtained from a prism graph I1, by attaching a
pendant vertex to every vertex of one of the two cycles in it.

(vii) A flower graph, denoted by F,, is the graph obtained from a helm graph H,, by joining the
pendant vertices with its central vertex.

(viii) A djembe graph, denoted by Dj,, is the graph obtained from a prism I1, by joining all its
vertices to a new external vertex (this vertex may be called the central vertex of Dj,). That
iS, D]n = I_In + Kl.

The following result discusses the rainbow degree-jump chromatic number of the above-
mentioned cycle related graph classes.

Proposition1. (i) For a wheel graph W, we have x,4;(W1,,) = n+ 1.
(ii) For a double wheel graph DW; , we have x,4;(DW1,,,) = 2n + 1.
(iii) A helm graph H, does not permit a rainbow degree-jump coloring.
(iv) For a closed helm graph CH, we have x,;;(CHy,) = 2n + 1.
(v) For a prism graph I, we have x,4;(I1x) = 2 x,4j(Cn)-
(vi) A web graph W,, does not permit a rainbow degree-jump coloring.
(vii) For a flower graph F, we have x,4i(F,) = 2n + 1.
(viii) For a djembe graph Dj, we have x,4;(Dju) = 2n + 1.

Proof. (i) Let u be the central vertex of the wheel graph and let the cycle verticesbe v;, 1 <i < n.
Since d(u,v;) = 1,1 <i <n,and d(v;,v;) <2,1<1i,j <n,andd(v;) = 3, Viit follows that
Nieg[vi] = Naeg[u] = V(Wy,,). Hence, 7,4;(W1,) =1+ 1.

(ii) This result follows by similar reasoning to that in (i).

(iii) Because x(W;,) > 3 the helm graph which is a thorny wheel has pendant vertices.
Hence, the result from Lemma 1.

(iv) Since d(v;) =4, 1 < i < n, and the inner cycle vertices, and d(v;, u) < 3, u € V(CH,),
the result follows by similar reasoning to that in (i).
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(v) For a prism graph Il,, n > 3, call the vertices v; from the one cycle, and u; from the
other cycle, which are adjacent to v;, a pair of prism images. Color any cycle in accordance
with a permissible rainbow degree-jump coloring. If ¢(v;) = ¢; color the corresponding prism
image tobe ¢; . 4i(Ca)* It is easy to verify that

{C1/C2 ) € (C) Cltdrf(C)r 2 g (o) -+ 1 €2y (Co)

is a permissible rainbow degree-jump coloring.

(vi) As a web graph W, is not 2-colorable and has pendant vertices it does not permit a
rainbow degree-jump coloring.

(vii) As the pendant vertices of a helm graph are all joined to the central vertices, we have
min{d(u,v)} = 2 for all pairs (u, v). Therefore, the result is immediate.

(viii) The result follows by the same reasoning as in (vii). O

It is obvious that if each graph G;, 1 < i < t, permits a rainbow degree-jump coloring, then
t
the disjoint union U G; permits such a coloring as well. Now, join the graphs in a connected

i=1
string graph G by adding any edge between G;, G;y1, 1 < i < t — 1. Since all colorings are
minimum parameter colorings, it is obvious that x,4;(G) > X4j(G;), where 1 < i < t. Note
that if different combinations are stringed to obtain, say G, G”, then it is possible to find the

inequality x.4;(G’) # x,aj(G").

The following theorem characterises a graph which permits a rainbow degree-jump
coloring.

Theorem 4. A graph G permits a rainbow degree-jump coloring if and only if forv,u € V(G)

¢({Naeg[v])) = c((Naeg[u]))  or  [e(Naeg[v])| = |e(Naeg [u])]
with respect to some proper coloring of G.

Proof. If G permits a rainbow degree-jump coloring c(G) = C, then from Definition 1, it fol-
lows that ¢((Ngeg[v])) = c((Naeglu])) = C, v,u € V(G), because sets are compared. Also,
e({Nueglo])) = ((Naegl]}) > 0,1 € V(G) le(Nuegle])] = le(Naeg[u])l, 0,1 € V/(G).

Since ¢((Nyegl0])) = ¢((Naeglu])) implies |e(Naglo])] = le(Nueg[u])], 0, € V(G), the
desired proper coloring is obtained by initialising the proper coloring ¢ : V(G) — C =
¢((Naeglv])) and maximising on the coloring in accordance with the definition if C itself is
not a maximum. The aforesaid is always possible.

If |c(Naeg[0])| = [c(Ngeg[u])| and c¢((Nyeg[v])) = c({Naeg[u])), then the result follows as
above.

If |c(Ngeg[0])| = |c(Naeg[u])| and c((Ngeg[v])) # c({Naeg[u])), then without loss of general-
ity, the coloring of Ny, (1) can be relabeled to obtain c¢((Nge[v])) and if need be the coloring
of Njeg[v] can be rotated until we obtain ¢((Ngeg[v])) = c({Ngeg[u])). This is possible unless
the subgraph induced by Njee(v) U Ngeg () is complete. But then we have a contradiction.
Then, by mathematical induction, it follows that the procedure is possible for all vertices in G.
Finally, by considering the proper coloring obtained as the initializing coloring and maximiz-
ing it if possible, the result follows. O
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2 Blind vertices in respect of degree-jump

Theorem 2 suggests the notion of blind vertices in respect of degree-jump which is defined
as follows.

Definition 3. For a vertex v in G, if there exists a vertex u in G such that u ¢ Ng,,[v], then we
say that the vertex v is blind to the vertex u with respect to degree-jump. Otherwise, we say
that the vertex v can see the vertex u.

Note that K;, P>, P3 do not have blind vertices but the end vertices of a path graph
Py, n > 4, are blind to all internal vertices except two. Also, a vertex v can always see it-
self because v € Nyeq[v], which means that for a graph of order n > 2 a vertex can see at least
two vertices. The property of a vertex seeing another vertex is not necessary commutative
because it is possible that u ¢ Nyee[v] and v € Nyeg[u]. Then we have the following notion.

Definition 4. The peripheral number of a graph G, denoted by p(G), is the number of vertices
which can see all vertices of G.

Applications of the notion of blind vertices can be found in communication networks, social
networks, monitoring systems, cryptology design and physical observation systems. Searching
programs in space can be restricted by one-sided detection as well. Blindness may result from
defined restrictions on communication range, distance or other meaningful graph theoretical
properties. This new notion also relates to the concept of broadcasting in graphs.

Theorem 5. A connected graph G has a vertex v which can see all vertices of G if and only if
d(v) > max{d(v,u) : u € V(G)}.

Proof. Ttis obvious that if d(v) > max{d(v,u) : u € V(G)}, then the following two cases are to
be considered.

(i) If v is an end vertex of a diam-path in G, then for every vertex u in V(G), d(v, u) < d(v)
implies Nyeq[0] = V(G).

(ii) If v is not an end vertex of any diam-path of G, then for every vertex u in V(G), d(v, u) <
d(v) implies Nyeq[0] = V(G).

From both cases, it follows that v can see all vertices of G. If there exists a vertex v that can
see the vertex u, then it implies d(v,u) < d(v) or, equivalently, u € Ny,o[v]. If v can see all
u € V(G), then Nyeo[v] = V(G). It means that d(v) > max{d(v,u) : u € V(G)}. O

The next proposition provides the peripheral number of certain cycle related graphs. Proofs
are omitted because it can easily be verified by comparing d(v) and max{d(v,u) : u € V(G)}.

Proposition 2. (i) For a wheel graph Wy ,, we have p(W; ,) = n+ 1.
(ii) For a double wheel graph DW; ,, we have p(DW ;) = 2n+ 1.
(iii) For a helm graph H, we have p(H,) = n+ 1.

(iv) For a closed helm graph CH,, we have er]-(CHn) =2n+1.
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21, 3<n<s5,
(v) For a prism graph I, we have p(I1,) = { " ==

0, otherwise.

(vi) For a web graph W,, we have p(I1,) = {Zn, 3= S >
0, otherwise.

(vii) For a flower graph F, we have p(F,) = 2n + 1.

(viii) For a djembe graph Dj, we have p(Dj,) = 2n + 1.

Theorem 6. For a graph G we have p(G) < x.4(G).

Proof. The result follows as a direct consequence of Theorem 5 because it is possible to have
fewer vertices, each seeing all vertices of G. However, if all vertices can mutually see each

other, then min{,;;(G)} = n = p(G). O

21 Sight matrix properties

Let the vertices of a graph G of order n be labeled vy, vy, v3, ..., v,. Define the binary vari-
able
0, ifv;isblind to vj,

©(vi)v]‘ = {

1, ifv; can see v;.

—> .
For each vertex v; a sight vector defined by ®(vi)y () = (O(vi)y; : 1 < j < n)anda
corresponding sight matrix defined by

exist.

Example 1. For a path graph Ps and a cycle graph Cs the respective sight matrices are

11000 11111
11110 11111
®P)=]11111]|, GC)=[11111
01111 11111
00011 11111

Let the n x n identity matrix I, be as conventionally understood. Denote a matrix with
complete 1-entries to be I". Tt follows easily that §(Cs) = ©(H) for any super graph H of
order 5. It is easy to see that ©(K,) = I". Hence, it can be seen that a graph for which
®(G) = I"is not unique. Furthermore, the diagonal entries of §)(G) are equal to 1. But for
the null graph N, of order n we have (M) is equivalent to the identity matrix I;,.

Leading to the next result, we call K; a collapsed cycle and we call K, (or P,) a flat cycle.
We note that K corresponds to a largest 0-regular connected graph with minimum edges for
which x4(G) = 1. Similarly, K, corresponds to a largest 1-regular connected graph with
minimum edges for which x,4;(G) = 2. A similar statement is true for Ks as it corresponds to
the largest 2-regular connected graph with minimum edges for which x,4(G) = 5.
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An interesting question that arises in this context is: for k € Ny, to find a k-regular con-
nected graph G of largest order n with minimum edges such that x,;(G) = n. Hence,
®(G) = I" or in otherwords, p(G) = n. This family of k-regular graphs is called the Mphako
graphs' and is denoted by C,f (k).

2.1.1 Mphako graphs
The construction of a Mphako graph for a given k € IN, k > 2, follows directly from the
constructive proof of the next result.

Theorem 7. Fork € N, k > 2, the corresponding Mphako graph C; (k) has order
n = 2k* — 3k + 3.

Proof. Let k € IN, k > 2. We begin with a vertex v; and extend consecutively along a
path v1v203 - - - Uy 1. Add the edge v1vy 1. From vertex vy, 1 extend along a further path
Voks1U2k 42 - - - Var. Add the edge v1v4. Repeat this path extensions iteratively (k — 1) times. It
is easy to verify that n = 2k + (k —2)(2k — 1) + 1 = 2k* — 3k + 3 is the maximum number
of vertices that can be seen by v; with d(v;) = 4. With symmetry consideration add similar
edges for vertices v;, 2 < i < n. The graph resulting from this construction is the corres-
ponding Mphako graph C,; (k), since d(v;) = 4,1 < j < n, and Nyeg[v;] = V(C;)(k) for all i
and a maximum. O

It follows that e(C;f (k)) = 1k(2k? — 3k + 3). This number of edges is sharp.
Corollary 3. Fork # 3!, t € Ny, a Mphako graph C;} (k) has odd number of vertices.

Proof. Lett = 3!, t € Ny. In the decimal number system, powers of 3 have the digits 1,3,9,7
repeating cyclically in the 10° column (unit’s place) as t increases through the non-negative
integers. Hence, in
2.3% 3l 4 3=2.3"_3(3' -1)=2.3% - (2+1)(3" - 1)
=2.3% 203 —1) - (3" —1) 2-(3"—-1)— (3" —1),
—— N——

eoven even

—02.32 _
——
even

the expression equals an even number. By similar reasoning, 2k?> — 3k + 3 is odd for k # 3!,
t € INp. ]

It can be said that for any finite n and k € {i : 1 < i < n}, the Mphako graphs with even
number of vertices are scarce. The reason for this scarcity is that for t € Ny, there are t + 1
such Mphako graphs amongst the finite collection of Mphako graphs {C;f (k) : 0 < k < t}.
Hence, for n € Ny let largest t be such that 3" < n. Therefore, t < logzn. Randomly selecting
a Mphako graph of even order from amongst the family {C;/ (k) : 0 < k < n} has probability
1+lzg3n 1+lzg3n)

. Since lim (
n—oo

Theorem 8. For a Mphako graph C;/ (k) k > 1 we have

= 0, the Mphako graphs of even order are said to be scarce.

Xaeg(C (k) —e) <n—1= 2k* — 3k + 2,

where e € E(C;f (k).

! The second and third authors dedicate this family of graphs to the first author.
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Proof. We prove the result by mathematical induction. For k = 1, the Mphako graph C,/ (1) =
Kz. Hence, n = 2 and clearly x4eo(C3 (1)) =2 > 1 = xgeg(Kz — ). Fork =2, ;i (2) = Cs and
hence n = 5 and clearly x4eo(C3 (2)) =5 > 2 = x4eg(Cs —¢), e € E(Cs).

Assume that the result holds for any 2 < k < ¢ and let k = ¢. Without loss of generality,
note that if any edge on the path v1v,v3 - - - vy 1 is deleted then vertex v, cannot see vertex vy 1.
Similarly, if any edge is deleted on the path v1v,,417y¢ - - - v then vertex v; cannot see vertex
vy42. Hence, the result follows by induction. O

Note that for k > 3, the equality holds and thus xgeo(C,f (k) —e) = n —1 = 2k* — 3k + 2,
e € E(C;f (k). It implies that for k € Ny, the Mphako graph C;/ (k) has maximum order and
minimum size to ensure x4 (Cl (k)) = nand ©(C;f (k) = I".
Lemma 2. Fork > 2, the Mphako graph C,f (k) is K,,-free forn > 3.

Proof. 1t is easy to verify that a Mphako graph k > 2 is Ksz-free. Therefore, it is K;-free
forn > 3. O

Corollary 4. Fork > 2, the Mphako graph C,f (k) is 3-colorable.

Proof. From the constructive proof of Theorem 7, it follows that C,/ (k), k > 2, has induced odd
cycles only. Therefore, x(C;f (k)) = 3. O

Corollary 5. Fork > 2, diameter of the Mphako graph C,} (k) is k.

Proof. For k = 2, we know that C;f (2) = Cs and diam(Cs) = 2. For k = 3, the Mphako graph
is a chorded cycle, namely, Cj, with chords v;v;14, 1 < i < 6. Without loss of generality,
diam(C,f (3)) = d(v1,vs5) = 3 and is given by paths v1v;04v5 Or V10120605 Or V101201105. By
symmetry considerations similar diam-paths exist from all v;, 1 < i < 12, to some vertex v;.
Hence, the result holds for k = 2, 3.

Assume that the result holds for k = . For k = £+ 1, the path v10y(p4.1) 41027 41) - - - Vi1
is a diameter path (a path whose length is equal to the diameter of the graph under consid-
eration). It follows easily that ¢/ + 1 similar diameter paths exist from v; to vy;;. By sym-
metry considerations, similar diameter paths of length ¢ 41 exist from all v;, 1 <i < n =
2(¢ +1)2 = 3(¢ + 1) + 3, to some vertex vj. Therefore, by mathematical induction, the result
holds in general. O

The Mphako graph is the solution to a degree diameter type problem. This particular
problem has the specific condition that degree of all vertices equals k. Hence, the vertex degree
is not bound to a maximum for some vertices as is the case in the classical degree diameter
problem. Specifically k-regularity must hold. Recall the Moore bound for the classical degree
diameter problem is given by 1, < M, , where

2k +1, ifd =2,
dk = —1)k—
14+d(=0=1) ifd >,
and 74 is the maximum number of vertices with degree at most d and diameter k. With
regards to the Mphako graphs the bound specialises to
2k +1, ifk =2,
kk — —1)k—
1+ k(LY itk > 2.
For k = 2, the graph C,/ (2) = Cs, the order equals the upperbound. However, for k > 2 we
have the next result.




238 Mphako-Banda E.G., Kok J., Naduvath S.

Proposition 3. Fork > 2, an upper bound for the order of the Mphako graph C; (k) is given
by v(C,f (k) < M.

Proof. Consider the real valued inequality 2x2 —3x+3>1+ x( (x;ljg_l ), wherex € R,k € N,
k > 2. Therefore,

(x —2)(2x*> = 3x+2) > x(x — 1) —x,
208 — 7 +9x —4 > x(x —DF = a1 £ (1)

Inequaliy (1) presents a contradiction because the leftside is a polynomial of order 3 while

the rightside is a polynomial of order k + 1 and the unique mutual real root is at (1,0). Hence,
k
2x2 —3x+3 < 1+ x(%), k > 2. Therefore, for the discrete case x = k, it follows that

V(C;(k) < Mk,k- [

3 Conclusion

The paper served as an introduction to the new notion of the rainbow degree-jump coloring
of a graph. The rainbow degree-jump coloring of a prism graph suggest that researching the
Cartesian product of graphs with respect to rainbow degree-jump coloring could be worthy.
Similarly, the study of rainbow degree-jump coloring for the other known graph products
remains open. Other graph operations such as the corona of two graphs, the line graph, the
complement graph and others offer scope for further research.

The authors view the introduction of the new family of Mphako graphs as interesting cycle
related graphs which is open for further research in various graph theoretical domains.

Problem 1. Fork > 2 and for 2k* — 3k +3 < m < 2(k + 1)? — 3(k + 1) + 3 find the minimum
number of edges in a graph G such that x.4(G) = m.

Problem 2. For two graphs G, H with a diameter path v; to v; and u; to uy, in each respectively,
the string graph denoted by G ~~ H is obtained by adding the edge vju; or vjuy. To string from
G ~» H to graph M which has a diameter path w; to w;, to obtain (G ~» H) ~» M, add the
edge uws or ugwy. If each graph graph G;, 1 <i < t, permits a rainbow degree-jump coloring,
tind the combination that results in a string graph G such that

1 (G) = max (i ((((-++ (Gi > Gia) = +++) = Gy 1) = G) :

over all combinations of the numbers1 <i < t}.

Problem 3. The notion of blind vertices has been introduced. It suggests the notion of a degree-
jump domination set of G. That is a minimum subset X C V(G) such that |J Ny.e[v] = V(G).
veX

The cardinality of X is called the degree-jump domination number of G and is denoted by 4i(G).
This notion offers a new direction of research.
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Y wmiif craTTi MM BBOAMMO HOBE IIOHSITTSI BECEAKOBOTO CTEIIeHeBO-CTPUOKOBOro po3dpapbyBaHHs
rpadra. Aast Bepmman v € V(G) Hexait CTelleHeBO-CTPMOKOBIMIT 3aMKHEHMIT OKiA U 6y Ae BU3HAUEHNMIA
K Ngeglv] = {u @ d(v,u) < d(v)}. Harexue poscpapbysanns rpacpa G 6yae Ha3mMBaTUCh Becea-
KOBMM CTeTleHeBO-CTpUOKOBUM po3cdpapbyBantsm G, ko aast Bcix v 3 V(G), ¢(Nyee[v]) MicTuTs
IIpMHAMHI TI0 OAHOMY 3 KOXHOTO KAacy KOABOPiB. MU BU3HauMAM HeO6XiAHY i AOCTAaTHIO yMOBY
Toro, mo rpacdp G AOIycKae BeceAKOBe CTelleHeBO-CTpubkoBe po3drapbysanHs. TakoxX, My BU3Ha-
UMAM BECEAKOBE CTETeHeBO-CTPMOKOBE XPOMATIUHE UMCAO, sIKe TIO3HAUAEMO X,4i(G), AAST AesKix
KAaciB IMKAIYHO BiAHOCHMX Ipadpis.

Kntouosi cnoea i ppasu: BeceAKOBe CTEIIEHEBO-CTPUOKOBe po3cpapbyBaHHS, BeCEAKOBE CTEIIEHEBO-
CTpMOKOBE XpOMAaTIUHE YMCAO, HEBYAMMA BepllHa, rpad Mdako, Mexxa Mypa.



