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Uniqueness of certain differential polynomial of L-functions
and meromorphic functions sharing a polynomial

Banerjee A.l, Bhattacharyya S.?

The purpose of this paper is to obtain some sufficient conditions to determine the relation be-
tween a meromorphic function and an L-function when certain differential polynomial generated
by them sharing a one degree polynomial. The main theorem of the paper extends and improves all
the results due to W.J. Hao, ].F. Chen [Discrete Dyn. Nat. Soc. 2018, 2018, article ID 4673165], F. Liu,
X.M. Li, H.X. Yi [Proc. Japan Acad. Ser. A Math. Sci. 2017, 93 (5), 41-46], P. Sahoo, S. Halder [Tbilisi
Math. ]. 2018, 11 (4), 67-78].
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1 Introduction, definitions and results

In this paper, we use the term “L-function” to denote a Selberg class function that are
oo

Dirichlet series with the Riemann zeta function {(s) = Y, n~*° as the prototype. In the be-
n=1

ginning of the nineteenth century R. Nevanlinna inaugurated the value distribution theory
with his famous Five Value and Four Value theorems, which were the bases of uniqueness
theory. Value distribution of L-functions concerns distribution of zeros of L-functions and
more generally, the c-points of £, that is, the zeros of the function L£(s) — ¢, or the values in
the set of pre-images L' = {s € C : £(s) = c}, where s denotes complex variables and
¢ € CU {oo}. Selberg class functions are important objects in number theory. The Selberg

class S of L-functions is the set of all Dirichlet series L(s) = i a(n)n~* of a complex variable
s = o + it with a(1) = 1, satisfying the following axioms (Cf.n[iéll, 15]):

(i) Ramanujan hypothesis: a(n) < n® for every € > 0;

(i) analytic continuation: there is a nonnegative integer k such that (s — 1)K£(s) is an entire
function of finite order;

(iii) functional equation: L satisfies a functional equation of type Az (s) = wA (1 —5), where

K
Ag(s) = L(s)Q° TT1 T'(Ajs + v;) with positive real numbers Q, A; and complex numbers v;, w
)

with Rev; > 0 and lw| =1;
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of; %’Z?) with suitable coefficients b(p¥)
k=1

satisfying b(p*) < p* for some 8 < 1, where the product is taken over all prime numbers p.
The degree d of an L-function £ is defined to be

(iv) Euler product hypothesis: L(s) = [],exp <

K

d=2) A

j=1

where K and A; are respectively the positive integer and the positive real number defined in
axiom (iii) of the definition of L-function.

It should be noted, that an L-function can be analytically continued as meromorphic func-
tionin C.

Throughout the paper, the term “meromorphic” will be used to mean meromorphic in the
whole complex plane. For such two meromorphic functions f, ¢ and for some a € C, we
denote by E(g; f) the collection of the zeros of f — a, where a zero is counted according to
its multiplicity. In addition to this, when a = oo, the above definition implies that we are
considering the poles. In the same manner, by E(a; f) we denote the collection of the distinct
zeros or poles of f —a according as a € C or a = oo respectively. If E(a; f) = E(a;g) we say
that f and g share the value 2 CM (counting multiplicities) and if E(a; f) = E(a; g), then we
say that f and g share the value a IM (ignoring multiplicities). Usually, S(r, f) denotes any
quantity satisfying S(r, f) = o(T(r, f)) for all r outside of a possible exceptional set of finite
linear measure.

For a meromorphic function f, we define the order p(f) as

p(f) = limsup M.

r—00 logr

In 1997, 1. Lahiri [5] asked the following question.

Question ([5]). What can be said about the relationship between two meromorphic functions
f and g when two differential polynomials generated by them share some non-zero complex
values?

In response to the above question plethora of investigations have been carried out on dif-
ferential polynomials sharing non-zero complex values and even sets.

Recently, F. Liu, X.M. Li, H.X. Yi [11] carry forwarded the above investigations and explored
over the uniqueness property of L-function and any meromorphic function when two differ-
ential polynomials generated by both of them share any finite complex value.

Theorem A ([11]). Let f be a non-constant meromorphic function, £ be an L-function and n, k
be two positive integers such that n > 3k + 6. If (f*)%) — a(z) and (£")*) — a(z) share (0, o),
then f = tL for a constant t satisfying t" = 1, where a(z) is either 1 or z.

In 2001, the introduction of the notion of weighted sharing [6,7], of values and sets, which
is actually a scaling between CM and IM sharing, further add essence to the uniqueness liter-
ature. Below we invoke the definition.

Definition 1 ([6,7]). Let k be a non-negative integer or infinity. Fora € C U {oo} we denote
by Ex(a; f) the set of all a-points of f, where an a-point of multiplicity m is counted m times
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ifm < k and k+ 1 times if m > k. If Ex(a; f) = Ex(a;g), we say that f,g share the value a
with weight k and denote it by (a, k). The IM and CM sharing corresponds to (a,0) and (a, o)
respectively.

We also say that f(z) and g(z) share a polynomial p(z) with weight [ if f(z) — p(z) and
g(z) — p(z) share (0,1).

In 2018, P. Sahoo, S. Halder [13] employed the notion of weighted sharing of values to relax
the nature of sharing of value in the above theorem as follows.

Theorem B ([13]). Under the same situation as in Theorem A, if functions (f")*) — a(z) and
(£")®) — «(z) share (0,1) and one of the following conditions is satisfied:

(i) I >2andn > 3k+6,

(i) | =1landn > % + 13

(iii) I = 0 and n > 7k + 11, then f = tL for some constant t satisfying t" = 1, where a(z) is
either 1 or z.

In the same year, W.]. Hao, J.F. Chen [4] generalized the differential polynomials generated
by meromorphic function f and L-function £ to obtain a series of following four theorems.

Theorem C ([4]). Let f be a non-constant meromorphic function, £ be an L-function, n, m,
k be three positive integers and «, B be two constants satisfying |a| + |B| # 0. Suppose that
[ (af™ + B)]®) and [£"(aL™ 4 B)]*) share (1,c0). If n > 3k + 11 + 6, then f = tL, where

(i) t is a constant such that t" ™™ =1, ifafp =0,

(ii) t is a constant such that t = 1, ifx # 0,k > 2.

Hered = GCD(n,m) and i := m(«), where

0, =0,
(&) = {m [er #0

Theorem D ([4]). Let f be a non-constant meromorphic function, £ be an L-function and n,
m, k be three positive integers. Suppose [f"(f —1)"]%) and [£"(£ — 1)"]®) share (1,00). If
n>3k+m+6andk >2,then f = Lor f"(f—1)" = L"(L—-1)™.

Theorem E ([4]). Under the same situation as in Theorem C, functions [f" (af™ + B)]®) and
[£"(al™ + B)]®) share (1,0) and n > 7k + 417t + 11, then f = tL, where

(i) t is a constant such that t" ™™ =1, ifap =0,

(ii) t is a constant such that t = 1, ifx # 0,k > 2.

Theorem F ([4]). Under the same situation as in Theorem D, if functions [f"(f — 1)"]*) and
[£"(L£ —1)"]®) share (1,0) and n > 7k +4m +11, k > 2, then f = L or f"(f —1)" =
Lr(L—1)m.

Remark 1. The differential polynomial in Theorems D and F becomes identical with that in
Theorems C and E for m = 1, so the condition m > 2 is required in Theorems D and F.

Remark 2. Here we would like to mention that very recently X.M. Li, F. Liu, H.X. Yi [10]
obtained Theorem D and Theorem F for m = 1 whenn > 3k+9 and n > 7k + 17 respec-
tively. Hence, the results are insignificant in context to the lower-bound of n in Theorem D and
Theorem E.
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The purpose of the paper is to bring all the above results under a single umbrella. To
this end, we consider a more generalized differential polynomial generated by a meromorphic
function and an L-function and significantly improve all the above results.

Throughout the paper, let us denote by P(z) the following n degree polynomial

n _ s
P(z) =) aid =a, ] J(z— dlj)lf,
=1

j=1

where a4, ...,a,(# 0) € C and dlj,j =1,2,...,s, are distinct and Iy,1,...,ls, s,n € IN such
S

that ) I; = n. Clearly, P(0) = 0.

=I

V</e denote by 17 and n; respectively be the number of simple and multiple zeros of P(z),
where the zeros of P(z) contributing to n, have been counted ignoring multiplicities.

The main result of the paper is given below. We shall show that the corollaries deduced
from the main result will improve Theorems B-F by reducing the lower bound of .

Throughout the paper, we will use #(z) = az + b, where | a | + | b |# 0.

Theorem 1. Let f be a non-constant meromorphic function, £ be an L-function, s be a non-
negative integer, n, m, k be three positive integers and «, p be two constants with |«| + |B| # 0.
Suppose that [P(f)(af™ + B)*]%) — 5(z) and [P(L)(aL™ + B)*]) — 4(z) share (0,1). If

k
1>2 and n> §+2+2n2(k+2)+2n1+m5,

or

I=1 and n>—+ -+ (5 +5|m+—+

3k 9 [5k 9 5ny | 3ms
4 2"\ 272 2 T2

or

7
=0 and n>2k+§+(5k+7)n2+5n1+4m5,

then one of the following two cases holds:
@) [POF)(af™ + Y TNP(L) (L™ + )] N = n*(2);
(i) P(f)(af™ + B)° = P(L)(aL™ + B)° or f = tL for a constant t satisfying tX» = 1, where

n—1
1/ Z | ﬂn,]' |7é O/
j=1

dl, aj :O,V]': 1,2,...,n—1,

Xn =

dy =gced(ms+mn,...,m(s—i)+mn,...n),i=0,1,...,s.

Putting s = 0 and P(z) = z" in Theorem 1, we obtain the following corollary which im-
proves Theorem B by reducing the lower bound n.

Corollary 1. Let f be a non-constant meromorphic function, £ be an L-function and n, k be
two positive integers. Suppose that (")) — 5(z) and (£")X) — y(z) share (0,1). If

1>2 and n>52—k+6,

or 13k 27
=1 d A
an n > 1 + 1
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or ’1
=0 and n>7k+7,

then f = tL for a constant t satisfying t"* = 1.

Putting s = 1 and P(z) = z" in Theorem 1 we obtain the following corollary which im-
proves Theorem C and E by reducing the lower bound .

Corollary 2. Let f be a non-constant meromorphic function, L be an L-function, n, m, k
be three positive integers and «, p be two constants such that |a| + || # 0. Suppose that
[ (af™ + B)]®) — y(z) and [L" (aL™ + B)]K) — #(z) share (0,1). If

[ >2 and n>5—2k+m+6, (1)
or
13k 3m 27
[ =1 and 1’l>T+7+Z; (2)
or
21
=0 and n>7k+4m+7, (3)

then one of the following two cases holds:
(i) when af = 0, then f = tL for a constant t satisfying t"*" = 1;
(i) when af # 0 and k > 2, then f = tL for a constant t satisfying t = 1.

Puttingm = 1, « = 1, p = —1 and P(z) = z" in Theorem 1, we obtain the following
corollary which again improves Theorem D and F by reducing the lower bound of 7.

Corollary 3. Let f be a non-constant meromorphic function, £ be an L-function, s be a non-
negative integer and n, k (> 2) be two positive integers. Suppose that [f"(f —1)°]0) — 5(z)
and [£"(L£ —1)°]%) — y(z) share (0,1). If

[ >2 and n>52—k+s+6,

or
13k  3s 27
=1 and n>T+?+Z'

or
21
=0 and n >7k+4s+ —,

2
then either f = Lor f*(f —1)° = L"(L —1)°.

For the standard definitions and notations of the value distribution theory we refer to [3].
But in the paper we have used some more notations and definitions which are explained below.

Definition 2 ([20]). Let f and g be two non-constant meromorphic functions such that f and
g share (a,0). Let zy be an a-point of f with multiplicity p, an a-point of ¢ with multiplicity q.
We denote by N (r,a; f) the reduced counting of those a-points of f and g, where p > q, by
Né) (r,a; f) the counting function of those a-points of f and g, where p = q = 1, by Ng (r,a; f)
the reduced counting function of those a-points of f and g, where p = q > 2. In the same way
we can define N (r,4;g), Né) (r,a;%), Ng (r,a; ). In a similar manner we can define N (r, a; f)
and Ny (r,a;g) fora € CU {oo}.
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When f and g share (a,m), m > 1, then Nlls)(r, a;,f) =N(r,a; f |=1).

Definition 3 ([6,7]). Let f, ¢ share a value (a,0). We denote by N.(r,a; f,g) the reduced
counting function of those a-points of f whose multiplicities differ from the multiplicities of
the corresponding a-points of g.

Clearly, N.(r,a; f,¢) = N.(r,a;8, f) = Np(r,a; f) + N(r,4;g).

Definition 4 ([8]). Fora € C U {oo} and a positive integer p we denote by N(r,a; f| < p)
(N(r,a; f| > p)) the counting function of those a-points of f whose multiplicities are not
greater (less) than p, where each a-point is counted according to its multiplicity.

N(r,a; f| < p) and N(r,a; f| > p) are defined similarly, where in counting the a-points of f
we ignore the multiplicities.

Also N(r,a; f| < p), N(r,a; f| > p), N(r,a; f| < p) and N(r,a; f| > p) are defined analo-
gously.
Definition 5 ([7]). Let p be a positive integer or infinity. We denote by Ny (r,a; f) the counting
function of a-points of f, where an a-point of multiplicity m is counted m times if m < p and p
times if m > p. Then

Ny(r,a;f) = N(r,a; f) + N(r,a; f| > 2) + ...+ N(r,a; f| > p).

Clearly, Ny(r,a; f) = N(r,a; f).

Definition 6. Let a be any value in the extended complex plane and let k be an arbitrary non-
negative integer. We define

Oa, f) =1- liirgsogp % and S(a, f)=1= liirgsotlp W.

Remark 3. From the definitions of ©(a, f) and d(a, f) we clearly see that
0 < d(a, f) < bka(a, f) < é1(a, f) <O, f) < 1.

2 Lemmas

Let for two non-constant meromorphic functions F and G we denote by H the following

function
FN ZFI G// 2(;/
H‘(T‘ﬁ)‘(?‘ﬁ)' @
Lemma 1 ([17]). Suppose that f is a non-constant meromorphic function and let ag, ay, . .., a,
be finite complex numbers such that a, # 0. Then

T(r,anf" +ap_1f" 4 ... +aif +ay) =nT(r,f) +S(r, f).

Lemma 2 ([20]). Let F, G be two non-constant meromorphic functions such that they share
(1,0) and H # 0 then

NY(r,1;F) < N(r,00; H) + S(r, F) + S(r, G).
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Lemma 3 ([2]). Let F, G be two non-constant meromorphic functions sharing (1,1), where
0 <1 < co. Then

N(r,1;F)+N(r,1,G) — Né)(r, 1;F)+ (l — %)N*(r,l;F,G) < Z[N(r,1,F)+ N(r,1;G)].

N[~

Lemma 4 ([21]). Let f be a non-constant meromorphic function and k, p be positive integers.
Then

Np(r,0; f0) < T(r, f&)) = T(r, f) + Ny (r, 0; f) + S(r, f),

Np(r,O;f(k)) < kN(r,00; f) + Npyi(r,0; f) + S(r, f)-

Lemma 5. Let F, G be two non-constant meromorphic functions such that they share (1,1).
Then

N.(r,1E,G) < Z%{N(r, 0;F) + N(r, 0;G) + N(r, 00, F) + N(r,00;G)} + S(r, F) + S(r, G).

Proof. The proof can be carried out in the line of the proof of [1, Lemma 2.6]. O

Lemma 6 ([3]). Let f be a non-constant meromorphic function, k be a positive integer and let c
be a non-zero finite complex number. Then

T(r,f) < N(r,09f)+N(r,0;f) + N(r,c; f) — N(r,0; f*T1)) + S(r, f)
< N(r,00; f) + Niya (r,0; f) + N(r, ¢; fO) — No(r, 0; f*¥+D) + 5(r, f),

where Ny(r, 0; f*+1)) is the counting function of those zeros of f+1) in |z| < r, which are not
zeros of f(f%) —¢) in|z| < r.

Lemma 7 (19]). Let f be a non-constant meromorphic function, a(# 0, 0) be a small function
of f. Then

T, ) < N0 + NGO N0 -0 N (0 (50) ) #5000

Lemma 8 ([9]). Suppose that f is meromorphic of finite order in the complex plane and that
f®) has finitely many zeros for some k > 2. Then f has finitely many poles in the complex
plane.

Lemma 9 ([20]). If H = 0, then F, G share (1,00). If further F, G share (c0,0), then F, G
share (00, 00).

Lemma 10. Let f and g be two transcendental meromorphic functions and H # 0. Let for two
integersk (> 1) and [ (> 0), f%) — Q, ¢¥) — Q share (0,1), where Q # 0 is a polynomial. Then

100+ 109 < (5+2) [N, + Nlr9i)| + Nesalr,0.) + Newalr, 039

N
< ) «(r,,F,G)+S(r, f) +S(r,9),
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Proof. Since f and g are two transcendental meromorphic functions, F and G are also two
transcendental meromorphic functions. Let zy is a common simple zero of f*) — Q and
g — Q. Then zj is a common simple zero of F — 1 and G — 1. We can easily verify that
possible pole of H occur at (i) multiple zeros of F and G, (ii) poles of f and g, (iii) 1-points of F
and G of different multiplicities, (iv) zeros of F/ which are not the zeros of F(F — 1), (v) zeros
of G’ which are not the zeros of G(G — 1). Since H has only simple poles, clearly we have
N(r,00; H) < N(r,00; f) + N(r,00;¢) + N(r,0; F |> 2) + N(r,0; G |> 2) + N.(r, 1, F,G)

+ Ng(r,0;F') + Ng(r,0;G') + O(logr),
where Ng, (r,0; F') denotes the reduced counting function of those zeros of F/, which are not
the zeros of F(F — 1), and N (r,0; G') is similarly defined.

Since f is a transcendental meromorphic function, we have T(r, Q) = o{T(r, f)}.
By using Lemma 7, we get
T(r,f)+T(r,g) < N(r,00; f) + N(r,0; f) + N(r,1;F) + N(r,00;¢) + N(r,0; g)
+N(r,1,G) — N(r,0; F') — N(r,0;G") + S(r, f) + S(r,g)
< N(r,09; ) + N1 (1,0: ) + NG, 1) + N(r,09:8) + N1 (7, 0)
+ N(r,1;G) — No(r,0; F') — No(r,0; G') + S(r, f) + S(r,8),
where Ny(r,0; F') is the counting function of those zeros of F in |z| < r, which are not the
zeros of f(F—1)in|z| < r.
Now using Lemma 1, 2, 3 and (5), we get

(6)

N(r,1;F) + N(r,1,G) < =[N(r, ;F) + N(r,1;,G)| + Nlls) (r, ;F)— <l — %)N*(r, 1;F,G)

< TN + T} + (5+1)N0i) + (541) N i)

L N(r, 0F [>2) + N(r,0:G | > 2) — (z— ;)N*(r,l;F,G)

— N~

(7)

+ Ng(r,0;F') + Ng(r,0;G') + O(logr).
So from (6) and (7), we obtain

100+ 7090 < (5 +2) [N, ) + N 0i) | + N (n0.) + NO,0F |22

+ Niy1(r,0;9)+ N(r,0;G |> 2)— (—3 N.(r,1;F,G) + Ng(r,0; F')
+5(r, f) +5(r,8)

r,0; f) + N(r,0; f |> k+2)

2
+ Ng(r,0;G') — No(r,0; F') — No(r,0; G’

k _ _
< <§+2> {N(r,oo;f) —i—N(r,oo;g)} + Niiq
+N(r,0;F |[>2| f #0) + Ny1(r,0;¢) + N(r,0;¢ |> k +2)

)
(

+N(r,0;G |>2]g#0)— <l - ;)N*(r,l;F,G) + Ng(r,0;F)
+ Ng(r,0;G") — No(r,0; F') — No(r,0;G') + S(r, f) + S(r,9)

< <§ +2 [N(r, oo; f) + N(r, Oo;g)] + Ni12(7,0; f) + Niy2 (7,0 9)

- (l—%)ﬁ*(r,l;F,G)+5(T,f)+5(V/8)- O
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Lemma 11. Let f, ¢ be two transcendental meromorphic functions and F, G be defined as in
Lemma 10. Then either f()¢K) = Q2 or f = g, whenever f and g satisties one of the following

conditions:

(i) 1>2 and <§ +2> {@(oo,f) +®(oo,g)} + 0542(0, f) + 6542(0,8) > k+5; (8)

(i) =1 and (3—k+2){®(oo,f)+®(oo,g)}+5k+2(0,f)+5k+2(o,g)

4
NG

+ 411{5k+1(0/f) + 5k41(0,8) } > 37 +6;
(iii) 1=0 and (2k + ;) {O(c0, f) +O(c0,8) } + 6120, f) + 5k12(0,8)

3
+§{5k+1(0/f)+5k+1(01 8)} >4k +11.
Proof. Case 1. Let H # 0. We consider the following cases.
Subcase 1.1. Let [ > 2. Then from Lemma 10, we get

%[T(r,f) +T(r,8)] < <§ +2) [N(r,09; f) + N(r,00;g)]

+ Niy2(7,0; f) + Niga(r,0;8) + S(r, f) + S(r, 8)

<[(5+3) = (53 +2)@(.f) ~ 6200, 0. )

+ [(g +3) - (g +2)0(c0,8) — :2(0,8)| T(r,8) + 5(r, f) + S(1,g),

(10)

KE +2>®(oo,f) + 6k42(0, f) — <§ + ;)] I(r, f)

2
(5 +2)0(0,8) +801200.9) ~ (54+2)]7(8) < S p) + 5(r,9)

Without loss of generality, we may suppose that there exists a set I with infinite linear measure
such that T(r,g) < T(r, f), r € I. Then for r € I, we have

[(5+2) {0000, £) +0(00,9)) +8:2(0, ) + 6is2(0,9) — (k+5)|T(r.f) < S(r.f),

which contradicts (8).
Subcase 1.2. Let [ = 1. So from Lemma, 4, 5 and 10, we have
1 k — —
ST )+ T(r,8)] < (5 +2) [N(r,00; f) + N(r,00;9) | 1
+ Ni2(7,0; f) + Niya (7,0, 8) + EN*(r,l;F, G)+S(r, f)+5(r,8)
k 9\ [— _
< (E + Z> {N(r, oo,f)l—i— N(r, oo,g)] + Niia(7,0; f)
+ Ngio(r,0;8) + Z{N(r,O;F) +N(r,0;G)} + S(r, f) + S(r,g)

<(% ?

' Z) [N(r’ 0o; f) + N(r, “;g)} + Niy2(r,0; f) + Ngp2(7,0;8)

+ 1IN (5,0 f) + N (1,0:)} +5(7,) +5(1,9)
<[+ D) = (B4 D)0t ) 610, ) ~ 3610, 0)] T0r )

411( 2 4}1{ 4 4
(D) - (B 0)00,9) ~ 512(0.9)  181(0,8)] ()

+5(r, f) +5(r,8),
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i.e.

[+ 2)0re0, 1) + ea0,9) + 200 0,9) — (2 +3)] 70,1

+ [(1—" + Z)@(OO,g) +k42(0,8) + }L(skﬂ(o,g) = (Z—k +3)|T(r,g) < S(r, f) +5(r,3).

Without loss of generality, we may suppose that there exists a set I with infinite linear measure
such that T(r,g) < T(r, f), r € I. Then for r € I, we have

[<34_’< + 3) {O(co, f) +©(00,8)} + 4 12(0, f) + 512(0,8)

10 (0.1) +020.9)) — (3 +6) |7 ) < 5 £),

which contradicts (9).
Subcase 1.3. Let [ = 0. So from Lemmas 4, 5 and 10, we have

ST ) + T 9)] < (5 +2) [N 00 ) + N(r,00:9)
+ Nioo(7,0; f) + Niyo (7,0, ) + ZN*(V, 1,F,G)+S(r, f) +S(r,g)

< <§ + ;) [N(r, o0; f) +N(r,oo;g)] + Nies2(7,0; f) + Niyo (7, 0, 8)

+ g{ﬁ(r,O;F) +N(r,0;G)} + S(r, f) +S(r, )
< 2K+ 2) [N(r o0i) + N(r,099)] + Nieoa(r,0:) + Nesa(1,03)

+ 5 (N (1,0:) + Nea(,0:9)} + S0,) +5(0,8)

< [(@k+6) — (2% + 2)O(o0, f) ~ 61200, f) ~ 26:1(0,/)] (5. f)

+[(@k+6) — (24 2)O(0,8) ~ 2(0,8) ~ 205:4(0,9)] T(r,g)
<S(,f) +5(r,9),

[(26+ 2)0(00, ) + 61420, ) + 20 0, ) — (2% + )] T, )

[ (24 2)0(00,8) + 642(0,8) + 661(0,8) — (2k+ 5 )| T(1,8) < 501, f) +S(,8).

Without loss of generality, we may suppose that there exists a set I with infinite linear measure
such that T(r,g) < T(r, f), r € I. Then for r € I, we have

(2 + 2) @1, £) +©(60,)} + 614200, f) + Gks2(0,8)
£ {51(0,0) + 51(0,9)} — (#+11)]T0, /) < (1, f),

which contradicts (10).



Uniqueness of certain differential polynomial of L-functions and meromorphic functions ... 199

Case 2. Let H = 0. On integration we get from (4)
_ AG+B
~ CG+D’
where A, B, C, D are complex constants satisfying AD — BC # 0. Also by Mokhon'ko’s Lemma
(see [12])

(11)

T(r,f) = T(r,8) +S(r f)- (12)

From Lemma 9 we see that F, G share (1,00), which again implies F, G share (1,2). So we
consider only the inequality (8) and so from (12) the condition becomes

(§ +2) {©(c0, f) +O(c0,8) } + 612(0, f) + 65+2(0,8) > k+5. (13)

As AD — BC # 0, so both A and C cannot be simultaneously zero. Thus we consider the
following cases.

Subcase 2.1. Suppose AC # 0. Then F — 4 = CB(EEfg # 0. So F omits the value 4. Now
by using Lemma 6, we get

T(r,f) < Niaa(r,0;f)+ N(r,00; f) +N<1’,%;F> — No(r,0; F") + S(r, f)

< Niya(r,0; f) + N(r, 00, f) + S(r, f),

which yields 0;2(0, f) + ®(o0; f) < 1.
Thus from (13), we get
k k
(5 + 1) O(co, f) + (E + 2)®(oo, Q)+ 0ia(0,8) > k+4,

which is a contradiction from the Definition 6.
Subcase 2.2. Suppose AC = 0.
Subcase 2.2.1. Let A = 0 and C # 0. Then (11) becomes F =

and 6 = 2.
C
If F has no 1-point, i.e. 1 is a Picard Exceptional value, then by using Lemma 6, we get

T(r,f) < Niua(r,0;f) + N(r,00; f) + N(r, 1, F) — No(r,0; F') + S(r, )
< Niga(r,0;f) + N(r,00; f) + S(r, f),
which again yields dx12(0, f) + ©(oo; f) < 1, and similarly as above we arrive at a contradic-

tion.
So let F has some 1-point. Then v + ¢ = 1. Since C # 0, so ¥ # 0 and thus

1
G H+1 -9

1 _ C
Y eEm Yl Where’)/ =D

By using Lemma 6, we get

T(r,f) < Newa(r,0:f) +N(r,00; f) +N(r, 2 T F) — No(r,0;F') + S(r, f)
< Ny (r,0; ) + N(r, 00, f) + N(r,0,G) + S(r, f) + 5(r,8)
< Niga(r,0; f) 4 Niga (7, 0;8) +N<r o0; f) +kN(r,00;8) + S(r, f) + S(r, )
< Niya(r,0; f) 4+ Niga(r,0;8) + N(r,00; f) +-kN(r,00,8) + S(r, f) + 5(r,8),
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which yields by using (12), éx12(0, f) + 0;12(0,8) + O(c0, f) + kO(oc0,g) < k+ 2. Thus from
(13) we get

<§ + 1)@(oo,f) + (2 - g)@(oo,g) >3

which is a contradiction from the Definition 6.

Thus v = 1and FG = 1,ie. fHgk) = Q2.

Subcase 2.2.2. Let A # 0 and C = 0. Then D # 0 and (11) becomes F = AG + u, where
A= % and p = %.

If F has no 1-point then the case can be treated similarly as done above.

So let F has some 1-point. Then A + 1 = 1 such that 4 # 0. If A # 1 then by using Lemma 6,

we get

T(r,f) < Nipa(r,0;f) + N(r,1 = A;F) + N(r,00; f) — No(r, 0; F') + S(r, f)
< Nesa(r, 0 f) + N(r,0;G) + N(r, 00, f) + 5(r, f)
< Nexa(r,0:f) + Niya(r,0;8) + kN(r, 00;) + N(r, 00; f) + S(r, f)
< Nesa(r,0; f) + Niyo(r,0;8) + kN(r,00;.8) 4+ N(r,09; f) + S(r, f),

which by using (12) again yields dx.2(0, f) + 912(0,8) + O(oo, f) + kO(o0,g) < k + 2, and
similarly as above we arrive at a contradiction.
Thus A = 1 and so F = G, which can be rewritten as

f =8 + Qll (14)

where Q1 is a polynomial of degree o, < k — 1. Combining (14) and Nevanlinna’s three small
functions theorem (see [18, Theorem 1.36]) we get

T(r,g) < N(r,00;8) + N(r,0;8) + N(r,0;¢ + Q1) +5(r,8) (15)
= N(r,00;8) + N(r,0;8) + N(r,0; f) + S(r,g).
Again form (14) we get T(r, f) = T(r,g) + O(log ). From this and (15) we get
©(0,f) +©(0,8) +©O(c0,g) < 2. (16)
From (13), (16) and Remark 3, we get
<§+2)®(oo,f) + (§+1)@(oo,g) > k+3. (17)

Hence from (17) and Remark 3 we get a contradiction. Thus Q; = 0 and so we get from (14)
that f = g. This completes the proof. O

3 Proof of the Theorems

Proof of Theorem 1. Let d be the degree of the L-function L. Therefore, by Steuding [15, p. 150]
we have

T(r, L) = %rlogr + O(r). (18)



Uniqueness of certain differential polynomial of L-functions and meromorphic functions ... 201

We set the functions F; and G as follows

k) Gk
BRETCHRTE ®)
where F = P(f)(af™ 4+ B)* and G = P(L)(aL™ + B)®.
Clearly, since F¥) — 5(z), G¥) — 5(z) share (0,1), hence F;, G; share (1,1).
Noting that an L-function has at most one pole z = 1 in the complex plane, we deduce by
Lemmas 1 and 7 and Valiron-Mokhonko’s lemma (cf. [12]) that

(n+ms)T(r, L)+ S(r, f) T(r,G)

N(r,00;G) + N(r,0; G) + N(r,1;G1) — N(r,0; G;) + S(r, f)
N(r,00;G) + Ngy1(r,0; G) + N(r,1;Gy) — No(r,0; G;) + S(r, f)
N(r,00; L) + (k+1)N(r,0;G) + N(r,1;Gy) + S(r, f)

(k+1)(n+ms)T(r, L) + N(r,1;F) + S(r, f),

INIAIA TN

where Ny(r,0; G’l) is the counting function of those zeros of G’1 in |z| < r, which are not the
zeros of G and Gy — 1 in |z| < r. This implies

—k(n +ms)T(r,£) < T(r,F®) 4+ S(r, f). (20)

By (18) we see that L is a transcendental meromorphic function. Combining this with (20), [18,
Theorem 1.5] and the assumption of the lower bound of 1, we deduce that F*) and so f is a
transcendental meromorphic function.

Now we set

A = (g + 2) {O(c0, F) + (00, G) } + 61+2(0,F) + 8¢42(0, G), (21)
B2 = (34—k + 3) {©(c0, F) + ©(00, G) } + 342(0, F) + 612(0, G)
(22)

1
+ Z{(Sk+1 (0,F) + 6¢+1(0, G)}

and

8y = (24 2) (o0, F) + (00, G)} +5412(0,F) + b12(0, )

, (23)
+ 5{5k+1(0/F) +041(0,G) }.
Using Lemma 1, we have
O(co,F) =1— limsup%
r—o0 7 e (24)
=1-limsu N(r, o0; f) S
N o P i+ ms)T(r, /) +O(1) = n+ms’
. Nj12(r,0; F)
Oki2(0,F) =1-1 ——
k+2(0, F) imsup =)
. . m S
> 1 — limsup Niy2(r,0; P(f)) + Niga(r, 0; (af™ + B)°) (25)

00 (n4+ms)T(r, f) +0O(1)
_ nz(k+2)+n1+ms
n -+ ms ’

>1
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Similarly,

na(k +2) +ny + ms

0 0,G)>1-—
k+2(/ >— 1+ ms

, (26)

np(k+1) +ny + ms
n -+ ms

_ m(k+1) +ny +ms

0 OF)>1-—
k1(0F) 2 n+ ms

, %+1(0,G) > 1
Since an L-function has at most one pole at z = 1 in the complex plane, we have
N(r, L) <logr+ O(1).
So using (18) we deduce that
O(c0,G) = 1. (27)

Case 1. Let | > 2. By using (21), (24)—(26) and (27), we have

(K +2) + 2np(k +2) + 21y + 2ms

Alz(k+6)— —

(28)

By (28) and the assumption n > (& +2) + 2y (k + 2) + 211 + ms, we have A; > k + 5. Thus by
Lemma 11 we get either FG®) = 42(z) or F = G.

Let F =G, ie.
P(f)(af™ +B)° = P(L)(aL™ + B)°. (29)
Now we set
_f
H= ra (30)

If H is a non-constant meromorphic function, then we get (29).
Suppose H is a constant. Then from (30), we get

— m\s S m\S— 5 S
o s f ]| @)+ (7)o ()6
=(a L + a1 L7+ agz2) [(aﬁm)s + G) (L™ 18+ .+ (2) ,35] ,
ie.
WA i i —i)4n—1 —i)4n—1
Z <>ﬁl [anﬁm(s z)—i—n(Hm(s i)4+n _ 1) + ﬂn—lﬁm(s i)+n (Hm(s i)+n—1_ 1) +. ..
+ alﬁm(sfi)+1(Hm(sfi)+l _ 1)] =0,
which implies HX" = 1, where
n—1
1, Z | an,]- |7é O,
=1

dl, aj :O,V]': 1,2,...,n—1,

An =
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di = ged(ms +mn,...,m(s—i)+mn,...n),i =0,1,...,s. Therefore, f = tL for a constant ¢
satisfying tAn = 1.
Case 2. Let | = 1. By using (22), (24)-(27), we have

% E+(Fmr
Ay >—+7— .
2 n + ms

(31)

By (31) and the assumption n > %k +24 <57k + %)nz + 5% + 325 we have A, > 37" + 6. Thus

by Lemma 11 we get either F?)G®) = 52(z) or F = G. Proceeding in the same manner as done
in Case 1, we get the conclusion.
Case 3. Let | = 0. By using (23), (24)-(27), we have

2k + % + (5k + 7)na 4 5nq + 5ms
n+ ms ’

Az > 4k +12 — (32)

By (32) and the assumption n > 2k + % + (5k + 7)np 4 5nq + 4ms, we have Az > 4k + 11. Thus
by Lemma 11 we get either FO)G®) = 52(z) or F = G. Proceeding in the same manner as done
in Case 1, we get the conclusion. O

Proof of Corollary 2. We set the functions F; and G; as follows.
(k) (k)
R=  Gi=o
1(2) 7(2)
where F = f"(af™ + B) and G = L"(aL™ + B). Clearly, since F¥) — 51(z), G — 5(z) share
(0,1), hence F;, Gy share (1,1).
Then using the same procedure as adopted in Theorem 1, we obtain either FZ)G®) = 52 (z)
or F =G.
Subcase 1.1. Suppose FHIGK) = 52(z), i.e.

{F(f™ + B) YL (L™ + B)}D = 42(2). (33)

Subcase 1.1.1. Let a # 0. Then using (18), (33), Lemma 1 and a result from Whittaker [16,
p-82] and the definition of the order of a meromorphic function we have

o (" (af" 1 B
o) = ol ™ + ) = o (LSO
= p((L"(wL” + B)P) = p(L7(@L™ + ) = p(L) = 1.

By (34) we can see that f is a transcendental meromorphic function. Since an L-function has
Fafm+B)® 4o at
73(2)

(34)

at most one pole at z = 1 in the complex plane, we deduce by (33) that
most one zero atz = 1in the complex plane. Now, as #(z) is a polynomial, so the zero comes
only from (f"*(af™ + B))*). Combining this with (34), Lemma 8 and the assumption k > 2,
we obtain that f"(af™ + ﬁ) has finitely many poles and so f has finitely many poles in the
complex plane. This together with (33) implies that ((;# and so (L"(aL™ + B))*) has
at most finitely many zeros in the complex plane. Moreover, by the assumptions (1)—(3), we
deduce that £ has at most finitely many zeros. Thus,

L = Rye# B (35)
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where R; is a rational function, A; # 0 and B; are constants. By (35) and Hayman [3, p.7] we
have

T(r, L) = T(r, RyeM*B1) < @(1 +0(1)) + O(logr),

which contradicts (18).

Subcase 1.1.2. Let ap = 0. As |a| 4 |B| # 0, we have to consider the following two cases.

Subcase 1.1.2.1 Let & # 0, = 0. Then (33) becomes { f" "™} (k) { Lrntmami(k) = y2(z),
Let zo be a zero of L of order A. Then we can get that zj is a pole of f of order y, satisfying
(n+mA—k = m+m)x+k, ie (n+m)(A—x) = 2k, which implies n + m < 2k, contra-
dicting the assumptions (1)—(3). Hence, £ has no zeros and so £ = Rye22 B2 where R, is
a rational function and Aj(# 0), B, are constants. Thus, adopting the same procedure as in
Subcase 1.1.1 we arrive at a contradiction.

Subcase 1.1.2.2 Let &« = 0, B # 0. Then (33) becomes {f"g"} K {£ngm1 (k) = y2(z). By
using the argument as in Subcase 1.1.2.1, we obtain n(A — x) = 2k, which again contradicts the
assumptions (1)—(3). Thus, in the similar way we arrive at a contradiction as in Subcase 1.1.2.1.

Subcase 1.2. Let F = G, i.e.

fraf™ + B) = L(aL™ + B). (36)

So f and L share (o0, 0).
Subcase 1.2.1. Let a # 0. Taking H = %, we get

a LM (HMM 1) = —BLM(H" — 1). (37)

Suppose H is a non-constant meromorphic function. Then by (37) we have

LM H"—1
B~ HWM_T (38)

Let d = gcd(n,m). Then clearly HY = 1 is the common factor of H" — 1 and H"*" — 1.
Therefore, (38) can be rewritten as

alm 1+H+...+H" ¢
B 1+H+..+Hmd (39)
By (39) and Lemma 1 we have
n—d
(r, L) = T<r, : 1++Hi +++HH+M> — (n+m—d)T(r, H) + O(1). (40)
Also
o(f) = p(f*(af™ +B)) = p((f" (af™ + B)™) = p((L" (L™ + B))Y) 1)
=p(L"(aL™ +B)) =p(L) =

By (37), (40), (41) and by the second fundamental theorem we have

N(r,00; L) ZNr’y], +o(T(r,H)) > (n+m—d—1)T(r,H), (42)
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asr — oo. Here Ay, Ay, ..., Ayyp—g are n + m — d distinct finite complex numbers satisfying
Aj # land )\}”m_d =1for1 <j <mn+m—d. Noting that £ is a transcendental meromorphic
function such that £ has at most one pole z = 1 in the complex plane, we deduce by (42) that
there exists some small positive number ¢ satisfying 0 < € < 1, such that

(n+m—d—1-¢)T(r,H) < N(r,00; L) = logr + O(1). (43)

By (43) and the assumptions (1)=(3) and k > 2 we deduce that H is a non-constant rational
function.

Since f and L share (o0, ), it follows from the construction of H, that the poles of H only
comes from the zeros of £ and so they are finite in number. As a result £ has a representation

Azz+B
L = Ryet=ths,

where R3 is a rational function and A3(# 0), B3 are constants. Thus proceeding the similar
way as adopted in Subcase 1.1.1 we arrive at a contradiction.
When H is a constant meromorphic function then from (36) we get

a£n+m(Hn+m _ 1) +ﬁ£n(Hn _ 1) — 0’

which implies H? = 1. Therefore, f = tL for a constant ¢ satisfying t? = 1.

Subcase 1.2.2. Let af = 0. As |a| + |B| # 0, so we have to consider the following two cases.

Subcase 1.2.2.1. Let « = 0 and B # 0. Then clearly we get f = t£, where t is a constant
satisfying t" = 1.

Subcase 1.2.2.2. Let « # 0 and B = 0. Then clearly we see that f = £, where t is a constant
satisfying " = 1. O
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