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ANTONOVA T.M.

ON CONVERGENCE CRITERIA FOR BRANCHED CONTINUED FRACTION

The starting point of the present paper is a result by E.A. Boltarovych (1989) on convergence
regions, dealing with branched continued fraction
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where |a;0,_1)| < a/N,ip = 1,N,p =1,2n—1,n > 1, and for each multiindex i(2n — 1) there
is a single index jp,, 1 < ja, < N, such that |a,-(2,1,1),]-2n| >Rip=1,Np=12n-1,n>1,
and |a,-(2n)| <r/(N—=1),i3 # jon ip = L,N,p = 1,2n,n > 1, where N > 1 and «, 7, R are real
numbers that satisfying certain conditions. In the present paper, conditions for these regions are
replaced by YN_; |a;q)| < a(1—¢), Zg’”H:l |ajany| < @(1—¢),ip =T,N,p=1,2nn2>1,and
for each multiindex i(2n — 1) there is a single index jan, 1 < jo, < N, such that |a;,_1)5,,| > R and

Yie {12, NP\ {jan} [8i2m)| < 7,ip =1, N, p=1,2n—1,n > 1, where ¢, a, r and R are real numbers
that satisfying certain conditions, and better convergence speed estimates are obtained.

Key words and phrases: convergence, convergence region, convergence speed estimate, branched
continued fraction.
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1 INTRODUCTION

All known general methods of proof of convergence criteria of continued fractions are
based on value-region considerations. The interplay between element regions and value re-
gions leads to convergence region criteria, that is, results of the form: if the elements of con-
tinued fraction lie in some regions then the continued fraction converges. In addition, the
relationship between element regions and value regions provides one with knowledge of the
location of approximants of continued fraction whose elements lie in some convergence re-
gions. Both of these phenomena (i.e., the convergence regions and the information about the
location of approximants) are not to be found for most common infinite processes, such as
series and products [15, pp. 63-78].

It is well know (see, for example, [7]) that branched continued fractions (BCF) are multi-
dimensional generalization of continued fractions. Let N be a fixed natural number. For BCF
with the complex elements
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E.A. Boltarovych [9] proved the following theorem.
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Theorem 1. Let N > 1 and let there exist real numbers «, r and R such that0 < a < 1/4,
0<r<oo,R(1—a)>(14a)(r+2—2a),

a(R+7)(1+a)?
(R(1—a) —r(14+a) —1+a2)2

and such that BCF (1) with elements a;(,,) satisfying

Q= <1, ()

‘ai(anl)‘ <a/N,ip=1,N,p=12n—-1,n2>1, (3)
and for each multiindex i(2n — 1) there is a single index jo,, 1 < jo, < N, such that
|aion—1),j,,] = R, ip = LN, p=12n—-1,n>1, (4)
2ion)| <7/ (N =1), izy # jon, ip =1L N, p=1,2n, n > 1. (5)
Then the BCF (1) converges.

This is analog of result by Leighton-Wall [13] on twin convergence regions, dealing with
continued fractions. In the present paper, we shall study what happens to conditions on num-
bers a, r and R, and convergence speed estimates, when the conditions (3)—(5) are replaced

by

N
Z a1y < a(l—e), ) aionsy| <a(l—¢), ip=1N, p=12nn>1, (6)
inp1=1
where 0 < ¢ < 1, and
18001 jo | = R, ) ajom| <7, ip=1,N, p=12n—1,n>1. (7)

inn€{L,2,... N}\{jon}

The same type of problem of convergence regions for BCF is discussed in [2-6,14]. Application
of the value regions to the study of the convergence of functional BCF may be found in [5,8,10].
Expansions of certain analytic functions in some classes of BCF are given in [1,8,11,12].

We give here a few facts (see [7]) that are used. Let QE&)) denotes the “tails” of (1), that is

QE(SS)) =1,i,=1,N,p=15>1,and

k+1 a; Z‘nfl a:
k+1 i(k+2) i(n
T D SN
i1 tim 1o+ i

wherei, =1,N,p = 1,k,k =1,n—1,n > 2. Itis clear that the following recurrence relations
hold

_1+ Z k+1 ip=1N,p=Lk k=1n-1,n>2.
lk+1_1Q k+1)

If fn denotes the n-th approximant of (1), then f, = 211 1(aiy/ Q ) n > 1, and if all
1 k) # 0, then
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2 CONVERGENCE CRITERIA

We shall prove the auxiliary lemma.
Lemma. Let there exist real numbers «, r and R such that
0<a<1,0<r<oo, R(1—a)>(14+a)(r+2—2a), )
and such that BCF (1) with elements a;,,) satisfying

N N
Z laiq)| < a, Z [aionsyl <o, iy =1,N, p=12nn>1, (10)

inp1=1

and for each multiindex i(2n — 1) there is a single index jo,, 1 < j», < N, such that the
inequalities (7) hold. If Ql(”k) denotes the “tails” of BCF (1), the following inequalities hold

1—oc<|Q |<1+a ip =1,

R r
Qi) Z 757 "1

Proof. Let n be an arbitrary natural number. By induction on k for each i(k) we show that the
inequalities (11) and (12) are valid.

If n is even number and k = n/2, then for each i(n) relations (11) are obvious. If n is odd
number and k = (n — 1)/2, then for arbitrary i(n — 1) use of relation (10) leads to

2k<n, n>2, (11)

<p<
—1>1,i,=1,N, 1<p<2%-1<n—-1,n>2 (12

|Qn1|>1—2|a | >1—a and | |<1+Z|a ) < 14w

in=1 =1

By induction hypothesis that (11) hold for k = r and for each i(2r), where 2r < n, we prove the
inequalities (12) for k = r and for each i(2r — 1) and the inequalities (11) for 2k = 2r — 2 for
each i(2r — 2). Indeed, use of relations (7), (9), (10) for arbitrary i(2r — 1) leads to

ai(2r)

(n) | _ Ai(2r=1),jar
Qicr—n| =11+~ + e
i) jp  2re{12 NN Qo)

|‘1i(2r—1),]2,| B \ai(zr)\ R r

> -1> - -1>1
’Qf(nz)r_l)ljh‘ i2r€{1,2,... N}\{jar} ‘Ql(?z)r)‘ l1ta 1-a
and for arbitrary i(2r — 2)
N gin. N
Qi =1- ¥ %21% and Q) <1+ ). ”2” <1+
ipr—1=1 |Qi(2r71)| ipr—1=1 |Q (2r— 1)|
This completes the proof of the lemma. O

Our main result is the following theorem.

Theorem 2. Let there exist real numbers «, ¢, r and R such that 0 < a« < 1,0 < ¢ < 1,
0 <r<oo,R(1—a)> (1+a)(r+2—2a) and such that BCF (1) with elements a;,, satisfying
the inequalities (6) and for each multiindex i(2n — 1) there is a single index jp,, 1 < jo, < N,
such that the inequalities (7) hold. Then the following statements hold.
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e (A) The BCF (1) converges to a value f.
e (B) If f, denotes the n-th approximant of the BCF (1) and

_ a1+ a)(RA—a) +r(1+a))
(R(1—a) —r(1+a) —1+a?2)?

<1, (13)

then

0((1 _€)n+1qn
U VR ey s .

n>1. (14)

e (C) The values of the BCF (1) and of its approximants are in the region |z| < a(1 —¢).

Proof. At first, we prove (B). Let m > 2n 41 and n > 1. From the formula (8) one obtains

NONCN e Hz"“la )|
(1)
f—ful <Y Y Y = ;
STt et QU TR QU TR 1Q4 |
NONN ey TR \a r Iy ra |
i(1) k=1 |4i(2k) k=1 2k+1)
P IDINHDY

1 igppr= 1|Ql(( |Hk 1|Q 2k 1 |Hk 1|Q (2k) 2k+1)|

~.

i1=11p

Obviously, the conditions of lemma hold. Let k be an arbitrary natural number. Applying
(11) and (12) we have for arbitrary i(2k — 1)

i’: |ﬂ 2k| i’: |‘1 (2k+1)]
(m)
sz 1 ‘Q Zk 1 ’12k+1 1’Q 2k Qi(2k+1)‘
- a(1—é) ﬁ !a (20)|
0= R/ +a) /(T —a) —1) 4= Q2T o)
_ x(1-¢)
T (1-a)(R/A+a)—r/(1—a)—1)
|ﬂ (2k— 1)]2k| ’El Zk‘
X( e ‘+, Qe e |
Q Zk 1 2k 1)]21( ZZkE{l,Z,...,N}\{]zk} Qi(Zkfl)Qi(Zk)
Since

|‘1 (20| 1

e AN ) Qi1 Qi (7 ORI @) =r/ (=) = 1)y 4500 ()
r
)

\ai(zk) |

SA—O)R/Ata) —r/(l—a)—1)
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and

(2n)
|52k 1),y | _ ai(Zk*l)'jZk/Qi(Zk_l)erk

(2n) (2n) (2n)
|Qi(2nk71)Qi(2nkfl),j2k| L+ ai(ar—1) ./ Qz‘(znkfl)

+ T (12, N () (i) / Qo)

JJ2k

_ L+ Vi (12, N1\ (i} (Bic2k) / Qf(zfzfﬂ
T (2n) (2n)
1+ iar1) e/ Qiar—1) . T Einee 1.2 N1 i} (9i(28)/ Qiax)
(2n)
-1 T4 Yipe (1.2 NP e} (Fic2) 7/ Qjap))
<1+ o
Qitk—1)
<14 14+7/(1—a) B R/(1+«)
- R/Q+a)-r/1—-a)—1 R/(Q+4+a)—r/(1—a)—-1
then
i’: |22k | i’: |ai(2k41)] < a(l1—¢)(R/(14+a)+r/(1—a))
| @) | m) )| = (1= 0 —a) 12
=1 |Qjiag—1) Qi(any | 2= Q42 Qiais )| A-a)(R/(1+a)=r/(1=a)~1)
Thus, form >2n+1andn > 1
n+1 _ \n+1 . n _ \n+1ln
o — fonl < o (1—e)""(R/(A+a)+r/(1—a))" a(l—¢)"yg (15)

1—a)"(R/1+a)—r/(1—a)—1)2"t1  R/(14+a)—r/(1—a)—1
where ¢ is defined by (13). If in (15) we pass to the limit as n — oo, then from (13) it follows
that BCF (1) converges. On the other hand, if in (15) we pass to the limit as m — oo, we obtain
the estimate (14). This proves (B).
To prove (A) we consider the following equation

Fi(x) = (), (16)

2
x R r R r
) = 1—x<1+x+1—x>'F2(x)_ <1+x_1—x_1> '

It is clear that F;(0) < F»(0), and F;(x) > 0 and F»(x) > 0 for all x € (0;1). It follows from
F/(x) = R(1+x2)/(1 —x2)2+r(1+x)/(1 — x)? that F{(x) > 0 for all x € (0;1). Let us write
the function F,(x) in the form F(x) = (x> — (R +7)x + R —r —1)?/(1 — x?)? and consider
the following equation

where

x>~ (R4+rx+R—r—1=0. (17)

Ifr > 0,then x* = (R+7r—+/(R+7)2—4(R—r—1))/2 is the only root of equation (17) on
(0;1) and, if r = 0, then x* = 1 is the only root of (17). Now from
x>~ (R+r)x+R—-r—1 R LT
1—x2 (1+x)2  (1—x)?
we have Fj(x) < 0 for all x € (0;x*). It follows that there exists the only root a* of equation

(16) on (0;x*). If 0 < & < a*, then Fj(a) < F,(a), that is, the condition (13) holds. In the case
when a* < & < 1 we consider the following BCF

Ej(x) = -2

N gz N g N o g0 1\Z N g
Z i(1) Z i(2) . Z i(2k—1) Z i(2k) o (18)
P 1 + i1 1 + iy 11 1 + i1 1 +
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where z € C. Itis clear that the elements of BCF (18) satisfy the conditions of lemma in domain
D, ={zeC: |z] <1/(1—¢)}. It follows from (11) and (12) that, if f,(z) denotes the n-th
approximant of the BCF (18), forall z € D,

|fu(z)] < Z\a 12| < af (1—¢)lz| < a,

i.e. the sequence {f,(z)} is uniformly bounded in the domain D;. If z € D,+, where D+ =
{z € C: |z| < a*/a}, then according to the above BCF (18) converges. Obviously, Dy+ C Dk.
Hence, by [16, Theorem 24.2, p. 108] BCF (18) converges uniformly on each compact subset of
the domain Dy, in particular, for z = 1. It follows that BCF (1) converges.

Finally, from

N
|fu] < Z|z ) <a(l—e)
111|Q i1=

follows proof of (C). O

Remark. If the conditions (3)—(5) are replaced by the conditions (6) and (7), then the condition
(2) is replaced by the condition (13) and the 0 < « < 1/4 is replaced by the 0 < a < 1. Itis
clear that Q > g, and, thus, the estimates (14) are better than similar estimates obtained in the
proof of Theorem 1. In addition, if g < 1, then ¢ can be zero.

Corollary. Let there exist real numbers B and ¢ such that0 < f < 1/N,0 < ¢ < 1, and such
that BCF (1) with elements a;(,,) satisfying |a;i,_1)| < B(1 —¢), wherei, =1,N,p=1,2n—1,
n > 1, and for each multiindex i(2n — 1) there is a single index jo,, 1 < jo, < N, such that
3i2n-1)50,| = L+ NB)(2 = (1+N)B)/(1 =NB), ip=1,N, p=1,2n-1,n>1,
|ai(2n)| S ,B/ iZi’l 7éj2n/ lp == 1/N/ p == 1,2”, n Z 1.

Then BCF (1) converges, and its values and its approximants are in the region |z| < NB(1 —¢).
Proof. Weseta = NB,r = (N —1)8, R = (1+NB)(2 — B(1+ N))/(1 — NB). Then

_1+N8B B N-1 )\ r
— 1_Nﬁ(2—2Nﬁ+(N—1)ﬁ)_(1+N[3) <2+1_Nﬁﬁ> —(1+oc)< 1_“>.

It follows that the conditions of Theorem 2 hold, and, therefore, the corollary is an immediate
consequence of this theorem. O

3 EXAMPLE

Let B, r and R be some positive numbers. We consider the periodical BCF

2 ai1) ai(2) 2 Ai(n)
yfe oy i (19)
P T S e e e B S
where a;1) = B, 0,_1) = (=1)2271B, a;0,_1)1 = (=1)2171R, a;0,_1), = (=1)2-17,
which form by the following fractional transformation
_ P p
s(w) = R r T R T
1+ - 1-— +

14w 1—w 14w 1—w
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It follows that BCF (19) can be converged only to the real root of the following equation
(w—2B)(1 —w?)*> —w(R —r—w(R+7))*=0. (20)

We choose p = a(1 —¢)/2, 0 =1/3,e =1/4,r =2/3 and R = 5. Then it is clear that the
conditions of Theorem 2 are satisfied and the inequalities |w| < 28 are valid. Thus, BCF (19)
converges. On the other hand the equation (20) we write in the form

9(4w —1)(1 — w?)? — 4w(13 — 17w)? = 0. (21)

Let F(w) = 9(4w — 1)(1 — w?)? — 4w (13 — 17w)?. Then F(0) < 0 and F(—1/4) > 0. Thus, on
the interval [—1/4; 0] there is root of the equation (21). The following recurrent formula

_ 260~ 27
for = e k- e K2

with initial conditions f; = 28 and f» = 28/(1 — (R — r)?) can be used to find of the above
mentioned root.
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Ocnosoro 1ii€i poboTtn € pesyabrar €.A. boaTaposiuya (1989) mpo MHOXMHM 36i1KHOCTI AAS TiA-
ASICTOTO AQHITFOTOBOTO APO6Y

=z

i) &L di) N, aifn)
1 +l.2; 1 +"'+.Z L+

=1

ae |ajou—1)l < a/N,ip = LN, p = 1,2n—1,n > 1,1 AAsL KOKHOTO MyAbTHiHAeKCY (211 — 1)

icHye eamHwit iHAEKC fo,, 1 < jp, < N, Taxwi, 1m0 |ai(2n_1)17-2n| >R, ip =1,N,p=12n-1,

n>1,Tta |a,-(7_n)| <r/(N—=1), iy # jon,ip = LN, p =12n,n > 1,2 N > 1,4 r1aR-

AlVicHI UMCAa, IO 33 AOBOABHSIIOTH IT€BHI YMOBM. Y IIilf pOOOTi yMOBM AASI X MHOXXMH 3aMiHeHO Ha
N N TN p =197 ;

Yi—1 o] < a(l—¢), Xy 1 1ai0ng)l < a(l—¢),ip =1,N,p =1,2n,n = 1,1 Ars xoxHOro

myAbTHiHAEKCY (21 — 1) icHye eayrmit iHAeKC jon, 1 < jon < N, Taxumit, wo [a;2,_1),,| = R Ta

Yipne {12, NP\ {jan} |a,-(2n)| <rip,=1,N,p=12n—1,n>1, aee a rTaR - alifcHi wicra, mo 3a-
AOBOABHSIIOTB ITeBHi YMOBH, i, OTPMMaHO Kpallli OIIiHKM ITBYAKOCTI 3615KHOCTi AASI ITbOTO TiAASICTOTO
AQHITIOTOBOTO APObY.

Kntouosi cnosa i ¢ppasu: 361>XHiCTb, MHOXKMHA 361KHOCTI, OIIIHKa IIIBUAKOCTI 3615KHOCTI, TIAASICTI
AaHIIIOTOBMIA APib.



