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Remarks on continuously distributed sequences

Pastéka M.

In the first part of the paper we define the notion of the density as certain type of finitely ad-
ditive probability measure and the distribution function of sequences with respect to the density.
Then we derive some simple criterions providing the continuity of the distribution function of given
sequence. These criterions we apply to the van der Corput’s sequences. The Weyl's type criterions
of continuity of the distribution function are proven.
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Introduction

The aim of this paper is to study the distribution properties of sequences of real numbers.
The research of distribution of sequences connected with certain type of measure of sets of
their indexes was started by Herman Weyl in his famous paper [13] in 1916. Let IN be the set of
positive integers. For S C IN the value

lim sup M =d(S) (1)
N—oo

is called the upper asymptotic density. We denote
D={SCN:d(S)+d(N\S)=1}.

It is easy to check that D is the system of all sets S C IN such that the term on left hand side in
(1) has proper limit. In this case its value is called the asymptotic density of S, denoted as d(S).
Let {v(n)} be a sequence. For an arbitrary set A we denote

v 1(A) = {n € N:v(n) € A}.

A sequence of elements of interval [0,1] is called uniformly distributed if and only if for each
subinterval I C [0,1] we have v~1(I) € D and d(v=1(I)) = |I].

This approach was later generalized by 1. Schoenberg in [11]. We say that a sequence {v(n)}
of elements of interval [0, 1] has asymptotic distribution function if and only if for each x € [0, 1]
the set v~ 1([0, x)) belongs to D and in this case the function

F(x) = d(v™([0,x)))
is called the asymptotic distribution function of {v(n)}.
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Our scope is to derive some results for more general concept of density — certain type of
finite additive probability measure defined on g-algebra or algebra of subsets of IN. In the
theory of distribution of sequences the question of the continuity of the distribution function
plays very important role. In the following text we shall study the sequences from this point
of view.

1 Density
A system ) of subsets of IN will be called g-algebra if and only if
i) 9,INe),
ii) ANB=@ = AUB € Yforall A,Be),
iii) N\ A€ Yforall Ae ).

A finitely additive probability measure v defined on g-algebra ) will be called density if
and only if

A€y <=Ve>03A, A €V: Al CAC A AV(A) —v(A) <e YACN. (2

Let v be a density defined on g-algebra ). We say that a sequence {v(n)} of real numbers
is v-measurable if and only if for each real number x the set v~1((—oc0, x)) belongs to V. In this
case the function G(x) = v(v~1((—o0, x))) will be called v-distribution function of {v(n)}. If G
is continuous, we say that {v(n)} is v-continuously distributed.

Theorem 1. A bounded sequence {v(n)} of real numbers is v-continuously distributed if and
only if for some set S, which is dense in the real line, we have v‘l((—oo, x)) € Y for each
x € S and the function F(x) = v(v"!((—o9, x))) is uniformly continuous on S. In this case the
v-distribution function of {v(n)} is the unique extension of F to whole real line.

Proof. Let t be an arbitrary real number. For given § > 0 there exist x1,x, € S such that
x1 <t <xpand xp — x1 < 4. Then

v ((—00,x1)) C v H((—00,1)) Co7H((—00,22)). 3)

Since F is uniformly continuous on S, the value § > 0 in such manner can be determined such
that F(x2) — F(x1) < e. And so, from (2) and (3) we get v~ 1((—o0,t)) € ). Analogously we
can prove that the function v(v~1((—oo, t))) is a continuous extension of F(t). O

The definition of asymptotic density via upper density can be generalized to the axiomatic
form as follows. We say that a set function n : P(IN) — [0, 1] is normalized if and only if

n(@)=0, n(N)=1
We say that n is isotonic if and only if
A C B=n(A) <n(B).
If n: P(N) — [0,1] is isotonic and normalized and for every A, B C IN we have
ANB=@ = n(AUB) <n(A)+n(B),
AUB=N=1+n(ANB) <n(A)+n(B),

we say that n is outer density.
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By the standard methods can be proved the following assertion.

Theorem 2. If n is an outer density then the set system
Y={ACN:n(A)+n(N\A) =1}
forms a g-algebra and v = n|y is a density on ).

In this case we say that v is given by n.

The axiomatic approach of density is studied in the paper [6], inspired also by the work [4]
(see also [10]).

From Theorem 1 we get immediately the following result.

Theorem 3. Let v be a density given by n. A sequence {v(n)} of real numbers is v-conti-
nuously distributed if and only if for a suitable set S, which is dense in the real line, we have
thatv~1((—oo,x)) € Y for every x € S and for each real number t

lim n(o }((t —¢g,t+€))) =0

e—0"
holds. In this case the v-distribution function of {v(n)} is the unique extension of the function

F(x) = v(v71((—o0,x))), x € S, to whole real line.

2 Application to the van der Corput sequence

We recall that a g-algebra ) fulfilling the condition
ABe)Y=— AUBe€)

is called algebra. In 1946, R.C. Buck defined Buck’s measure density starting from the asymp-
totic density of arithmetic progressions. Denote r + (m) = {n € N: n = r (mod m)} for
m € N, r € NU{0}. Let Dy be the algebra of all sets of the form J;_; r; + (m;), where m; € N
and r; € N U {0}. Clearly Dy C D. The set function p* is defined by

1*(S) = inf{d(A): A€ DyAS C A}

for all S C IN is called Buck’s measure density. Clearly p* is isotonic and normalized. Moreover,
the inequality
p(AUB) +p"(ANB) < ' (A) +p(B)

holds for A, B C IN. Thus, the set system
Dy ={ACN:p*(A)+p*(N\A) =1}
is an algebra of sets and the restriction 1 = y*|p, is density on Dy,. Clearly r + (m) € Dy and

B+ (m) =

form € N and r € N U {0}. For the details we refer to [1,8,9].
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Theorem 3 implies the following assertion.

Corollary 1. A sequence {v(n)} of elements of unit interval has a continuous v distribution
function if and only if there exists a system S, = {0 = x(()n) <xp < < x,((:) =1}, n €N,
(n) (n)

of finite sequences of elements of the unit interval such that nlgn (xpy1 — x¢ ') = 0 uniformly
fork = 0,...,k;, — 1, the sets vfl([x]((n),xlgi)l]) belong to Y and lim V(U’l([xlgn),x,((i)l])) =0
uniformly fork =0,...,k, — 1.

The following sequence was studied firstly by van der Corput (see [3,5,12]). Let {B,} be

an increasing sequence of positive integers such that B,|B,,+1, n € IN. Every positive integer a
can be uniquely written in the form

a=co+ci1By+---+¢Bj,

where 0 < ¢y < B1,0<¢; < B%' i =2,...,j. This allows us associate to this a the value

The following one to one correspondence between the subintervals of [0,1) and the arithmetic

progressmns plays an important role. For each subinterval [z~ B B 1),1<j< Bk €N, there
exists E ) e {0,1,..., By — 1} such that
(k) j=1 7
el 4 (By) <= o(n) € [ B Bk)
A sequence {h(n)} of positive integers is called Buck uniformly distributed in Z if and only if
h=1(r+ (m)) € Dy and p(h~'(r + (m))) = L for each m € Nand r € NU {0}.

Theorem 4. Let { By} fulfils the following condition: for allm € IN there exists k such that m|B.
Then for every sequence {k,} of positive integers the sequence {v(k,)} is Buck uniformly
distributed if and only if the sequence {ky} is Buck uniformly distributed in Z.

Theorem 5. Let g : IN — IN be such mapping that the condition
g(x1) =g(x2) (mod By) <= x3=x (mod By)

holds for every x1,x; € N, k = 1,2,3,.... Then the sequence {v(g(n))} is Buck uniformly
distributed.

k
0 <j< By The values g(1),...,g(Bg) are incongruent modulo By, k € IN, and so there exist

]( ) such that g( (k )) ﬂj(k) (mod By). Putu(n) = ov(g(n)), n € N. Then

Proof. Put I = |:B;k Bi> Then x € v (I .(k)) if and only if ¢(x) € Ej(k) + (By), for x,k € N,
8(

w (1) = + (By)

and so uil(I]‘(k)) € Dy and ]/t(ufl(lj(k))) = Bik' The end points of intervals I](k),j =1,...,B,
k € N, form a dense subset in [0, 1] and the assertion follows. O
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Corollary 2. If m € N is such that (m,By) = 1,k = 1,2,3,..., then the sequence {v(mn)} is
Buck uniformly distributed.

Corollary 3. Lets € IN and pi,j =123,..., be a sequence of ditferent primes such that
(s,pj—1)=1j=123,.... If By = p1...pr, j = 1,2,3,..., then the sequence {v(n°)} is
Buck uniformly distributed.

Theorem 6. Let p > 2 be a prime number. Suppose thatr € IN is a positive integer which is
primitive root modulo p*,« = 1,2,3,.... If By = pk,k =1,2,3,..., then the sequence {v(r")}
is Buck measurable and the function

F(x) 0, x <
X) = _
( ppx_ 11 . xe

1
EI

—~
= =
~
—_
~

is its Buck’s distribution function.
Proof. Put u(n) = v(r"), n € N. The numbers 1", n € IN, are relatively prime with p. Thus if
rn :CO+C1P+"‘+Cij;

then ¢y > 0 and so v(r"*) > %,n € IN. This yields that u~1((0,
every s € IN, (s, p) = 1, there exists a unique ns € {0, ..., ¢(p*)

)) = @. Suppose a > 0. For
1} such that

<=

nens+ (p(p*)) < r" €s+ (p").
This implies

And so a simple calculation gives
u(u=0,x)) = F(x)

forx € § = {ﬁ: a=20,..p%a € IN}. This set S is dense in the unit interval and the

assertion follows. O
Theorem 7. Let p;, j = 1,2,3,..., be pairwise distinct prime numbers. Put By = p;...pg,
k € IN. If f(x) is a polynomial of degree greater than 0 with positive integer coefficients, then
the sequence {v(f(n))} is Buck measurable and its Buck’s distribution function is continuous.
Proof. Forevery k € N,r =0,..., By — 1, we have
f(x) €er+(By) <= f(x)=r (mod pj), i=1,...,k
Due to the Chinese reminder theorem this system of congruences has at most d* solutions,
where d is degree of f(x). From this we can conclude that for the sequence {u(n)} ={v(f(n))}
the set ! < {Blk, %)) is union at most d* arithmetic progression with modul By. Therefore it
is Buck measurable and
dk

tim o ([ 157))) < Jim - =
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3 Matrix density

We can apply these statements for the matrix density studied originally in the paper [2],
later in [4] and other papers.

Proposition 1. Let ny, k = 1,2,3,..., be probability measures on P(IN). Then the set function
n(A) = limsupng(A)

k—o0

is an outer density.
Thus the set system
Y={ACN:n(A)+n(N\A) =1}
is a g-algebra and v = n|y is a density.
As ussualy, we denote by Xs the indicator function of the set S.

Proposition 2. For A C IN we have
AeY <<= lim ) n({n})Xa(n) =n(A).
k—o0 1

For a sequence {v(n)} of real numbers and an arbitrary interval I we have
Xom1(1y(n) = Xi(o(n)). (4)

This equation will be useful for the proof of the following result.

Theorem 8. A sequence {v(n)} of elements of [0, 1] is v-continuously distributed if and only if
for each real function f, which is continuous on [0, 1],
a) the limit

lim 3 f(o(n))mi ({n})
n=1

exists and
b) for every x € [0,1] we have

(e9)

lim lim sup ) |f(v(n))|ng({n}) = 0.

+
SO S n=1,|v(n)—x|<e

Proof. One implication is trivial.
Using Riesz representation theorem, we can prove by standard procedure that

) 1
Jim 3. F@O)me(r) = [ () (x)

for suitable nondecreasing function g, defined on the interval [0,1] such that g(0) = 0,
¢(1) = 1. From Proposition 2 and equality (4) we can derive by standard way that for each
point x of continuity of ¢ we have v~1([0, x)) € ) and

v(e7([0,x))) = g(x).
Since the set of points of discontinuity of g is countable, the set of points of continuity of g is
dense in [0, 1].
Applying the condition b) to the function f(x) = 1, x € [0,1], we get
lim n(o }((x —g,x+¢))) =0
e—0t

for each x € [0,1] and from Theorem 1 we obtain the assertion. O
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For a bounded sequence {v(n)} of real numbers, it can be defined the supremum norm as
usually
o[l = sup{[v(n)|: n € N}.

Theorem 8 implies the following assertion.

Corollary 4. The set of all v-continuously distributed sequences of elements of [0, 1] is closed
with respect to the supremum norm.

4 Measure density

The Buck’s measure density was later generalized in [7].
Let &, = {E 1.(") :i=1,...,ky,}, n € N, be a system of decompositions of IN fulfilling the
condition

foreachn =1,2,3,..., there exists m € IN such that )

each set Ej, 1 <j <n, is a union of sets & for k > m.

Denote by A the algebra of all finite unions of sets from J;;_; £,. Suppose that A is a finitely
additive probability measure on A. Let us define

0*(S) =inf{A(A): SC A, Aec A} (6)
Immediately we get the following assertion.

Lemma 1. The set function 6* given by (6) is normalized and isotonic, moreover, for every
S1, S, we have
0" (S1USy) +0%(51NSp) < 6°(S1) +6%(S2).

Denote
Ds = {S CN: 5*(S) +5*(N\ S) = 1}.

Lemma 1 implies the following assertion.

Proposition 3. The system of sets D; is an algebra of sets and the set function 6 = 6*|p, is a
density on Dj.

We say that a finite sequence 4, ..., a; of positive integers is independent with respect to &y,
n € N, if and only if a;, a;, belong to distinct sets from &, if iy # i>.

Let S C IN. Suppose that for given n € IN there is the maximal sequence sj, ... sy of ele-
ments of S, independent with respect to &, such that sj € E fjn). Put H(S: &) = Z;-‘Zl A(E Z.(jn)).
Using the property (5), the following proposition can be proved by standard procedure (see
[8, Theorem 5]).

Proposition 4. For each S C IN we have

5*(S) = r}gl;oH(S 2 En).
A finite sequence {a](."),j =1,...,k,} of positive integers, such that a](-”) € E]("),j =1,...,k,,
will be called the representative system of &,.
It is easy to observe the following two facts.
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Proposition 5. Let {a%n), .. .,a,((:)} be a representative system for £,, n € IN. Then for every

S C IN we have .

1-H(N\S:&) <Y, Xs(a")A(E!) < H(S: &y).

=1
Proposition 6. For every S C IN there exist representative systems {a&"),...,a,(('z)} and
{61, ..., 0"} of &, such that
kn
lim Y Xs(a)A(E") = 5°(S)
1

n—soo =
]_

and

kn
lim Y Xs(6")A(E) =1-6*(N\ S).
j=1

n—ro0 4 ]

And so, we get the following result.

Lemma 2. For every S C IN we have S € D; if and only if for each representative system
{a&”), ey a]((:l)} the equality

holds.
Full analogy of the proof of Theorem 8 leads to the following assertion.

Theorem 9. Let {v(n)} be a sequence of elements of [0,1]. Then this sequence is d-continu-
ously distributed if and only if for every continuous function f, defined on [0, 1], and for every

representative system {agn), .. .,a,((:)} of £,,n € N,
a) there exists a constant ®(f) such that the equality

Ky
Jlim ) f(o(a")AE") = @(f)
=

holds
and
b) for every real number x the equality

kn
lim lim sup Yy 1f(o(a™)AEM) =0
e—0t n—oo . (n) J ]
=1, }v(aj )fx‘<£
holds uniformly with respect to {a&”), ce, a]((:') },neNN.

Theorem 8 implies the following result.

Corollary 5. The set of all 5-continuously distributed sequences of elements of [0, 1] is closed
with respect to the supremum norm.



Remarks on continuously distributed sequences 97

References

(1]
(2]
(3]

(4]
(5]

(6]

(7]

(8]
[9]
[10]

(1]

[12]
[13]

Buck R.C. The measure theoretic approach to density. Amer. . Math. 1946, 68 (4), 560-580. doi:10.2307 /2371785
Buck R.C. Generalized Asymptotic Density. Amer. J. Math. 1953, 75 (2), 335-346. doi:10.2307 /2372456

Drmota M., Tichy R.F. Sequences, Discrepancies and Applications. In: Lecture Notes in Mathematics.
Springer, Berlin Heidelberg, 1997. doi:10.1007 / BFb0093404

Freedman A.R., Sember ].J. Densities and summability. Pacific J. Math. 1981, 95 (2), 293-305.

Kuipers L., Niederreiter H. Uniform Distribution of Sequences. John Wiley & Sons Inc., New York, London,
Sydney Toronto, 1974.

Leonetti P., Tringali S. On the notions of upper and lower density. Proc. Edinb. Math. Soc. 2020, 63 (1), 139-167.
doi:10.1017 /50013091519000208

Iacd M.R., Pastéka M., Tichy R.F. Measure density for set decompositions and uniform distribution. Rend. Circ.
Mat. Palermo 2015, 64 (2), 323-339. d0i:10.1007 /s12215-015-0202-1

Pastéka M. On four approaches to density. Peter Lang Publ., Bern, 2014.
Pastéka M. Remarks on one type of uniform distribution. Unif. Distrib. Theory 2007, 2 (1), 79-92.

Sonnenschein D.J. A general theory of asymptotic density. Doctoral dissertation, Simon Fraser University,
Canada, 1978

Schoenberg 1. Uber die asymptotische Verteilung reeler Zahlen mod 1. Math. Z. 1928, 28, 171-199. doi:
10.1007 /BF01181156

Strauch O., Porubsky S. Distribution of Sequences: A Sampler. Peter Lang Publ., Bern, 2005.
Weyl H. Uber die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 1916, 77, 313-352. doi:10.1007 / BF01475864

Received 17.06.2020
Revised 15.09.2020

INamrrexa M. 3amimku npo HenepepsHo posnodineni nocnidosHocmi // Kapmarcebki MaTeM. my6a. — 2021
— T.13, Nel. — C. 89-97.

Y mep1iii YacTyMHI CTaTTi MM O3HAYAEMO IIOHSITTSI IIIABHOCTI SIK IeBHVIA TUII CKIHUeHHO aAUTVB-
HO{ MIMOBipHicHOI Mipy Ta (pyHKIIiI pO3MOAIAY TOCAIAOBHOCTEN 3a Li€lo IIiABHICTIO. IToTiM MU BUBO-
AVIMO AesIKi IPOCTi KpuUTepii, 1o 3abe3mevyioTh HellepepBHIiCcTb PYHKIIIT PO3NOAiAy 3apaHOL MOCAI-
AoBHOCTI. Li xpuTepii Mm 3acTOCOByeMO A0 MOCAiAOBHOCTeL BaH Aep KopmyTa. AoBeaeHo xpuTepii
THITy Beliasi HerlepepBHOCTI (PyHKIIIT PO3MOAIAY.

Kntouosi ciosa i ppasu: piBHOMIPHMIA PO3MOALA, ITIABHICTE, TOCAiAOBHICTD BaH Aep KopmyTa.



