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OPERATOR CALCULUS ON THE CLASS OF SATO’S HYPERFUNCTIONS

We construct a functional calculus for generators of analytic semigroups of operators on a Banach
space. The symbol class of the calculus consists of hyperfunctions with a compact support in [0, o).
Domain of constructed calculus is dense in the Banach space.
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INTRODUCTION

Roughly speaking, the aim of functional calculus is to define an operator f(A) for a function
f belonging to some algebra of functions (so called symbol algebra) and for some (in general
unbounded) operator A on a Banach space. In the same time we understand a functional
calculus as an algebraic (or more generally topological) isomorphism from symbol algebra to
algebra of operators.

There are many ways to define a functional calculus for different classes of operators on
different symbol algebras. One of them (the Hille-Phillips calculus) was developed in [6] and
generalized in [10, 2, 9, 8]. For new helpful applications of a Hille-Phillips type functional
calculus see [1] and the references given there.

In this article we use the class of hyperfunctions, supported by a compact set in positive
semiaxis, as a symbol algebra and construct an analogue of Hille-Phillips calculus for genera-
tors of analytic semigroups of operators on a Banach space.

The hyperfunctions were introduced by M.Sato in [11]. We can understand Sato’s hyper-
functions as a generalization of the concept of boundary values of complex analytic functions
and as an extension of ultradistributions with a compact support [7]. Theory of hyperfunctions
is a very useful tool in the study of D-modules, holonomic systems of differential equations,
and especially some aspects of symplectic geometry and harmonic analysis that are part of
microlocal analysis, especially algebraic microlocalization.

1 PRELIMINARIES AND DENOTATIONS

Let .Z(X) denote the space of continuous linear operators over a locally convex space X
and let X’ be the dual of X. Throughout the paper, the spaces .2 (X) and X’ will be endowed
with the locally convex topology of uniform convergence on bounded subsets of X.
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Let R, := [0, c0) stand for the nonnegative semiaxis. A family {U(¢) : t € Ry} of bounded
linear operators on a complex Banach space (E, ||-||) is called a one-parameter semigroup if
U(-) is a mapping U(-): Ry —— Z(E) such that U(t +s) = U(t)U(s) and U(0) = I is the
unit operator. The operator

Ax := lim M

A
F—+0 t ! x €D(4),

where ©(A) consists of all x € E for which the previous limit exists, is called a generator of
the semigroup {U(t) : t € Ry }. To emphasize that an operator A generates a semigroup, we
will use the standard notation {e/4 : t € R} or {e},cg, instead of {U(t) : t € Ry }.

The semigroup {e!4 : t € R, } is a Cyp-semigroup iff lim; , o ||e4x — x|| = 0 for all x € E.
If {e};cr, is a Co-semigroup then the following properties hold (see [3]):

o if x € D(A) then e'4x € D(A) and Aetdx = !4 Ax,

e ! x c D(A)forallx € E,t € Ry and D(A) is dense in E.

Let £y be an open sector in C, defined as
Yp:={ze€C:|argz| < 0}\{0}.

It is obvious that closure of a sector %y is defined as £ := {z € C : | arg z| < 6}.
We say that a bounded Cyp-semigroup {U(t) : t € Ry} on a Banach space E is a bounded
analytic semigroup (see [5, 12]), if there exists 0 < 6§ < % such that

e U(t) is a restriction onto R 1 of an analytic family of operators U(z) in open sector Ly;
o U(s+z) =U(s)oU(z) foralls,z € &,

e for each ¢ < 0 the family {U(z)} is uniformly bounded in 2§ and U(z)x — xasz — 0
in Zf} for each x € E.

Let H(W) denote a vector space of all holomorphic functions on an open set W C C. We
follow [4] in defining the space of functions

H:= limKind(lim prHgx),

k
where
Hy = {F € H(Qk) : | Fllxx := sup |F(z)]ekRe= < oo},
zeQg
and R .
QK::{ZEC:\Imz\<%+ﬁ}. (1)

In other words, H is the space of functions F, which are holomorphic in a some angular neigh-
borhood O of [0, o) with finite norms ||F||g x for each k.

Here and subsequently, A(Q2) denotes the space of real-analytic functions in an open set
Q € R. Let A(R;) denote the space of germs of real-analytic functions on neighborhoods of
the semiaxis [0, o). A restriction of any element of .A(IR ) is uniquely defined function on R;..
In the sequel we will treat A (IR 1) as the space of such restrictions.
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It is clear, that restrictions of functions from H onto [0, o) form a subset in A(IR ), which
we will denote by the symbol H... Since R4 C Q, for any bounded function f(z) the inequa-
lity sup, g |f(2)| < sup,cq, |f(z)| holds. Therefore, ¢ € H iff it is a real-analytic function
on R} satisfying the condition

sup [g()|et < oo

teRy
for each k and it can be continued in an angle Qg for some K.
Let (2 be an open set in R and V' be an open set in C containing () as a relatively closed set.
The vector space of all hyperfunctions on () is defined (see [7, 11]) to be the quotient space

B(Q)=H(V\Q)/H(V),

where H(V) denotes the restriction of H(V) to V \ Q. The hyperfunction represented by an
F € H(V \ Q) is denoted as follows

f=I[F]=F(+i0)—F(t—i0) or f(t) = [F(z)]z=t

The representative F is called a defining function of the hyperfunction f.

The set of all hyperfunctions with a support in a fixed compact set K C () is represented
as Bx(Q)) = H(V\ K)/H(V). Let B,(€)) denote the space of hyperfunctions with a compact
support in ().

The following statement from [7] will be used in the sequel.

Theorem 1. Let () C R be an open set. Then we have the isomorphism of vector spaces
B.(Q) = A(Q)'. Fora¢ € A(Q) and an f = [F] € B.(Q) with F € H(V \ supp f), the
canonical bilinear functional is given by

= —]gF(z)(p(z)dz, (2)

where T is a closed path in the intersection of the domain of the analytic continuation ¢ of a
function ¢ and the domain of F, and surrounding supp f once in the positive orientation.

2 CROSS-CORRELATION

Let us denote by B.(IR) the space of all hyperfunctions with a compact support in the
semiaxis [0, 00). For any f = [F] and ¢ = [G] from B.(R ) we define the convolution f * g by

f =g = [H], where
— frF(w)G(z —w)dw,

and T is a closed path in the intersection of the domains of analytic functions w —— F(w)
and w — G(z — w). It is known [7], that the space B.(IR. ) is an algebra with respect to the
convolution with Dirac delta-function (x) as an unit element.

The cross-correlation of a hyperfunction f = [F] € B.(R+) and a real-analytic function
¢ € A(Ry) is defined to be
(f*xo)( % F(z)p(z+t)d te Ry,

where T is a closed path in the intersection of a domain of the analytic function z — F(z) and
a domain of z — ¢(z + t) (here ¢ is the analytic continuation of ¢), and surrounding supp f
once in the positive orientation. The correctness of the definition follows from Theorem 1.
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Theorem 2. For a hyperfunction f = [F] € B.(Ry) and a function ¢ € A(Ry) the cross-
correlation f x ¢ is a real-analytic function, belonging to A(R.).

Proof. According to Pringsheim’s theorem [7, Theorem 2.1], an infinitely differentiable function
¢ belongs to A(IR.) iff for each compact set K C R there exist constants # > 0 and C > 0
such that inequality
sup |¢™ (x)| < Ch'n!
xeK
holds forany n € Z..
Let K C R4 be a compact set. The following inequalities hold

sup | (f + 9)")(1)] = sup| — § PR} (z+1)dz| < sup J [F(2)| - [ 2 + 1) dz
tek tek tek JT 3)
< supsup ¢ (z + 1) f [F(2)|dz < supsup |p")(z + )| sup |F(2)|u(T),
teK zel r teK zel zel

where ;(I') denotes the length of I'. Note, that sup, . |F(z)|u(I') < oo

Via the maximum-modulus principle in complex analysis there exists a point zg € T, such
that sup,_ sup,r |9 (z + t)| = sup,cx |9 (zo + t)|. The function R > t — |p(") (zg + t)]
is a restriction of the analytic function C 3 z — |@(")(z9 + z)|, therefore |p(")(zg + t)| is a
real-analytic function. So, by Pringsheim’s theorem there exist constants # > 0 and C > 0 such
that sup,y | (zo + t)| < Ch™n!.

Finally, we can continue the inequality (3) as follows

sup |(f + ¢) " (t)] < u(T) sup |F(z)|Ch"nt = Cih"n!,

tek zel
where C; := pu(T') sup, . |F(z)|C, which proves that (f x ¢)(t) € A(R4). O
The following statement may be considered as an improvement of Theorem 2.

Theorem 3. For a hyperfunction f = [F| € B.(R.) and a function ¢ € H. the cross-correla-
tion f x ¢ belongs to H...

Proof. Note, that function t — (f x ¢)(t) can be continued to the analytic one

Q35— (f5@)(s) i= —frp(z)q)(z +5)dz,

for some K, since ¢ € H.
Since bilinear form (2) does not depend on choice of the path I', we assume, that a domain
(1) always contain the path. Then for each k we have

sup |(f x ¢)(t)| e = sup ]{F (z4t)dz| e < sup —%F(z)(p(z%—s)eksdz
tEIR+ tEIR+ SEQK r
= sup %F @(z+ )T dz| < sup ¢ |F(2)||@(z +5)|eReGT2)ekRez g7 (g)
seQyg seQyg r

< sup sup |p(z + s)yekRe(HZ)?{ IF(z)|e™kRe? gz,
zel seQy r
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In the case 0 ¢ supp f it is possible to choose the curve I' such that I' C Vg, where Vg :=
{z €C:|Imz| < %} Note, that inequalities
Res 1 Rez Re(s+z) 1
Im(s +z)| = [Ims + Imz| < |Ims| + |Imz| <?+ﬁ+ e % +ﬁ
implyr =s+z € Qg forany s € Qg and z € Vk. Since ¢ € H, the inequality (4) can be
continued as follows
sup |(F 9)(0)] & <sup sup [pl(= + )% |Fz)le s

te]R+ zel SEQK

= sup |qo(r)|ekRer]{ |F(z)|e % dz < co.
reQg r

Consider the case 0 € supp f. Let us use )k instead of Qg in the estimation (4). Then we
obtain

sup |(f x ¢)(1)] " < sup sup \(P(Z+S)\€kRe(S+Z)]£ [F(z)le R dz. )
r

teR+ z€ll seMpk
Inequalities
Res 1 Rez 1 Re(s+z) 1
Im(s +z)| = [Ims 4 Imz| < |[Ims| + |Imz| < et Tt T
implyr = z+s € Qg forany z € (g and s € (k. SinceI' C (px and ¢ € H, the inequality
(5) can be continued as follows

+

sup |(f * ¢)(t)] ¢ <sup sup |p(z + )[R f IF(2)[e e 4z
T

teR4 zel seOpyk
= sup ]q)(r)\ekRe’]{ |F(2)|e "R dz < co.
reQg r
Hence, f x ¢ € H,. O

3 OPERATOR CALCULUS

Let A be a generator of an analytic semigroup {e'4};cr, . Let D (A) be a subspace in the
Banach space E, defined by

—+o0
D+(A) = {f(A) Z5C\(A) = /0 etqu)(t)dt, X € E,QD S H+}

Note, that we understand the above integral in the Bochner sense [6].
Theorem 4. The subspace D (A) is dense in E.

Proof. Suppose that D (A) is notdense in E. Then by Hahn-Banach’s theorem there is nonzero
functional x" € E’ such that (x', X)) = 0 for all x € D(A*), where D(A%®) := Nyez, D(AY),
and D (A") is the domain of operator A*.

From the Bochner’s integral properties [6, 3.7] it follows that

+o0
(¥, %)) = /0 (' et x) (£)dt = 0.
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Since A is a generator of a Cy-semigroup, ©(A®) is dense in E (see [5]). It follows that for any
x € D(A%) the real-analytic function t — (x’,e'4x) must vanish identically on [0, +c0) since
otherwise it would have been possible to choose ¢ € H such that (x',X(4)) does not vanish.
Thus in particular for + = 0 we obtain that equality (x’,x) = 0 holds for every x € D(A®).
Therefore x’ = 0 which contradicts the choice of x’. O

For each hyperfunction f = [F| € B.(R) the operator f(A) is given by

~+o0

F(A) : D4(A) 3 Riay = F(ARa) = [ ex(f % )(B)dt € D(A).
0

The mapping @4 : B.(R4) > f — f(A) € £L(D4+(A)) is called the operator calculus
for generators of analytic semigroups of operators on the class of Sato’s hyperfunctions with a
compact supportin R .

Theorem 5. For each ¢ € H, the mapping ®, produces an algebraic homomorphism from
the convolution algebra B.(IR;.) into the algebra of linear continuous operators over D (A).

Proof. Let f, g € B/(R4), &, € R. The linearity ®4(af + Bg) = aPs(f) + pPa(g) of the
mapping @4 is clear via the linearity of the integral.

Let us show that ®4(f % g) = Pa(f) o P4(g). Let F and G be defining functions of the
hyperfunctions f and g respectively. Using the method of variable changing, for an arbitrary
X(a) € D4 (A) we obtain

+
3

)

=

(f*8)(A) e Ax((f *g) @) (t) dt

(4)

3

g™

Ax<_fi"1 <—?£r2 F(w)G(z — w) dw>(p(z+t)dz) dt

3

etAx< — %rz F(w)< — ?érl G(z—w)p(z +1t) dz) dw) dt

3

etAx< - %Fz F(w)( - ]{r3 Gz)p(z+w+t) clz) dw) dt

—+o00

Ax(f (g5 ) () dt = F(A) [ ex(gx 9)(B)dt = F(AZ(AIZ(a),
0

3

1
O —F O —F Ot Ot O —

where I'7, I'; are suitable curves and I'; is a linear shift of the I';.
For Dirac delta-function é(x) we have

—+ 00 —+o00

S(AR ) = / HAx (5% @) (H)dt = / e Axq(t)dt = % 4.
0 0

So, 6(A) is an unit operator on D (A). O
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Mmn 6yayemo (pyHKITIOHaAbBHe UVMICAEHHSI ASI TeHepaTOpiB aHaAITMYHNX HaIliBIPYIl OIlepaTopiB
Ha 6aHaxoBOMY IpocTopi. Kaac cMMBOAIB TaKOTO UMCAEHHS CKAAAAETHCS 3 TiepdpyHKIIiN 3 KOMITa-
KTHVMY HOCistMu B [0, 00). O6AaCTb BU3HAYEHHS I06YAOBAHOTO WICAEHHSI € IIIABHOIO B 6aHAXOBOMY
MPOCTOPi.

Knwouoei croea i ppasu: dpyHKITIOHaABHE UMCAEHHSI, aHAAITWUHI HalliBrpymmm onepaTopis, Timep-
dyHKT.
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Mu crpoum pyHKIMOHAABHOE UCUMCAEHME AASL FeHepaTOPOB aHAAUTUMYECKMUX MOAYTPYIIL OIle-
PaToOpOB, AEMCTBYIOIIMX B 6aHAXOBOM IpOCTpaHCTBe. KAacc CMMBOAOB TaKOTO MCUMCAEHMSI COCTOUT
U3 THIeppYHKIMIA ¢ KOMITAKTHBIMM HOCUTeAsIMA B [0,00). O6AacTh onpeAeAeHNs] IOCTPOEHHOTO
VICIMCAEHMSI TIAOTHA B 6aHaXOBOM IIPOCTPAHCTBe.

Knwouesvie cnosa u ¢ppaser: pyHKIMOHAABHOE UCUMCAEHNE, aHAAUTUYUECKIE TOAYTPYIIIbI OIlepa-
TOPOB, TUITePYHKLIIAL.



