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OPERATOR CALCULUS ON THE CLASS OF SATO’S HYPERFUNCTIONS

We construct a functional calculus for generators of analytic semigroups of operators on a Banach

space. The symbol class of the calculus consists of hyperfunctions with a compact support in [0, ∞).

Domain of constructed calculus is dense in the Banach space.
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INTRODUCTION

Roughly speaking, the aim of functional calculus is to define an operator f (A) for a function

f belonging to some algebra of functions (so called symbol algebra) and for some (in general

unbounded) operator A on a Banach space. In the same time we understand a functional

calculus as an algebraic (or more generally topological) isomorphism from symbol algebra to

algebra of operators.

There are many ways to define a functional calculus for different classes of operators on

different symbol algebras. One of them (the Hille-Phillips calculus) was developed in [6] and

generalized in [10, 2, 9, 8]. For new helpful applications of a Hille-Phillips type functional

calculus see [1] and the references given there.

In this article we use the class of hyperfunctions, supported by a compact set in positive

semiaxis, as a symbol algebra and construct an analogue of Hille-Phillips calculus for genera-

tors of analytic semigroups of operators on a Banach space.

The hyperfunctions were introduced by M.Sato in [11]. We can understand Sato’s hyper-

functions as a generalization of the concept of boundary values of complex analytic functions

and as an extension of ultradistributions with a compact support [7]. Theory of hyperfunctions

is a very useful tool in the study of D-modules, holonomic systems of differential equations,

and especially some aspects of symplectic geometry and harmonic analysis that are part of

microlocal analysis, especially algebraic microlocalization.

1 PRELIMINARIES AND DENOTATIONS

Let L (X) denote the space of continuous linear operators over a locally convex space X

and let X′ be the dual of X. Throughout the paper, the spaces L (X) and X′ will be endowed

with the locally convex topology of uniform convergence on bounded subsets of X.
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Let R+ := [0, ∞) stand for the nonnegative semiaxis. A family {U(t) : t ∈ R+} of bounded

linear operators on a complex Banach space (E, ‖·‖) is called a one-parameter semigroup if

U(·) is a mapping U(·) : R+ 7−→ L (E) such that U(t + s) = U(t)U(s) and U(0) = I is the

unit operator. The operator

Ax := lim
t→+0

U(t)x − x

t
, x ∈ D(A),

where D(A) consists of all x ∈ E for which the previous limit exists, is called a generator of

the semigroup {U(t) : t ∈ R+}. To emphasize that an operator A generates a semigroup, we

will use the standard notation {etA : t ∈ R+} or {etA}t∈R+ instead of {U(t) : t ∈ R+}.

The semigroup {etA : t ∈ R+} is a C0-semigroup iff limt→+0 ‖etAx − x‖ = 0 for all x ∈ E.

If {etA}t∈R+ is a C0-semigroup then the following properties hold (see [3]):

• if x ∈ D(A) then etAx ∈ D(A) and AetAx = etAAx,

• etAx ∈ D(A) for all x ∈ E, t ∈ R+ and D(A) is dense in E.

Let Σθ be an open sector in C, defined as

Σθ := {z ∈ C : | arg z| < θ}\{0}.

It is obvious that closure of a sector Σθ is defined as Σ
cl
θ := {z ∈ C : | arg z| ≤ θ}.

We say that a bounded C0-semigroup {U(t) : t ∈ R+} on a Banach space E is a bounded

analytic semigroup (see [5, 12]), if there exists 0 < θ ≤ π
2 such that

• U(t) is a restriction onto R+ of an analytic family of operators U(z) in open sector Σθ ;

• U(s + z) = U(s) ◦ U(z) for all s, z ∈ Σ
cl
θ ;

• for each ϑ < θ the family {U(z)} is uniformly bounded in Σ
cl
ϑ and U(z)x → x as z → 0

in Σ
cl
ϑ for each x ∈ E.

Let H(W) denote a vector space of all holomorphic functions on an open set W ⊂ C. We

follow [4] in defining the space of functions

H := lim ind
K

(lim pr
k

HK,k),

where

HK,k :=
{

F ∈ H(ΩK) : ‖F‖K,k := sup
z∈ΩK

|F(z)|ekRez
< ∞

}
,

and

ΩK :=

{
z ∈ C : |Imz| <

Rez

K
+

1

K2

}
. (1)

In other words, H is the space of functions F, which are holomorphic in a some angular neigh-

borhood ΩK of [0, ∞) with finite norms ‖F‖K,k for each k.

Here and subsequently, A(Ω) denotes the space of real-analytic functions in an open set

Ω ∈ R. Let A(R+) denote the space of germs of real-analytic functions on neighborhoods of

the semiaxis [0, ∞). A restriction of any element of A(R+) is uniquely defined function on R+.

In the sequel we will treat A(R+) as the space of such restrictions.



116 PATRA M.I., SHARYN S.V.

It is clear, that restrictions of functions from H onto [0, ∞) form a subset in A(R+), which

we will denote by the symbol H+. Since R+ ⊂ ΩK, for any bounded function f (z) the inequa-

lity supz∈R+
| f (z)| ≤ supz∈ΩK

| f (z)| holds. Therefore, ϕ ∈ H+ iff it is a real-analytic function

on R+ satisfying the condition

sup
t∈R+

|ϕ(t)|ekt
< ∞

for each k and it can be continued in an angle ΩK for some K.

Let Ω be an open set in R and V be an open set in C containing Ω as a relatively closed set.

The vector space of all hyperfunctions on Ω is defined (see [7, 11]) to be the quotient space

B(Ω) = H(V \ Ω)/H(V),

where H(V) denotes the restriction of H(V) to V \ Ω. The hyperfunction represented by an

F ∈ H(V \ Ω) is denoted as follows

f = [F] = F(t + i0)− F(t − i0) or f (t) = [F(z)]z=t.

The representative F is called a defining function of the hyperfunction f .

The set of all hyperfunctions with a support in a fixed compact set K ⊂ Ω is represented

as BK(Ω) = H(V \ K)/H(V). Let Bc(Ω) denote the space of hyperfunctions with a compact

support in Ω.

The following statement from [7] will be used in the sequel.

Theorem 1. Let Ω ⊂ R be an open set. Then we have the isomorphism of vector spaces

Bc(Ω) ∼= A(Ω)′. For a ϕ ∈ A(Ω) and an f = [F] ∈ Bc(Ω) with F ∈ H(V \ supp f ), the

canonical bilinear functional is given by

〈 f , ϕ〉 = −
∮

Γ

F(z)ϕ(z)dz, (2)

where Γ is a closed path in the intersection of the domain of the analytic continuation ϕ of a

function ϕ and the domain of F, and surrounding supp f once in the positive orientation.

2 CROSS-CORRELATION

Let us denote by Bc(R+) the space of all hyperfunctions with a compact support in the

semiaxis [0, ∞). For any f = [F] and g = [G] from Bc(R+) we define the convolution f ∗ g by

f ∗ g = [H], where

H(z) = −
∮

Γ

F(w)G(z − w)dw,

and Γ is a closed path in the intersection of the domains of analytic functions w 7−→ F(w)

and w 7−→ G(z − w). It is known [7], that the space Bc(R+) is an algebra with respect to the

convolution with Dirac delta-function δ(x) as an unit element.

The cross-correlation of a hyperfunction f = [F] ∈ Bc(R+) and a real-analytic function

ϕ ∈ A(R+) is defined to be

( f ⋆ ϕ)(t) := −
∮

Γ

F(z)ϕ(z + t)dz, t ∈ R+,

where Γ is a closed path in the intersection of a domain of the analytic function z 7−→ F(z) and

a domain of z 7−→ ϕ(z + t) (here ϕ is the analytic continuation of ϕ), and surrounding supp f

once in the positive orientation. The correctness of the definition follows from Theorem 1.
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Theorem 2. For a hyperfunction f = [F] ∈ Bc(R+) and a function ϕ ∈ A(R+) the cross-

correlation f ⋆ ϕ is a real-analytic function, belonging to A(R+).

Proof. According to Pringsheim’s theorem [7, Theorem 2.1], an infinitely differentiable function

ϕ belongs to A(R+) iff for each compact set K ⊂ R+ there exist constants h > 0 and C > 0

such that inequality

sup
x∈K

|ϕ(n)(x)| ≤ Chnn!

holds for any n ∈ Z+.

Let K ⊂ R+ be a compact set. The following inequalities hold

sup
t∈K

|( f ⋆ ϕ)(n)(t)| = sup
t∈K

∣∣∣−
∮

Γ

F(z)ϕ(n)(z + t)dz
∣∣∣ ≤ sup

t∈K

∮

Γ

|F(z)| · |ϕ(n)(z + t)| dz

≤ sup
t∈K

sup
z∈Γ

|ϕ(n)(z + t)|
∮

Γ

|F(z)| dz ≤ sup
t∈K

sup
z∈Γ

|ϕ(n)(z + t)| sup
z∈Γ

|F(z)|µ(Γ),
(3)

where µ(Γ) denotes the length of Γ. Note, that supz∈Γ
|F(z)|µ(Γ) < ∞.

Via the maximum-modulus principle in complex analysis there exists a point z0 ∈ Γ, such

that supt∈K supz∈Γ
|ϕ(n)(z + t)| = supt∈K |ϕ(n)(z0 + t)|. The function R ∋ t 7−→ |ϕ(n)(z0 + t)|

is a restriction of the analytic function C ∋ z 7−→ |ϕ(n)(z0 + z)|, therefore |ϕ(n)(z0 + t)| is a

real-analytic function. So, by Pringsheim’s theorem there exist constants h > 0 and C > 0 such

that supt∈K |ϕ(n)(z0 + t)| ≤ Chnn!.

Finally, we can continue the inequality (3) as follows

sup
t∈K

|( f ⋆ ϕ)(n)(t)| ≤ µ(Γ) sup
z∈Γ

|F(z)|Chnn! = C1hnn! ,

where C1 := µ(Γ) supz∈Γ
|F(z)|C, which proves that ( f ⋆ ϕ)(t) ∈ A(R+).

The following statement may be considered as an improvement of Theorem 2.

Theorem 3. For a hyperfunction f = [F] ∈ Bc(R+) and a function ϕ ∈ H+ the cross-correla-

tion f ⋆ ϕ belongs to H+.

Proof. Note, that function t 7−→ ( f ⋆ ϕ)(t) can be continued to the analytic one

ΩK ∋ s 7−→ ( f ⋆ ϕ)(s) := −
∮

Γ

F(z)ϕ(z + s)dz,

for some K, since ϕ ∈ H.

Since bilinear form (2) does not depend on choice of the path Γ, we assume, that a domain

(1) always contain the path. Then for each k we have

sup
t∈R+

|( f ⋆ ϕ)(t)| ekt = sup
t∈R+

∣∣∣∣−
∮

Γ

F(z)ϕ(z + t) dz

∣∣∣∣ ekt ≤ sup
s∈ΩK

∣∣∣∣−
∮

Γ

F(z)ϕ(z + s)eks dz

∣∣∣∣

= sup
s∈ΩK

∣∣∣∣−
∮

Γ

F(z)ϕ(z + s)ek(s+z)e−kz dz

∣∣∣∣ ≤ sup
s∈ΩK

∮

Γ

|F(z)||ϕ(z + s)|ekRe(s+z)e−kRez dz

≤ sup
z∈Γ

sup
s∈ΩK

|ϕ(z + s)|ekRe(s+z)
∮

Γ

|F(z)|e−kRez dz.

(4)
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In the case 0 6∈ supp f it is possible to choose the curve Γ such that Γ ⊂ VK, where VK :={
z ∈ C : |Imz| < Rez

K

}
. Note, that inequalities

∣∣Im(s + z)
∣∣ =

∣∣Ims + Imz
∣∣ ≤

∣∣Ims
∣∣+

∣∣Imz
∣∣ < Res

K
+

1

K2
+

Rez

K
=

Re(s + z)

K
+

1

K2

imply r = s + z ∈ ΩK for any s ∈ ΩK and z ∈ VK. Since ϕ ∈ H, the inequality (4) can be

continued as follows

sup
t∈R+

|( f ⋆ ϕ)(t)| ekt ≤ sup
z∈Γ

sup
s∈ΩK

|ϕ(z + s)|ekRe(s+z)
∮

Γ

|F(z)|e−kRez dz

= sup
r∈ΩK

|ϕ(r)|ekRer
∮

Γ

|F(z)|e−kRez dz < ∞.

Consider the case 0 ∈ supp f . Let us use Ω2K instead of ΩK in the estimation (4). Then we

obtain

sup
t∈R+

|( f ⋆ ϕ)(t)| ekt ≤ sup
z∈Γ

sup
s∈Ω2K

|ϕ(z + s)|ekRe(s+z)
∮

Γ

|F(z)|e−kRez dz. (5)

Inequalities

∣∣Im(s + z)
∣∣ =

∣∣Ims + Imz
∣∣ ≤

∣∣Ims
∣∣+

∣∣Imz
∣∣ < Res

2K
+

1

4K2
+

Rez

2K
+

1

4K2
<

Re(s + z)

K
+

1

K2

imply r = z + s ∈ ΩK for any z ∈ Ω2K and s ∈ Ω2K. Since Γ ⊂ Ω2K and ϕ ∈ H, the inequality

(5) can be continued as follows

sup
t∈R+

|( f ⋆ ϕ)(t)| ekt ≤ sup
z∈Γ

sup
s∈Ω2K

|ϕ(z + s)|ekRe(s+z)
∮

Γ

|F(z)|e−kRez dz

= sup
r∈ΩK

|ϕ(r)|ekRer
∮

Γ

|F(z)|e−kRez dz < ∞.

Hence, f ⋆ ϕ ∈ H+.

3 OPERATOR CALCULUS

Let A be a generator of an analytic semigroup {etA}t∈R+ . Let D+(A) be a subspace in the

Banach space E, defined by

D+(A) :=

{
x̂(A) : x̂(A) :=

∫ +∞

0
etAxϕ(t)dt, x ∈ E, ϕ ∈ H+

}
.

Note, that we understand the above integral in the Bochner sense [6].

Theorem 4. The subspace D+(A) is dense in E.

Proof. Suppose that D+(A) is not dense in E. Then by Hahn-Banach’s theorem there is nonzero

functional x′ ∈ E′ such that 〈x′, x̂(A)〉 = 0 for all x ∈ D(A∞), where D(A∞) :=
⋂

α∈Z+
D(Aα),

and D(Aα) is the domain of operator Aα.

From the Bochner’s integral properties [6, 3.7] it follows that

〈x′, x̂(A)〉 =
∫ +∞

0
〈x′, etAx〉ϕ(t)dt = 0.
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Since A is a generator of a C0-semigroup, D(A∞) is dense in E (see [5]). It follows that for any

x ∈ D(A∞) the real-analytic function t 7−→ 〈x′, etAx〉 must vanish identically on [0,+∞) since

otherwise it would have been possible to choose ϕ ∈ H+ such that 〈x′, x̂(A)〉 does not vanish.

Thus in particular for t = 0 we obtain that equality 〈x′, x〉 = 0 holds for every x ∈ D(A∞).

Therefore x′ = 0 which contradicts the choice of x′.

For each hyperfunction f = [F] ∈ Bc(R+) the operator f (A) is given by

f (A) : D+(A) ∋ x̂(A) 7−→ f (A)x̂(A) =

+∞∫

0

etAx( f ⋆ ϕ)(t)dt ∈ D+(A).

The mapping ΦA : Bc(R+) ∋ f 7−→ f (A) ∈ L (D+(A)) is called the operator calculus

for generators of analytic semigroups of operators on the class of Sato’s hyperfunctions with a

compact support in R+.

Theorem 5. For each ϕ ∈ H+ the mapping ΦA produces an algebraic homomorphism from

the convolution algebra Bc(R+) into the algebra of linear continuous operators over D+(A).

Proof. Let f , g ∈ Bc(R+), α, β ∈ R. The linearity ΦA(α f + βg) = αΦA( f ) + βΦA(g) of the

mapping ΦA is clear via the linearity of the integral.

Let us show that ΦA( f ∗ g) = ΦA( f ) ◦ ΦA(g). Let F and G be defining functions of the

hyperfunctions f and g respectively. Using the method of variable changing, for an arbitrary

x̂(A) ∈ D+(A) we obtain

( f ∗ g)(A)x̂(A) =

+∞∫

0

etAx(( f ∗ g) ⋆ ϕ)(t) dt

=

+∞∫

0

etAx
(
−

∮

Γ1

(
−

∮

Γ2

F(w)G(z − w) dw
)

ϕ(z + t) dz
)

dt

=

+∞∫

0

etAx
(
−

∮

Γ2

F(w)
(
−

∮

Γ1

G(z − w)ϕ(z + t) dz
)

dw
)

dt

=

+∞∫

0

etAx
(
−

∮

Γ2

F(w)
(
−

∮

Γ3

G(z)ϕ(z + w + t) dz
)

dw
)

dt

=

+∞∫

0

etAx( f ⋆ (g ⋆ ϕ))(t) dt = f (A)

+∞∫

0

etAx(g ⋆ ϕ)(t)dt = f (A)g(A)x̂(A) ,

where Γ1, Γ2 are suitable curves and Γ3 is a linear shift of the Γ1.

For Dirac delta-function δ(x) we have

δ(A)x̂(A) =

+∞∫

0

etAx(δ ⋆ ϕ)(t)dt =

+∞∫

0

etAxϕ(t)dt = x̂(A).

So, δ(A) is an unit operator on D+(A).
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Ми будуємо функцiональне числення для генераторiв аналiтичних напiвгруп операторiв

на банаховому просторi. Клас символiв такого числення складається з гiперфункцiй з компа-

ктними носiями в [0, ∞). Область визначення побудованого числення є щiльною в банаховому

просторi.
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Ми строим функциональное исчисление для генераторов аналитических полугрупп опе-

раторов, действующих в банаховом пространстве. Класс символов такого исчисления состоит
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