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SUPEREXTENSIONS OF CYCLIC SEMIGROUPS

Given a cyclic semigroup S we study right and left zeros, singleton left ideals, the minimal ideal,
left cancelable and right cancelable elements of superextensions A(S) and characterize cyclic semi-
groups whose superextensions are commutative.
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INTRODUCTION

This paper is devoted to describing the structure of superextensions of cyclic semigroups.
The thorough study of algebraic properties of superextensions of semigroups was started in
[1, 2, 3, 4, 10], where we focused at describing of superextensions of groups, and continued
in [5, 6], where we studied the structure of superextensions of semilattices and inverse semi-
groups.

A family F of nonempty subsets of a set X that is closed under taking supersets and finite
intersections is called a filter. A filter U is called an ultrafilter it { = F for any filter F containing
U. A family of subsets of a set X is called a linked system if intersection of any two elements is
nonempty. A linked system M is said to be a maximal linked system if M = L for any linked
system £ containing M. The family B(X) of all ultrafilters on a set X is called the Stone-Cech
compactification, and the family A(X) of all maximal linked systems is well-known [11, 12] as
the superextension of a set X.

Each map f : X — Y induces a map (see [8])

Af T A(X) = A(Y), Af:Me— (f(M) CY:Me M).

Here for a family B of nonempty subsets of a set Y by (B C Y : B € B) we denote the family
(BCY:BeB)={ACY:3Bec B(BC A)}. An ultrafilter ({x}), generated by a singleton
{x}, x € X, is called principal. We consider X C B(X) C A(X) if each point x € X is identified
with the principal ultrafilter ({x}) generated by the singleton {x}.

It was shown in [9] that any associative binary operation * : S x S — S can be extended to
an associative binary operation o : A(S) x A(S) — A(S) by the formula

LoM= < Ua*Mg:LEE, {Mg}aer CM>
acl
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for maximal linked systems £, M € A(S). In this case the Stone-Cech compactification B(S) is
a subsemigroup of the superextension A(S).

A nonempty subset I of a semigroup (S, ) is called an ideal (resp. a right ideal, a left ideal) if
I«SUS*I CI(resp. [+S C I,S*I C I). An element z of a semigroup (S, ) is called a zero
(resp. a left zero, a right zero)in Sifaxz = z*a =z (resp. zxa =z, axz = z) foranya € S. It
is clear that z € S is a zero (resp. a left zero, a right zero) in S if and only if the singleton {z}
is an ideal (resp. a right ideal, a left ideal) in S. Anideal I C S is called minimal if any ideal of
S that lies in I coincides with I. By analogy we define minimal left and minimal right ideals
of S. The union K(S) of all minimal left (right) ideals of S coincides with the minimal ideal of
S, see [11, theorem 2.8]. A semigroup (S, ) is said to be a right zeros semigroup if a x b = b for
any a,b € S. Amap ¢ : S — T between semigroups (S, *) and (T, o) is called a homomorphism
if p(axb) = ¢(a) o p(b) for any a,b € S. A homomorphism ¢ : S — I from a semigroup S
into an ideal I C S is called a retraction if ¢(a) = a for any element a € I. An element a of a
semigroup S is called left cancelable (resp. right cancelable) if for any points x,y € S the equation
ax = ay (resp. xa = ya) implies x = y. This is equivalent to saying that the left (resp. right)
shiftl, : S — S, 1, : x — ax*xx, (resp. 1, : S — S, 15 : X — x *a) is injective. A semigroup S is
called left (right) cancellative if all elements of S are left (right) cancelable. A semigroup that is
both left and right cancellative is said to be cancellative.

A semigroup (a) = {a"},en generated by a single element a is called cyclic. If a cyclic
semigroup is infinite, then it is isomorphic to the additive semigroup IN. A finite cyclic semi-
group S = (a) also has very simple structure (see [7]). There are positive integer num-
bers r and m called the index and the period of S such that: (i) S = {a,a?,...,a"""1} and
m+r—1=|S|; (ii) for any i,j € w the equality a’*' = a"*/ holds if and only if i = j mod m;
(iii) Cp = {4, atl .., am+’_1} is the minimal ideal, a cyclic and maximal subgroup of S with
the neutral element ¢ = 4" € C,,, where m divides n.

From now on we denote by C, ,; a finite cyclic semigroup of index r and period m, and
maximal subgroup of C; , is denoted by C,.

1 HOMOMORPHISMS, RIGHT, LEFT ZEROS AND MINIMAL (LEFT) IDEALS

Proposition 1.1. For any homomorphism ¢ : S — T between semigroups (S, *1) and (T, *2)
the induced map A¢ : A(S) — A(T) is a homomorphism of the semigroups (A(S), o1) and
(A(T), 02).

Proof. Given two maximal linked systems £, M € A(S) observe that

Ap(Loy M) =Aep({ | x*1 Myx: L € L, {My}yer, C M))

xX€EL

— <§0( U X *q Mx) :LeL, {Mx}xeL - M>

x€eL

= < U @(x) %2 @(My): L € L, {My}xer C ./\/l>

xeL

=( U x2eMx):LeL {p(M)}cyr) C Ap(M))
xegp(L)

=(p(L):Le L)oy (¢p(M): M e M) =Ap(L) o Ap(M).
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Let us note that for a subsemigroup T of a semigroup S the homomorphism i : A(T) —
A(S),i: A — (A)g is injective, and thus we can identify the semigroup A(T) with the sub-
semigroup i(A(T)) C A(S).

Lemma 1.1. Let I be an ideal of a semigroup S. If amap ¢ : S — I is a retraction, then the map
A : A(S) — A(I) is a retraction too.

Proof. Indeed, let A € A(I), M € A(S), then Ao M = <Ua€Aa*Ma A e A A C,
{Ma}aea € M) = (UpenaxMs : A € A {Ma}oea C M,Ugena*M, C I) € A(I). By
analogy M o A € A(I), and therefore A(I) is an ideal of the semigroup A(S). If A € A(I), then
Ap(A)=(p(A): ACTLAec A)=(ACIl:AecA)={ACI:Ae A} = Aand hence A¢p

is a retraction. O

Lemma 1.2. Let I be an ideal of a semigroup S and a map ¢ : S — 1 is a retraction. The
semigroup S has a right (left) zero if and only if the semigroup I has a right (left) zero, and all
right and left zeros of the semigroup S are contained in I.

Proof. Let z be a right (left) zero of the semigroup S, that is sz = z (zs = z) for any s € S.
Since ¢ is a homomorphism, ¢(s)¢(z) = ¢(z) (¢(z)¢(s) = ¢(z)). Specifically for any s € I
the equality ¢(s) = s holds, and then s@(z) = ¢(s)@(z) = ¢(z) (¢(z)s = @(z)p(s) = @(2)).
Consequently, ¢(z) is a right (left) zero of the semigroup I.

Let z € I be a right (left) zero of the semigroup I. Since I is an ideal, then for any s € S we
have that sz,zs € I, and hence sz = ¢(sz) = ¢(s)@(z) = ¢(s)z = z (zs = @(z5) = ¢(2)@(s) =
z@(s) = z). Consequently, z is a right (left) zero of the semigroup S.

If z is a right (left) zero of the semigroup S, then z = sz € I (z = zs € I), wheres € I.
Therefore, all right (left) zeros of the semigroup S are contained in I. O

Let e be the neutral element of the maximal subgroup C,;, of a cyclic semigroup C; .

Lemma 1.3. Themap ¢ : Cr;; — Cp, ¢(x) = ex is a retraction and ¢(x)y = xy forany x € C; ,
andy € Cy,.

Proof. Since the semigroup C,, is an ideal of the semigroup C,,, ¢(x) = ex € Cy. Conse-
quently, ¢(xy) = exy = eexy = exey = ¢(x)p(y) forany x,y € C,,, and ¢(x) = ex = x for
x € Cy. Hence the map ¢ : C;,, — Cy, is a retraction. Further for any x € C, ,, and y € C,, we
have that xy € C,,, and therefore ¢(xy) = xy. On the other hand, ¢(xy) = ¢(x)p(y) = ¢(x)y,
since y € Cy,. O

Combining Lemmas 1.1-1.3 we get

Proposition 1.2. The semigroup A(C; ) contains a right (left) zero if and only if its subgroup
A(Cy) contains a right (left) zero. Each right (left) zero of A(C; ) belongs to A(Cy,).

It was proved in [1] that the semigroup A(G) possesses a right zero if and only if the group
G is periodic and each element of G has odd order. Since each element of a finite group G
has odd order if and only if the group G has odd order, Proposition 1.2 implies the following
characterization of superextensions of finite cyclic semigroups that have right zeros.

Theorem 1. The superextension A(C, ) of a finite cyclic semigroup C; ,, has a right zero if and
only if the period m of the cyclic semigroup C, ;, is an odd number.
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Proposition 1.3. The superextension of the infinite cyclic semigroup has neither right nor left
Zeros.

Proof. Let (a) = {a,a?,...,a"...} be the infinite cyclic semigroup and M € A({(a)). First ob-
serve thatif (a) = AU B is any partition of the set (a), then either A € M or B € M. Indeed, if
A & M,then MN B # @ forany M € M, and thus the maximality of M implies that B € M.
Consider the partition (a) = AU B, where A = {a,4%,...,a%1,...}, B = {a%,a*,...,a%,.. }.
Assume that a maximal linked system M is a right (left) zero of the semigroup (a). Then for
any x € (a) we have ({x}) o M = M (Mo ({x}) = M), and therefore xM € M (Mx € M)
forany M € M. If A € M, then B = aA = Aa € M, that is impossible, since AN B = &. By
analogy, if B € M, then A D aB = Ba € M. This contradiction implies that the superexten-
sion of the infinite cyclic semigroup contains neither right nor left zeros. ]

It was proved in [1] that for the semigroup A(G) has a (left) zero if and only if a group G is
of order |G| € {1,3,5}.

Consequently, Proposition 1.2 implies the following characterization of superextensions of
finite cyclic semigroups that have (left) zeros.

Theorem 2. The superextension A(C; ) of a cyclic semigroup C, , has a (left) zero if and only
ifm € {1,3,5}.

Now we shall characterize cyclic semigroups whose superextensions have one-point mini-
mal left ideals.

If C, 1 is a finite cyclic semigroup of odd period m and Cy, is the maximal subgroup of C; ,
then the superextension A(Cy,,) contains a right zero, in particular the maximal linked system

L=(ACCy:|Al>m/2)

is a right zero of the semigroup A(C;,,). A maximal linked system Z € A(C, ) is a right zero
of the semigroup A(C; ) if and only if the one-point set { Z} is a minimal left ideal of A(C; ).
Taking into account that all minimal left ideals are isomorphic and the union K(A(C; ,)) of all
minimal left ideals in A(C, ,,) coincides with the minimal ideal of A(C, ,,) (see [11, Theorem
2.8]), Theorem 1 and Proposition 1.3 imply the following theorem.

Theorem 3. A finite cyclic semigroup C,,, has odd period m if and only if all minimal left
ideals of the semigroup A(C, ) are singletons. In this case the minimal ideal K(A(C; ,)) of the
semigroup A(C, ) is the subsemigroup of right zeros of A(C; ;). The infinite cyclic semigroup
has no one-point minimal left (right) ideals.

2 COMMUTATIVITY OF SUPEREXTENSIONS OF CYCLIC SEMIGROUPS

Theorem 4. A finite cyclic semigroup C,,, = {a,a%,...,a",...,a" "= a™™™ = 4"} of order

m + r — 1 has commutative superextension if and only if
(r,m) e {(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2), (4,1) }.

The superextension of the infinite cyclic semigroup is not commutative.
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Proof. 1t was proved in the paper [1] that the superextension of a group G is commutative if
and only if |G| < 4. Since for m > 4 the superextension A(C,,) contains a noncommutative
subsemigroup A(Cy,), A(Cy ) is not commutative. So it is sufficient to consider only cyclic
semigroups of period m < 4.

If index r = 1, then C; 4, is a cyclic group of order m, and thus for r = 1 the semigroup
A(Cy ) is commutative if and only if m < 4.

If |Crm| € {1,2}, then the superextension A(C; ) is isomorphic to the semigroup Cy
and A(Cy,,) is commutative. In the case |C; | = 3 the superextension A(C;,,) contains only
one maximal linked system, which is not a principal ultrafilter. Since all principal ultrafilters
commute with maximal linked systems, the superextension A(C; ;) is commutative.

It follows that for

(r,m) € {(1,1),(1,2),(1,3),(1,4),(21),(2,2), (3, 1)}

the superextension A(C; ;) is commutative.

If r = 2, m € {3,4}, then the product xy of any two elements x,y € C,,, is contained in
the maximal subgroup C,,, and thus xy = ¢(xy) = ¢(x)¢(y), where ¢ : Cr,; — Cp is the
retraction ¢ : s — es. Since superextensions of groups of order 3 and 4 are commutative,

AoB =Ap(A)orp(B) = Ap(B)oAp(A) = Bo Aforany A, B € A(C;,). Consequently,
the semigroups A(Cy3) and A(Cp4) are commutative.

Let r = 3. The case m = 1 was considered before.

For the semigroup C3» = {a,4%,a%,a*|a®> = a3} the semigroup A(Cs ) contains 12 elements:

Up = ({a"}), A= (ACCan:|A|=2 d" ¢ A)

and
O = (Cap \ {d"}, A A C Cap, |A| =2, dF € A), where k € {1,2,3,4}.

The following table implies the commutativity of A(Cs):

If m € {3,4}, then C3,,, = {a,a?,...,a"2|a"*3 = 4®}. Consider maximal linked systems
A= ({a,a%},{a,a®},{a?a®}) and B = ({a,a®}, {a,a™ 1}, {a%,a™*1}). Observe that {a?,a%} =
a{a,a®} Ua*{a,a" '} € AoB, but {a?,a®} ¢ Bo A. Therefore, AoB # Bo A and the
semigroup Cs ,,; is not commutative.

3

Let r > 4. First consider the case of the semigroup Cy1 = {a,4%, 4% a*|a® = a*}. Each max-
3

imal linked system different from the principal ultrafilter ({a}) contains the set {a?,a%,a*}.
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Since {a?,a%,a*}{a?,a%,a*} = {a*}, the product of such maximal linked systems is the princi-
pal ultrafilter ({a*}). The fact that the principal ultrafilter ({a}) commutes with all maximal
linked systems implies the commutativity of the semigroup A(Cy1).

Put A = ({a,a%},{a,a®},{a?a}), B = ({a,a?},{a,a"7=2},{a% a™""2}). We have that
{a3,a*} = a{a®,a®} Ua*{a,a®} € Bo A, but {a’,a*} ¢ Ao B, since the equality a” "+ = g*
holds only if r = 4 and m = 1, which we considered before. Consequently, Ao B # B o A and
a semigroup A(Cy, ) for (r,m) # (4,1) is not commutative.

Let (a) = {a,...,a",...} be the infinite cyclic semigroup. Put A = ({a,a?}, {a,a%}, {a?,a®}),
B = ({a,a?},{a,a*},{a?a*}). Let us observe that {a>,a*} = a{a?,a%} Ua®{a,a®} € Bo A, but
{a3,a*} ¢ Ao B. Therefore, Ao B # Bo A and the semigroup A((a)) is not commutative. [

3 RIGHT (LEFT) CANCELABLE ELEMENTS

In this section we shall detect right (left) cancelable elements of superextensions of cyclic
semigroups.

Proposition 3.1. The superextension A(C, ) has (left, right) cancelable elements if and only if
index r of a cyclic semigroup C, ,, is equal to 1.

Proof. Letr > 1 and a be the generator of a semigroup C; ;. Consider the map ¢ : C;,, — Cp,
@ : x — ex, where e is the neutral element of the cyclic group C;. According to Lemma
1.3 this map is a retraction. Since @’ ~'x € Cy, = {a’,...a"" 1} forany x € Gy, a" " 'x =
@@ x) = (a1 p(x). On the other hand, since Cy, is an ideal of C, ,;, ¢(a’~')x € Cy and
o N)x = (e ")x) = ¢(p(a 1)) ¢(x) = ¢(a"!)g(x). Consequently, p(a"")x = a"'x
for any x € C; .

Let M be a maximal linked system on a semigroup C; ;. Then we obtain ({a""'}) o M =
(Usefar-1y 8% Mo : {Ma}aer € M) = (@M : M € M) = (p(@ )M : M € M) =
He@@ H})oMand Mo ({a1}) = (Usemax{a1}: MeM)=(Ma"1:MeM)=
(M@~ 1) : M e M) =Mo ({p(a1)}). Since a~! # ¢(a"!), the maximal linked system
M is neither left nor right cancelable.

If r = 1, then a cyclic semigroup C;,, = Cy is a group. Let e be the neutral element
of the group Cy,. Then ({e}) oM = M = Mo ({e}) for any M € A(Cy), and equalities
Xo{{e}) =Yo({e}), ({e}) o X = ({e}) o YV imply that X = ). Consequently, the principal
ultrafilter ({e}) is a cancelable element of the semigroup A(Cy ). O

If G is a group, then the formula

LoM={(|JaxM,:LeLl, {Mi}sep C M)

a€l

implies that the product £ o M of any two maximal linked systems £ and M is a principal
ultrafilter if and only if both £ and M are principal ultrafilters. Therefore, we deduce the
following proposition.

Proposition 3.2. Fora group G theset A(G) \ {({¢}) : ¢ € G} isan ideal in A(G).

Lemma 3.1. A semigroup S is a left (right) cancellative semigroup if and only if all principal
ultrafilters are left (right) cancelable elements in the superextension A(S).
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Proof. If an element a € S is not left (right) cancelable in the semigroup S, then it is clear that
the principal ultrafilter generated by the element a is not cancelable in A(S).

Let S be a left (right) cancellative semigroup, a € S and X,Y € A(S), X # ), then
XNY = @ forsome X € X,Y € ). Since each element of S is left (right) cancelable, then
aXNaY = & (XaNYa = @), and thus ({a}) o X # ({a}) oV (X o ({a}) # Vo ({a})). Con-
sequently, the left [ /1,1y (right r(,})) shift is injective and the principal ultrafilter ({a}) is left
(right) cancelable. O

Proposition 3.3. An element M € A(Cy,,) is left (right) cancelable if and only if M is a prin-
cipal ultrafilter.

Proof. Since in any group, in particular in the cyclic group Cj ,,, all elements are cancelable,
according to Lemma 3.1 all principal ultrafilters are right cancelable in the superextension
A(CLm)-

Assume that some maximal linked system M € A(Cy,,) \ {({g}) : § € Cim} is left can-
celable. This means that the left shift [ : A(Cy) — A(Cim), Ipm 0 A — Mo A, is injective.
According to Proposition 3.2, the set A(Cy ;) \ {({g}) : § € C1m} is anideal in A(Cy ). Con-
sequently, Iy (A(Cy 1)) = Mo A(Cyp) CA(Crm) \ {{({g}) : £ € C1;m}- Since A(Cy ) is finite,
I pm cannot be injective.

For the right cancelable elements the proof is analogous. O

Since the infinite cyclic semigroup is a cancellative semigroup, then Lemma 3.1 implies the
following proposition.

Proposition 3.4. All principal ultrafilters are cancelable elements in the superextension of the
infinite cyclic semigroup.

Proposition 3.5. Let S be the infinite cyclic semigroup and L € A(S). A maximal linked system
L is right cancelable in A(S) provided for every s € S there is a set Ls € L such that the family
{s*Ls : s € S} is disjoint.

Proof. Assume that {L;}scs C L is a family such that {s % Ls : s € S} is disjoint. To prove that
L is right cancelable, take two maximal linked systems A, B € A(S) with Ao L = Bo L. Itis
sufficient to show that .4 C B. Take any set A € 4 and observe that the set |, 4 a * L, belongs
to Ao L = Bo L. Consequently, there is a set B € B and a family of sets {M} },cp C L such
that

U bx M, C U ax L.

beB acA
It follows from L; € £ that M, N L; is not empty for every b € B.

Since the sets a * L, i b x L, are disjoint for different a,b € S, the inclusion

Ub*(MbﬂLb)C Ub*MbC Ua*Lg
beB beB acA

implies B C A and hence A € B. O
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Y craTTi BMBYAIOThHCS IpaBi i AiBi HyAl, OAHOTOUKOBI AiBi iAeaay, MiHIMAABHMIL iaean, CKOPO-
THI 3AiBa i CKOPOTHI CIIpaBa eAeMEHTH CyIeppo3UMpeHHsT A(S) IMKAIYHOI HAIIBIPpymM S, & TAKOX
XapaKTepM3YIOThCS IVKAIUHI HaIliBrpyIm, CyeppO3IIMPEHHS SIKMX € KOMYTaTUBHMMI.

Knwouoei cnosa i ppasu: IMKAIYHA HaIiBrpyIa, MakKCMMaAbHA 3UellAeHa CHCTeMa, CyTIeppO3In-
peHHs1.

I'aBpuaxus B.M. Cyneppacuiuperus yuxkauvueckux nonyepynn // Kapmarckue MaTeMaTndeckue my6-
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B pa60Te M3y4daroTcs IIpaBble 11 A€Bbl€ HY A, OAHOTOYEYHDbIE A€BbI€ MIACAADI, MMHVMAaABHBIN mAe-
aA, COKpaTVMBble CAEBa U COKpaTVMBble CIpaBa SAEMeHTHI Cyneppaciuperust A(S) IMKAMIecKO mo-
AYTPYIIIBI S, a TaKXe XapaKTepU3yIOTCs IMKAMYECKIe IOAYTPYIIIbI, CyIeppacIMpeHnst KOTOPBIX
KOMMYTaTHUBHBI.

Kntouesvie cnosa u ¢ppasel: IMKAMYecKas IOAYTPYINIA, MaKCMMaAbHAS CLEILAEHHAS CUCTEMa, CY-
reppacIiipeHne.



