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A map f : X → Y between topological spaces is called scatteredly continuous (pointwise

discontinuous) if for each non-empty (closed) subspace A ⊂ X the restriction f |A has a point

of continuity. We define a map f : X → Y to be weakly discontinuous if for every non-empty

subspace A ⊂ X the set D(f |A) of discontinuity points of the restriction f |A is nowhere dense

in A.

In this paper we consider the composition, Cartesian and diagonal product of weakly dis-

continuous, scatteredly continuous and pointwise discontinuous maps.

Introduction

A map f : X → Y between topological spaces is called scatteredly continuous if for each
non-empty subspace A ⊂ X the restriction f |A has a point of continuity. Such maps were
introduced in [1] and were more investigated in [3].

By its spirit definition of a scatteredly continuous map resembles the classical definition
of a pointwise discontinuous map, due to R.Baire [2]. We recall that the map f : X → Y is
called pointwise discontinuous if for each non-empty closed subspace A ⊂ X the restriction
f |A has a continuity point.

Following [6] we define a map f : X → Y to be weakly discontinuous if for every subspace
A ⊂ X the set D(f |A) of discontinuity points of the restriction f |A is nowhere dense in A.

In this paper we consider the composition, Cartesian and diagonal product of weakly
discontinuous, scatteredly continuous and pointwise discontinuous maps. In particular, one
of the main results of the paper is the following theorem.

Theorem 1. Let F = {fα}α∈S be a family of maps fα of a topological space Xα into a
topological space Yα respectively. The Cartesian product

∏
α∈S

fα :
∏
α∈S

Xα →
∏
α∈S

Yα is a

scatteredly continuous map if and only if the following conditions hold:
(i) all the maps fα are scatteredly continuous;
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(ii) all the maps fα, except maybe one, are weakly discontinuous;
(iii)all the maps fα, except maybe finite number, are continuous.

Also we show that the Cartesian and diagonal product of finite number of weakly dis-
continuous maps is weakly discontinuous.

1 Preliminaries

A “space” always means “topological space”. By R and Q we denote the spaces of real
and rational numbers respectively; ω stands for the space of finite ordinal numbers (=non-
negative integer numbers) endowed with the discrete topology.

For a subset A of a topological space X by clX(A) or A we denote the closure of A in X

while IntX(A) stands for the interior of A in X.
For a map f : X → Y between topological spaces by C(f |A) we denote the set of

continuity points of the restriction f |A while D(f |A) stands for the discontinuity points of
the restriction f |A.

The characteristic function of a subset A of a set X is a function χA : X → {0, 1} defined
as follows

χA(x) =

{
1, x ∈ A;

0, x /∈ A.

Suppose we are given a family {Xs : s ∈ S} of topological spaces. We consider a Cartesian
product X =

∏
s∈S

Xs of the sets {Xs : s ∈ S} with Tychonoff topology. By πXs :
∏
s∈S

Xs → Xs

we denote the projection of X =
∏
s∈S

Xs onto Xs.

All spaces encountered in this paper (unless stated otherwise) are assumed to be Haus-
dorff. The rest of the notation and terminology is standard and can be found in [4].

2 Some facts about scatteredly continuous, weakly discontinuous and
pointwise discontinuous maps

Definition 2.1. A map f : X → Y between topological spaces is called
• weakly discontinuous if for each non-empty subspace A ⊂ X the set D(f |A) is nowhere

dense in A;
• scatteredly continuous if for each non-empty subspace A ⊂ X the restriction f |A has a

point of continuity;
• pointwise discontinuous (see [2]) if for each non-empty closed subspace A ⊂ X the

restriction f |A has a point of continuity.

Obviously, every weakly discontinuous map is scatteredly continuous and each scatteredly
continuous map is pointwise discontinuous.

As an example of scatteredly continuous, not a weakly discontinuous map one can take
an identity map f : R → RQ from the real line equipped with the standard topology τ to the
real line endowed with the topology generated by the subbase τ ∪ {Q}. In [1] it is proved,



38 Bokalo B.M, Kolos N.M.

in particular, that scatteredly continuous map f : X → Y into a regular space Y is weakly
discontinuous.

Recall that the Riemann function is a function R : [0, 1] → [0, 1] defined as follows

R(x) =

{
1
n
, if x = m

n
is a rational number;

0, if x is irrational.

Obviously, the Riemann function is an example of pointwise discontinuous, not a scatteredly
continuous map.

Lemma 2.1. Let f : X → Y be a scatteredly continuous map. Then for each non-empty
subspace A ⊂ X the set C(f |A) is dense in A.

Proof. Without loss of generality we can assume that A = X. Put X0 = {x ∈ X : f : X → Y

is continuous at the point x}. We prove that X0 = X. Suppose this is not true, that is
X\X0 6= ∅. Put U = X\X0 and let x0 be a continuity point of the restriction f |U : U → Y .
Then for any neighborhood O(f(x0)) of the point f(x0) there is a neighborhood O(x0) of
the point x0 such that f(O(x0) ∩ U) ⊂ O(f(x0)). Since the set U is open in X so it is the
set O(x0) ∩ U . Therefore, f : X → Y is continuous at x0, hence x0 ∈ X0, which contradicts
the fact that x0 ∈ X\X0.

Proposition 2.1. A map f : X → Y is scatteredly continuous if and only if there is
an ordinal number β0 and a pairwise disjoint family {Xα}α<β0 of non-empty subsets of X
such that X = ∪{Xα : α < β0}; for each β < β0 the set Xβ is dense in the subspace
∪{Xα : β ≤ α < β0} and C(f |∪{Xα:β≤α<β0}) = Xβ. The ordinal number β0 is called an index
of scattered continuity of the map f and is denoted by sc(f).

Proof. The "only if" part. Let f : X → Y be a scatteredly continuous map. Apply a
transfinite induction to all ordinal numbers which are less than |X|+. Put X0 = {x ∈ X :

f : X → Y is continuous at a point x}. Then, by Lemma 2.1, X0 = X. Put X0 = X\X0

and X1 = {x ∈ X0 : f |X0 : X0 → Y is continuous at a point x}. Due to Lemma 2.1
X1 = X \ X0. Put X1 = X0 \ X1 and so on. Suppose that for each ordinal number
α < β we have constructed the sets Xα and Xα. Then put P β =

⋂
{Xα : α < β},

Xβ = {x ∈ P β : f |Pβ : P β → Y is continuous at a point x} and Xβ = P β\Xβ. By β0 we
denote a minimal ordinal number β such that Xβ = ∅. Since f is a scatteredly continuous
map, X =

⋃
{Xα : α < β0}. Obviously, for any ordinal number β < β0 the restriction

f |∪{Xα:β≤α<β0} : ∪{Xα : β ≤ α < β0} → Y is continuous at each point of the set Xβ, and for
all β < β0 the set Xβ is dense in

⋃
{Xα : β ≤ α < β0}.

The "if" part. Suppose there is an ordinal number β0 and a pairwise disjoint family
{Xα}α<β0 of non-empty subsets of X such that X = ∪{Xα : α < β0} and for each β < β0

C(f |∪{Xα:β≤α<β0}) = Xβ. Let A be a non-empty subset of X. Put α0 = min{α : A∩Xα 6= ∅}.
Then C(f |A) ⊃ A ∩Xα0 6= ∅.

Proposition 2.2. A map f : X → Y is weakly discontinuous if and only if there is an
ordinal number β0 and a pairwise disjoint family {Xα}α<β0 of non-empty subsets of X

such that X = ∪{Xα : α < β0}; for each β < β0 the set Xβ is an open dense subset of
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∪{Xα : β ≤ α < β0} and Int∪{Xα:β≤α<β0}C(f |∪{Xα:β≤α<β0}) = Xβ. The ordinal number β0 is
called an index of weak discontinuity of the map f and is denoted by wd(f).

Proof. Is similar to the proof of Proposition 2.1.

Proposition 2.3. The composition of two weakly discontinuous maps is weakly discontin-
uous.

Proof. Let f : X → Y, g : Y → Z be two weakly discontinuous maps. To show that g ◦ f is
weakly discontinuous, it suffices, given a non-empty subspace A ⊂ X to find a non-empty
open subset U ⊂ A such that g ◦ f |U is continuous. The weak discontinuity of f yields a
non-empty open set V ⊂ A such that f |V is continuous. The weak discontinuity of g yields
a non-empty open subset W ⊂ f(V ) such that g|W is continuous. By the continuity of f |V ,
the preimage U = (f |V )−1(W ) is open in V and hence in A. Finally, the continuity of the
functions f |U and g|f(U) imply the continuity of g ◦ f |U .

Proposition 2.4. The composition g◦f : X → Z of a weakly discontinuous map f : X → Y

and a scatteredly continuous map g : Y → Z is scatteredly continuous.

Proof. Given a non-empty subspace A ⊂ X we should find a continuity point of g ◦ f |A.
The weak discontinuity of f implies the existence of a non-empty open set V ⊂ A such that
f |V is continuous. The scattered continuity of g implies the existence of continuity point
y0 ∈ f(V ) of the restriction g|f(V ). Then any point x0 ∈ (f |V )−1(y0) is a continuity point of
g ◦ f |A.

However, the composition g ◦ f : X → Z of weakly discontinuous (even more that,
continuous) map f : X → Y and a pointwise discontinuous map g : Y → Z need not be
pointwise discontinuous.

Example 1. We consider the identity maps i1 : (X, τ0) → (X, τz), i2 : (X, τz) → (X, τs)

where X = [0; 1), τz is a standard topology, τs is a right half-open interval topology and τ0
is a topology generated by the subbase τz ∪ {0}. Obviously, the map i1 : (X, τ0) → (X, τz)

is continuous.
The map i2 is pointwise discontinuous. Assume that A is a non-empty closed subset of

X. As the point of continuity of the restriction i2|A we can take the minimal point of the
set A with respect to standard order on the set [0, 1).

Since the restriction i2|(0,1) is everywhere discontinuous, the map i2 fails to be scatteredly
continuous.

The set A = (0, 1) is closed in (X, τ0). However, the restriction (i2 ◦ i1)|A has no point of
continuity. Thus the composition i2 ◦ i1 is not a pointwise discontinuous map.

Proposition 2.5. The composition g ◦ f : X → Z of closed continuous map f : X → Y

and a pointwise discontinuous map g : Y → Z is pointwise discontinuous.

It is interesting to note that the composition g ◦ f : X → Z of a scatteredly contin-
uous map f : X → Y and a weakly discontinuous map g : Y → Z can be everywhere
discontinuous.
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Example 2. Let f : R → RQ be the identity map from the real line equipped with the
standard topology τ to the real line endowed with the topology generated by the subbase
τ ∪ {Q}. Also let χQ : RQ → {0; 1} be the characteristic function of the set Q. It is easy to
show that the map f : R → RQ is scatteredly continuous and χQ : RQ → {0; 1} is a weakly
discontinuous map while their composition χQ ◦ f : R → {0; 1} is everywhere discontinuous.

Proposition 2.6. The composition g ◦ f : X → Z of a pointwise discontinuous (scatteredly
continuous, weakly discontinuous) map f : X → Y and a continuous map g : Y → Z is
pointwise discontinuous (scatteredly continuous, weakly discontinuous respectively).

Proposition 2.7. Let f be a surjective open map from a topological space X onto a topo-
logical space Y and g be a map from the space Y to some topological space Z. Then
scattered continuity (weak discontinuity) of the map g ◦f implies scattered continuity (weak
discontinuity) of the map g.

Proof. Let f be an open surjective map and let the composition g ◦ f be a scatteredly
continuous (weakly discontinuous respectively) map. Assume that B is a non-empty subset
of Y and A = f−1(B). It is known that the restriction f |A : A → B is an open map. Since
the composition g◦f is scatteredly continuous (weakly discontinuous), the set C(g◦f |A) 6= ∅
(C((g ◦ f)|A) is an open subset of A respectively). We take some x0 ∈ C(g ◦ f |A) and show
that the map g |B : B → Z is continuous at the point y0 = f(x0). Assume that O(g(y0)) is
a neighborhood of the point g(y0) in Z. Since g ◦ f(x0) = g(y0) and x0 ∈ C(g ◦ f |A), there
is a neighborhood O(x0) of the point x0 such that g ◦ f(O(x0) ∩ A) ⊂ O(g(y0)). Since the
restriction f |A : A → B is an open map, the set f(O(x0) ∩ A) is an open subset of B with
y0 ∈ f(O(x0) ∩ A). It is easy to understand that g(f(O(x0) ∩ A)) = g ◦ f(O(x0) ∩ A) ⊂
O(g(y0)).

If the composition g ◦f is weakly discontinuous, the set f(C((g ◦f)|A)) is an open subset
of B.

If the map f is surjective open and the composition g ◦ f is a pointwise discontinuous
map, then the map g need not be pointwise discontinuous.

Example 3. We consider the identity maps f : (X, τz) → (X, τ0), g : (X, τ0) → (X, τs)

where X = [0; 1), τz is a standard topology, τs is a right half-open interval topology and τ0
is a topology generated by the subbase τz ∪{0}. Obviously, the map f is open. As Example
1 shows, the composition g ◦ f : (X, τz) → (X, τs) is a pointwise discontinuous map, but the
map g : (X, τ0) → (X, τs) is not a pointwise discontinuous map.

Proposition 2.8. Let f be a surjective open continuous map from a topological space X

onto a topological space Y and g be a map from the space Y to some topological space Z.
Then pointwise discontinuity of the map g ◦ f implies a pointwise discontinuity of the map
g.

Propositions 2.7 and 2.8 are not faithful, if we replace the openess of the map f by the
quotientity (even more that, by closedness and continuity).
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Example 4. Let X be a scattered space, Y be a perfect non-scattered space and f : X → Y

be a closed surjective continuous map (such spaces exist, see[5]). By Yd we denote the set
Y endowed with the discrete topology. Let g be the identity map from Y to Yd. Obviously,
the composition g ◦ f : X → Yd is scatteredly continuous (even weakly discontinuous), but
the map g is everywhere discontinuous.

Proposition 2.9. Let f be a surjective perfect map from a topological space X onto a
topological space Y and g be a map from the space Y to some topological space Z. Then
weak discontinuity of the map g ◦ f implies weak discontinuity of the map g.

Proof. Let f be an surjective perfect map and let the composition g ◦ f be a weakly dis-
continuous map. Let B be some non-empty subset of Y . Put P = B. Since the map f is
perfect, there is a closed subset F of X such that f(F ) = B and f |F is irreducible perfect
map. Since the composition g ◦ f is weakly discontinuous map, there is an open subset U of
F of the points of continuity of the restriction g ◦ f |F . Since f |F is irreducible map, f(U) is
non-empty open subset of P . And since B = P , f(U) ∩ B is a non-empty open set of the
continuity points of the restriction g|B.

Recall that a space X is called a Preiss-Simon space if for an arbitrary non-empty closed
subset A of X and each point x ∈ A there is a sequence {Un : n ∈ ω} of non-empty open
subsets of A that converges to x in the sense that each neighborhood of x contains all but
finitely many sets Un.

Proposition 2.10. Let f be a closed surjective map from a perfectly paracompact space X

onto a hereditary Baire Preiss-Simon space Y and g be a map from the space Y to a regular
space Z. Then scattered continuity of the map g ◦ f implies scattered continuity of the map
g.

Proof. In [3], in particular, it is proved that a map g from a hereditary Baire Preiss-Simon
space Y to a regular space Z is scatteredly continuous if for any open subset in Z its preimage
is a Gδ-set in Y . Suppose g is not a scatteredly continuous map. Then there is an open set
U in Z such that g−1(U) is not Gδ-set in Y .

From the other hand, as g ◦ f is a scatteredly continuous map from a perfectly paracom-
pact space X to a regular space Z, then (g ◦ f)−1(U) is a Gδ-set in X (see [3]).

Put A = (g ◦ f)−1(U) ⊂ X. Then f(A) = g−1(U). Since A is a Gδ-set in X, then X\A
is an Fσ-set in X, that is, X\A =

⋃
{Fi : i ∈ ω} with Fi – close subset in X for all i ∈ ω.

Then f(X\A) =
⋃

f(Fi) is an Fσ-set in Y . But then Y \f(X\A) = g−1(U) is a Gδ-set in Y ,
which is a contradiction.

The next example shows that the closedness of the map f in Lemma 2.10 is essential.

Example 5. Assume that f is a map from a scattered continuum compact X to the segment
Y = [0, 1], and χQ : [0, 1] → R is the characteristic function of the set Q. Spaces X and Y

are both compact. Obviously, maps χQ ◦ f : X → R and f are scatteredly continuous. But
the characteristic function χQ : [0, 1] → R is everywhere discontinuous.
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3 Cartesian and diagonal product of maps

Suppose we are given two families {Xα}α∈S and {Yα}α∈S of topological spaces and a family
of maps {fα}α∈S, where fα : Xα → Yα. The map assigning to the point x = {xα}α∈S ∈∏
α∈S

Xα the point {fα(xα)}α∈S ∈
∏
α∈S

Yα is called the Cartesian product of the maps {fα}α∈S

and is denoted by
∏
α∈S

fα or f1 × f2 × · · · × fk if S = {1, 2, ..., k}.

Suppose we are given a topological space X, a family {Yα}α∈S of topological spaces and
a family of maps {fα}α∈S, where fα : X → Yα. The map assigning to the point x ∈ X the
point {fα(x)}α∈S ∈

∏
α∈S

Yα is called the diagonal product of the maps {fα}α∈S and is denoted

by 4
α∈S

fα, or by f14f24 . . .4fk if S = {1, 2, ..., k}.

Proposition 3.1. Suppose we are given a topological space X, a family {Yα}α∈S of topo-
logical spaces and a family of maps {fα}α∈S, where fα : X → Yα. If the Cartesian product∏
α∈S

fα : XS →
∏
α∈S

Yα is a pointwise discontinuous (scatteredly continuous, weakly discon-

tinuous) map, then so is the diagonal product 4
α∈S

fα : X →
∏
α∈S

Yα.

Proof. We consider the homeomorphic embedding i : X → XS. Obviously, (
∏
α∈S

fα) ◦ i =

4
α∈S

fα. Propositions 2.5, 2.4 and 2.3 complete the proof.

Proposition 3.2. Suppose we are given two families {Xα}α∈S and {Yα}α∈S of topological
spaces and a family of maps {fα}α∈S, where fα : Xα → Yα. If the map

∏
α∈S

fα :
∏
α∈S

Xα →∏
α∈S

Yα is pointwise discontinuous (scatteredly continuous, weakly discontinuous), then for

each α ∈ S the map fα : Xα → Yα is pointwise discontinuous (scatteredly continuous,
weakly discontinuous).

Proof. Let
∏
α∈S

fα be a pointwise discontinuous (scatteredly continuous, weakly discontinu-

ous) map. For all α ∈ S the equality πYα ◦ (
∏
α∈S

fα) = fα ◦ πXα holds. By Proposition 2.6,

the composition πYα ◦ (
∏
α∈S

fα) is pointwise discontinuous (scatteredly continuous, weakly

discontinuous) for each α ∈ S. Then the composition fα ◦ πXα is pointwise discontinu-
ous (scatteredly continuous, weakly discontinuous) for each α ∈ S as well. Since the map
πXα :

∏
α∈S

Xα → Xα is open continuous and surjective for all α ∈ S, due to Proposition 2.8

(Proposition 2.7 respectively), the map fα : Xα → Yα is pointwise discontinuous (scatteredly
continuous, weakly discontinuous) for each α ∈ S.

We show that the Cartesian product of two pointwise discontinuous maps need not be a
pointwise discontinuous map.
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Example 6. We consider the Cartesian product i2× i2 : (X, τz)× (X, τz) → (X, τs)× (X, τs)

of the pointwise discontinuous map i2 : (X, τz) → (X, τs) (see Example 1) with itself. Put
F = {(x;−x + 1) : x ∈ X}. The set F is closed in the space (X, τz) × (X, τz) and is a
discrete subspace of the space (X, τs)× (X, τs). The restriction (i2 × i2)|F has no points of
continuity, otherwise this point would be isolated in F .

Lemma 3.1. Suppose we are given two maps f : X → S and g : Y → T , where X,Y, S and
T are topological spaces. Then the map f × g : X × Y → S × T is scatteredly continuous
if and only if the maps f and g are both scatteredly continuous and at least one of them is
weakly discontinuous.

Proof. The “if” part. Let f : X → S be a weakly discontinuous map and let g : Y → T

be a scatteredly continuous map. Since g is a scatteredly continuous map, by Proposition
2.1, there is an ordinal number sc(g) and a pairwise disjoint family {Yγ}γ<sc(g) of non-empty
subsets of Y such that the space Y = ∪{Yγ : γ < sc(g)}; for each γ < sc(g) the set Yγ

is dense in ∪{Yλ : γ ≤ λ < sc(g)} and C(g|∪{Yλ:γ≤λ<sc(g)}) = Yγ. Since f is a weakly
discontinuous map, due to Proposition 2.2, there is an ordinal number wd(f) and a pairwise
disjoint family {Xα}α<wd(f) of non-empty subsets of X such that X = ∪{Xα : α < wd(f)};
for each α < wd(f) the set Xα is open dense subset of ∪{Xβ : α ≤ β < wd(f)} and
Int∪{Xβ :α≤β<wd(f)}C(f |∪{Xβ :α≤β<wd(f)}) = Xα. Take any set A ⊂ X × Y . Put A1 = πX(A)

and A2 = πY (A). Without loss of generality, we can assume that A1 ∩ X0 6= ∅. For each
x ∈ X0∩A1 by γ(x) we denote a minimal ordinal number γ such that πY (π

−1
X (x)∩A)∩Yγ 6= ∅.

And put γ0 = min{γ(x) : x ∈ X0∩A1}. Since X0∩A1 6= ∅ and Yγ0∩A2 6= ∅, X0×Yγ0∩A 6=
∅. We show that each point of the set X0 × Yγ0 ∩ A is a continuity point of the restriction
f × g|A. Take an arbitrary point (x0; y0) ∈ X0 × Yγ0 ∩ A. We fix some neighborhood
O(f × g(x0; y0)) = O(f(x0), g(y0)) = O(f(x0)) × O(g(y0)) of the point (f(x0), g(y0)). We
needed to show that there is a neighborhood O(x0, y0) = O(x0)×O(y0) of the point (x0, y0)

such that f × g(O(x0)×O(y0)∩A) ⊂ O(f(x0))×O(g(y0)). Since X0 is an open subset of X
and the map f is continuous at the point x0 ∈ X0 there is a neighborhood O(x0) of the point
x0 such that O(x0) ⊂ X0 and f(O(x0)) ⊂ O(f(x0)). Suppose that for all neighborhoods
O(y0) of the point y0 in Y we have that f×g(O(x0)×O(y0)∩A) * O(f(x0))×O(g(y0)). Fix
a point (x′, y′) ∈ O(x0)×O(y0)∩A such that (f(x′), g(y′)) /∈ O(f(x0))×O(g(y0)). Obviously,
f(x′) ∈ O(f(x0)). And since the map g|∪{Yγ :γ0≤γ<sc(g)} : ∪{Yγ : γ0 ≤ γ < sc(g)} → T is
continuous at every point of the set Yγ0 , the condition (f(x′), g(y′)) /∈ O(f(x0)) × O(g(y0))

holds only if the point y′ ∈ Yγ, where γ < γ0. But this contradicts the choice of the set
Yγ0 , where γ0 = min{γ(x) : x ∈ X0 ∩ A1}. Thus, every point of the set X0 × Yγ0 ∩ A is a
continuity point of the restriction f × g|A.

The “only if” part. Scattered continuity of the maps f : X → S and g : Y → T follows
from Proposition 3.2. Due to Proposition 2.1, there are indices sc(f) and sc(g) of scattered
continuity of the maps f and g respectively and a pairwise disjoint families {Xα}α<sc(f) and
{Yγ}γ<sc(g) of non-empty subsets of X and Y respectively such that X = ∪{Xα : α < sc(f)},
Y = ∪{Yγ : γ < sc(g)}; for each α < sc(f) the set Xα is dense in ∪{Xβ : α ≤ β < sc(f)}
and C(f |∪{Xβ :α≤β<sc(f)}) = Xα and for each γ < sc(g) the set Yγ is dense in ∪{Yλ : γ ≤
λ < sc(g)} and C(g|∪{Yλ:γ≤λ<sc(g)}) = Yγ. Suppose that both of these maps are not weakly



44 Bokalo B.M, Kolos N.M.

discontinuous. Then there are some α0, β0 such that Xα0 6= Int∪{Xα:α0≤α<sc(f)}Xα0 and
Yβ0 6= Int∪{Yβ :β0≤β<sc(g)}Yβ0 . Without loss of generality we can assume that α0 = β0 = 0.
Consider the subset A = ((X0\IntX0)×Y1)∪(X1×(Y0\IntY0)) of X×Y . Since the map f×g

is scatteredly continuous, there is the point (x0, y0) ∈ A, the continuity point of the restriction
f × g|A. Two cases are possible: x0 ∈ X0\IntX0, y0 ∈ Y1 or x0 ∈ X1, y0 ∈ Y0\IntY0. Assume
that x0 ∈ X0\IntX0, y0 ∈ Y1. Since y0 /∈ Y0, there is a neighborhood O(g(y0)) = O′

of the point g(y0) such that for an arbitrary neighborhood O(y0) of the point y0 we have
that g(O(y0)) * O′. Since (x0, y0) is a continuity point of the restriction f × g|A, for the
neighborhood O(f × g(x0, y0)) = S ×O′ there is a neighborhood O(x0, y0) = O1 ×O2 of the
point (x0, y0) in X × Y such that f × g(O1 × O2 ∩ A) ⊂ S × O′. Since Y0 is dense subset
of Y , O2 ∩ Y0 6= ∅. We prove that there is the point y′ ∈ O2 ∩ Y0 such that g(y′) /∈ O′.
Suppose this is not true. Suppose that g(O2 ∩Y0) ⊂ O′. Since y0 is a continuity point of the
restriction g|Y \Y0 , there is a neighborhood O′

2 of the point y0 such that g(O′
2∩ (Y \Y0)) ⊂ O′.

Obviously, g(O2 ∩ O′
2) ⊂ O′. And this contradicts the fact that y0 /∈ Y0. Hence, there is a

point y′ ∈ O2 ∩ Y0 such that g(y′) /∈ O′.
Since x0 /∈ IntX0, for an arbitrary neighborhood O(x0) of the point x0 we have that

O(x0) * X0. Take some point x′ ∈ X1 ∩ (O1\X0). The point (x′, y′) ∈ O1 × O2 ∩ A, but
f × g(x′, y′) /∈ S ×O′, which is a contradiction.

Lemma 3.2. Suppose we are given two finite families {Xi}i∈1,k and {Yi}i∈1,k of topological

spaces and a family of maps {fi}i∈1,k, where fi : Xi → Yi. The map
k∏

i=1

fi :
k∏

i=1

Xi →
k∏

i=1

Yi

is weakly discontinuous if and only if for each i ∈ 1, k the map fi : Xi → Yi is weakly
discontinuous.

Proof. The “only if” part follows from Proposition 3.2.
Since the Cartesian product of topological spaces is an associative operation (see [4]) it is

sufficient to prove the “if” part for two weakly discontinuous maps f : X → S and g : Y → T .
Since the maps f and g are both weakly discontinuous, by Proposition 2.2, there are ordinal
numbers wd(f) and wd(g) respectively and a pairwise disjoint families {Xα}α<wd(f) and
{Yγ}γ<wd(g) of non-empty subsets of X and Y respectively, such that the spaces X = ∪{Xα :

α < wd(f)} and Y = ∪{Yγ : γ < wd(g)}; for arbitrary α < wd(f) the set Xα is an open
dense subset of ∪{Xβ : α ≤ β < wd(f)} and Int∪{Xβ :α≤β<wd(f)}C(f |∪{Xβ :α≤β<wd(f)}) = Xα

and for each γ < wd(g) the set Yγ is an open dense subset of ∪{Yλ : γ ≤ λ < wd(g)} and
Int∪{Yλ:γ≤λ<wd(g)}C(g|∪{Yλ:γ≤λ<wd(g)}) = Yγ. Analogously to Lemma 3.1 one can prove that
the restriction f × g|A is continuous at every point of the set X0 × Yγ0 ∩ A (where γ0 is
determined as in Lemma 3.1).

We prove that X0 × Yγ0 ∩ A is an open subset of A. We show that for any point
(x0, y0) ∈ X0×Yγ0 ∩A there is a neighborhood O(x0, y0) = O1×O2 of the point (x0, y0) such
that O(x0, y0)∩A ⊂ X0 × Yγ0 ∩A. Since the set X0 is open in X, there is the neighborhood
O1 of the point x in X such that O1 ⊂ X0. And since γ0 = min{γ(x) : x ∈ X0 ∩ A1}, for
any neighborhood O2 of the point y0 in Y we have that πY (O1 ×O2 ∩A) ∩ Yγ = ∅ for each
γ < γ0. It remains to show that there is a neighborhood O2 of the point y0 in Y such that
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O2 ∩ Yγ = ∅ for all γ > γ0. Suppose this is not true. Assume that for any neighborhood
O2 of the point y0 in Y there is γ > γ0 such that O2 ∩ Yγ 6= ∅. Since the set Yγ0 is open in
∪{Yγ : γ0 ≤ γ < wd(g)}, each neighborhood W ⊂ Yγ0 of the point y0 in Yγ0 is an open subset
of ∪{Yγ : γ0 ≤ γ < wd(g)}. Then there is a neighborhood O2 of the point y0 in Y such that
W = O2∩ (∪{Yγ : γ0 ≤ γ < wd(g)}) ⊂ Yγ0 . Then (O2∩ (∪{Yγ : γ0 ≤ γ < wd(g)}))\Yγ0 = ∅,
which is a contradiction.

Theorem 2. Let F = {fα}α∈S be a family of maps fα of a topological space Xα into a
topological space Yα respectively. The Cartesian product

∏
α∈S

fα :
∏
α∈S

Xα →
∏
α∈S

Yα is a

scatteredly continuous map if and only if the following conditions hold:
(i) all the maps fα are scatteredly continuous;
(ii) all the maps fα, except maybe one, are weakly discontinuous;
(iii)all the maps fα, except maybe finite number, are continuous.

Proof. The "only if" part. Statement (i) follows from Proposition 3.2 and statement (ii)
follows from Lemma 3.1.

Suppose that the condition (iii) does not hold. We fix some countable infinite set M ⊂ S

of indices such that for each α ∈ M the map fα : Xα → Yα is discontinuous. For every
α ∈ M we fix a point x∗

α ∈ Xα such that the map fα is discontinuous at x∗
α. For each α ∈ M

fix a neighborhood W ∗
α of the point fα(x

∗
α) such that for an arbitrary neighborhood O(x∗

α)

of x∗
α we have that fα(O(x∗

α))\W ∗
α 6= ∅.

Consider the set B = {{xα}α∈S ∈
∏
α∈S

Xα: there is α ∈ M such that xα = x∗
α}. Since

the map
∏
α∈S

fα is scatteredly continuous, there is a point x = {xα}α∈S ∈ B such that the

restriction
∏
α∈S

fα|B is continuous at x. Since x = {xα}α∈S ∈ B, there is α′ ∈ M such that

xα′ = x∗
α′ .

We consider the neighborhood V =
∏
α∈S

Vα of the point {fα(x)}α∈S in
∏
α∈S

Yα such that

Vα = Yα for all α ∈ S\{α′} and Vα′ = W ∗
α′ . There is a neighborhood U =

∏
α∈S

Uα of the point

x in
∏
α∈S

Xα such that
∏
α∈S

fα(U ∩ B) ⊂ V . Without loss of generality we can assume that

U =
∏
α∈S

Uα is an element of the base of the space
∏
α∈S

Xα, that is, there is a finite set S ′ ⊂ S

of indices such that Uα = Xα for all α ∈ S\S ′ and Uα is an open subset of Xα for all α ∈ S ′.
Since M is an infinite set, there is α′′ ∈ M\S ′ such that α′′ 6= α′. And this means that

πXα′ (B ∩ U) = πXα′ ({{xα}α∈S : xα ∈ Uα for all α 6= α′′ and xα′′ = x∗
α′′}) = Uα′ . Then

fα′(Uα′) ⊂ πYα′ (
∏
α∈S

fα(B ∩ U)) ⊂ πYα′ (V ) = W ∗
α′ .

The "only if" part. It follows from Lemmas 3.1 and 3.2, and from the fact that the
Cartesian product of continuous maps is a continuous map.

Corollary 3.1. Let f be a map from a topological space X into a topological space Y .
Then following conditions are equivalent:
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1. The map f : X → Y is weakly discontinuous.

2. The Cartesian product f × f : X ×X → Y × Y is a scatteredly continuous map.

3. The Cartesian product f × f : X ×X → Y × Y is a weakly discontinuous map.

4. The Cartesian product fn : Xn → Y n is a weakly discontinuous map for each n ∈ ω.

Theorem 3. Let F = {fα}α∈S be a family of maps fα of a topological space Xα into a
topological space Yα respectively. The Cartesian product

∏
α∈S

fα :
∏
α∈S

Xα →
∏
α∈S

Yα is a

weakly discontinuous map if and only if the following conditions hold:
(i) all the maps fα are weakly discontinuous;
(ii)all the maps fα, except maybe finite number, are continuous.

Proof. The "only if" part follows from Proposition 3.2 and Theorem 2, and the "if" part
follows from Lemma 3.2.

Definition 3.1. Let F = {fα}α∈S be a family of maps fα of a topological space X into
a topological space Yα respectively. We say that the family F is scatteredly continuous
(pointwise discontinuous), if for each non-empty (closed) subspace A ⊂ X there is a point
x ∈ A such that for all α ∈ S the restriction fα|A is continuous at x.

Definition 3.2. Let F = {fα}α∈S be a family of maps fα of a topological space X into a
topological space Yα respectively. We say that the family F is weakly discontinuous, if for
each non-empty subspace A ⊂ X there is a non-empty open subset B of A such that for all
α ∈ S the restriction fα|A is continuous at every point of B.

Proposition 3.3. Let F = {fα}α∈S be a family of maps fα of a topological space X into a
topological space Yα respectively. The diagonal product 4

α∈S
fα : X →

∏
α∈S

Yα is a pointwise

discontinuous (scatteredly continuous, weakly discontinuous) map if and only if the family
F is poinwise discontinuous (scatteredly continuous, weakly discontinuous).

Proof. It is sufficient to show that C( 4
α∈S

fα|A) =
⋂
α∈S

C(fα|A) for each non-empty subspace

A of X. An inclusion C( 4
α∈S

fα|A) ⊂
⋂
α∈S

C(fα|A) follows from the equality fα = πYα ◦( 4
α∈S

fα)

(which holds for all α ∈ S).
It remains to show that

⋂
α∈S

C(fα|A) ⊂ C( 4
α∈S

fα|A). Take a point x ∈
⋂
α∈S

C(fα|A) and

show that the map 4
α∈S

fα|A is continuous at x. Let fα(x) = yα for all α ∈ S. Assume that V is

an arbitrary open subset of
∏
α∈S

Yα such that {yα}α∈S ∈ V . Then there is an element
∏
α∈S

Vα of

the base of space
∏
α∈S

Yα such that {yα}α∈S ∈
∏
α∈S

Vα ⊂ V , Vα = Yα for all α ∈ S, except finite

number of indices α1, ..., αk, and Vαi
is open subset of Yαi

, i = 1, k. Since for every i ∈ 1, k the
map fαi

|A is continuous at the point x, for the neighborhood Vαi
of the point yαi

in the space
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Yαi
there is a neighborhood Oαi

of the point x such that fαi
(Oαi

∩A) ⊂ Vαi
. Then

k⋂
i=1

Oαi
∩A

is an open subset of A which contains x and 4
α∈S

fα(
k⋂

i=1

Oαi
∩ A) ⊂

k⋂
i=1

4
α∈S

fα(Oαi
∩ A) ⊂

k⋂
i=1

(π−1
Yαi

[πYαi
◦ 4

α∈S
fα(Oαi

∩ A)]) =
k⋂

i=1

(π−1
Yαi

[fαi
(Oαi

∩ A)]) ⊂
k⋂

i=1

π−1
Yαi

(Vαi
) =

∏
α∈S

Vα ⊂ V .

Hence, the map 4
α∈S

fα|A is continuous at the point x.

Since each finite family of weakly discontinuous maps is a weakly discontinuous family
of maps, Proposition 3.3 yields the following.

Corollary 3.2. A diagonal product of finite number of weakly discontinuous maps is a
weakly discontinuous map.

We show that the diagonal product of countably many of weakly discontinuous maps can
be everywhere discontinuous.

Example 7. Suppose X is the set Q ∩ [0, 1] equipped with the standard topology τ . For
each i ∈ ω by Xi we denote the set Q ∩ [0, 1] endowed with the topology generated by the

base τ ∪ {m− 1

i
: m ∈ 1, i+ 1}. Obviously, for each i ∈ ω an identity map fi : X → Xi is

weakly discontinuous. But the map 4
i∈ω

fi is everywhere discontinuous.

Proposition 3.4. Let F = {fi}i∈ω be a countable family of weakly discontinuous maps fi
of a hereditary Baire space X into a topological space Yi respectively. Then the diagonal
product 4

i∈ω
fi : X →

∏
i∈ω

Yi is a pointwise discontinuous map.

Proof. Suppose that for each i ∈ ω the map fi : X → Yi is weakly discontinuous. Let A be
an arbitrary closed subspace of X. Since the map fi is weakly discontinuous, the set Ui, of
the points of continuity of the restriction fi|A, is open dense subset of A for all i ∈ ω. Since
the space X is hereditary Baire, the set

⋂
i∈ω

Ui is non-empty set of the points of continuity

of the restriction 4
i∈ω

fi|A : A →
∏
i∈ω

Yi.

The next example shows that the diagonal product of two scatteredly continuous maps
from a compact space to Hausdorff space can be everywhere discontinuous.

Example 8. Consider an identity maps ϕ1 : I → IQ and ϕ2 : I → IR\Q from the segment
I = [0, 1] equipped with the standard topology τ to the segment [0, 1] endowed with the
topology generated by the subbases τ ∪ {Q} and τ ∪ {R\Q} respectively. Obviously, both
of these maps are scatteredly continuous, but the diagonal product ϕ14ϕ2 is everywhere
discontinuous.
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Бокало Б.М., Колос Н.М. Операцiї над деякими класами розривних вiдображень // Кар-
патськi математичнi публiкацiї. — 2011. — Т.3, №2. — C. 36–48.

Вiдображення f : X → Y мiж топологiчними просторами називають розрiджено непе-
рервним (точково розривним), якщо для кожного непорожнього (замкненого) пiдпростору
A ⊂ X звуження f |A має точку неперервностi. Вiдображення f : X → Y називають слабко
розривним, якщо для кожного непорожнього пiдпростору A ⊂ X множина D(f |A) точок
розриву звуження f |A є нiде не щiльною в A.

В роботi ми розглядаємо композицiю, декартiв i дiагональний добуток слабко розрив-
них, розрiджено неперервних i точково розривних вiдображень.

Бокало Б.М., Колос Н.М. Операции над некоторыми классами разрывных отображений
// Карпатские математические публикации. — 2011. — Т.3, №2. — C. 36–48.

Отображение f : X → Y между топологическими пространствами называют разре-
жено непрерывным (точечно разрывным), если для каждого непустого (замкнутого) под-
пространства A ⊂ X сужение f |A имеет точку непрерывности. Отображение f : X → Y

называют слабо разрывным, если для каждого непустого подпространства A ⊂ X множе-
ство D(f |A) точек разрыва сужения f |A нигде не плотно в A.

В статье ми рассматриваем композицию, декартово и диагональное произведение слабо
разрывных, разрежено непрерывных и точечно разрывних отображений.


