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A NEW GENERALIZATION OF a-TYPE ALMOST-F-CONTRACTIONS AND «-TYPE
F-SUZUKI CONTRACTIONS IN METRIC SPACES AND THEIR FIXED POINT
THEOREMS

In this paper a new generalization of a-type almost-F-contractions and an extension of a-type
F-Suzuki contractions are given. Moreover, some new fixed point theorems of them are discussed.
Some examples and applications in order to illustrate the main results are presented. The results of
this article can be considered as improvements of some well-known results appeared in the litera-
ture.
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1 INTRODUCTION

After innovation of the Banach contraction principle [2], fixed point theory, which was one
of the most celebrated tool in nonlinear analysis, acquires a distinguished role in research ac-
tivity. Due to its applications in the nonlinear integro-differential equations, nonlinear Volterra
integral equations, game theory etc, existence of a fixed point for contraction type mappings
in metric spaces have been considered by many authors. see, for instance, [4,12,13,17,19,22,23]
and the references therein.

During the past decades, scholars extend this principle towards different contractions. Spe-
cially, in 2012, Wardowski [24] generalized it interestingly by introducing a new type of con-
tractions called F-contractions. After presentation of F-contractions, many authors extended
them in various forms. Some extensions and generalizations are obtained in [1,6-11,14-21,25].
Wardowski and Van Dung [25] (also independently Minak et al. [14]) with using Ciri¢-type
generalized contraction [5] in definition of F-contractions, introduced the notion of F-weak
contractions and utilize the same to generalize the main result of [24].

Very recently (in 2016) Gopal et al. [7] generalized it by introducing the concept of a-type
F-contraction. On the other hand, In 2014 Piri and Kumam [16] extended the results of War-
dowski [24] by introducing the concept of an F-Suzuki contraction. Also, in the same year,
Minak et al. [14] introduced a new concept of an almost-F-contraction. Most recently (in 2016)
Budhia et al. [3] introduced the new concepts of an a-type almost-F-contraction and an a-type
F-Suzuki contraction and proved some fixed point theorems concerning such contractions. In
this research, we extended the results of [7] and [3], by introducing a new type of contractions
that is called a-type almost-F-weak contraction and an a-type F-weak Suzuki contraction.
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2 PRELIMINARIES

Here, we express a series of definitions of some fundamental notions.
First, let us, following [24], denote with F the family of all functions F : (0, +c0) — R that
satisfy the following conditions:

(F1) F is strictly increasing,
(F2) for every sequence {a,} in (0, +00), we have lim,_,o F(a,) = —o0 iff lim, o 0y = 0,
(F3) there exists a number k € (0,1) such that lim,_,o+ a*F(a) = —co.

And following [20], denote by G the collection of all functions F : (0, +c0) — R satisfying the
following conditions:

(G1) F is strictly increasing,
(G2) there exists a sequence {ay } in (0, +00) such that lim,_,« F(a,) = —o0, orinf F = —o0,
(G3) F is a continuous map.

Example 1 ([3]). The following functions belong to F:
1

F(o) =Ina, F(a) =Ina+a, Fla)= ~

and the following functions F : (0, +o0) — R belongs to G:

F(a) = Ina, F(a) = —%m, Fla) = —%.

Definition 1 ([24]). Let (X,d) be a metric space. The mapping T : X — X is called an
F-contraction, if there exist F € F and T > 0 such that, for all x,y € X withd(Tx, Ty) > 0, we
have

T+ F(d(Tx, Ty)) < F(d(x,y)).

Example 2 ([24], Example 2.1). It is easy to verify that every Banach contraction is an
F-contraction with F(t) = Int and T = Inr. For more details and examples see [24].

Definition 2 ([25]). Let (X, d) be a metric space. The mapping T : X — X is called an F-weak
contraction on X if there exist F € F and T > 0 such that, for all x,y € X withd(Tx, Ty) > 0,
we have

T+ F(d(Tx, Ty)) < E(m(x,y)),

where

m(x,y) = max {d(x, y),d(x, Tx),d(y, Ty), d(x, Ty) —{2— d(y, Tx) }

Remark 1. Every F-contraction is an F-weak contraction but converse is not necessarily true
[25].

Definition 3 ([25]). Let (X,d) be a metric space and & : X x X — (0,400) U{—0c0} be a
symmetric function. The mapping T : X — X is called an a-type F-contraction on X if there
exist F € F and T > 0 such that, for all x,y € X withd(Tx, Ty) > 0, we have

T+a(x,y)F(d(Tx, Ty)) < F(d(x,y)).
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Definition 4 ([25]). Let (X,d) be a metric space and a« : X x X — (0,+0c0) U{—o0} be a
symmetric function. The mapping T : X — X is called an a-type F-weak contraction on X if
there exist F € F and T > 0 such that, for all x,y € X withd(Tx, Ty) > 0, we have

T+ a(x,y)F(d(Tx, Ty)) < F(m(x,y)),

where

m(x,y) = max {d(x,y), d(x, Tx),d(y, Ty), d(x, Ty) 42— d(y, Tx) }

Remark 2. Every a-type F-contraction is an a-type F-weak contraction but the converse is not
necessarily true.

Remark 3. It is clear that every F-weak contraction is an x-type F-weak contraction with
a(x,y) =1, for all x,y € X. But every a-type F-weak contraction is not necessarily an F-weak
contraction. For example, see ([25], Example 3.4).

Definition 5 ([14]). Let (X,d) be a metric space. The mapping T : X — X is said to be an
almost-F-contraction, if there exist F € F,T > 0 and L > 0 such that for all x,y € X,

d(Tx,Ty) >0 = v+ F(d(Tx, Ty)) < F(d(x,y) + Ld(y, Tx))

and
d(Tx,Ty) >0 = T+ F(d(Tx, Ty)) < F(d(x,y) + Ld(x, Ty)).

Remark 4. Every F-contraction is an almost-F-contraction with L = 0, but the converse is not
necessarily true [14]. Also, it is obvious that every F-weak contraction is an a-type F-weak
contraction with «(x,y) = 1, for all x,y € X, but the converse is not necessarily true. For
examples, see [14].

Definition 6 ([3]). Let (X,d) be a metric space. The mapping T : X — X is said to be an a-type
almost-F-contraction, if there exist F € F and T > 0 and L > 0 such that forallx,y € X,

d(Tx,Ty) >0 = T+ F(d(Tx,Ty)) < F(d(x,y) + Ld(y, Tx))

and
d(Tx,Ty) >0 = T+ F(d(Tx, Ty)) < F(d(x,y) + Ld(x, Ty)).

Remark 5. Every almost-F-contraction is an a-type almost-F-contraction with a(x,y) = 1, for
all x,y € X. But the converse is not necessarily true. For some examples, see [3, Example 3.1].

Definition 7 ([16]). Let (X,d) be a metric space. A mapping T : X — X is said to be an
F-Suzuki contraction if there exist F € G and T > 0 such that for all x,y € X with Tx # Ty

%d(x, Tx) <d(x,y) impliesthat T+ F(d(Tx,Ty)) < F(d(x,y)).
Definition 8 ([3]). Let (X,d) be a metric space and « : X x X — (0,+00) U {—o0} be a sym-
metric function. The mapping T : X — X is said to be an a-type F-Suzuki contraction if there

exist F € G and T > 0 such that for all x,y € X with Tx # Ty

%d(x, Tx) < d(x,y) impliesthat 7+ a(x,y)F(d(Tx,Ty)) < F(d(x,y)).
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Remark 6. Every a-type F-Suzuki contraction is an F-Suzuki contraction with (x,y) = 1, for
all x,y € X. But the converse is not necessarily true. For example, see [3, Example 3.2].

Definition 9 ([19]). Leta : X x X — (0, +o0) be a given mapping. The mapping T : X — X is
said to be an a-admissible, whenever a(Tx, Ty) > 1 provided a(x,y) > 1 and x,y € X.

Definition 10. An a-admissible map T is said to have the K-property, if for each sequence
{xn} € X with a(x,,x,41) > 1, for all n € N, there exists a natural number k such that
a(Txp, Txy) > 1, forallm >n > k.

We state the following lemmas which are useful in proving our main results.

Lemma 1 ([16]). Let F : (0,+00) — R be an increasing function and {«,} be a sequence of
positive real numbers. Then, the following holds:

(a) if limy,_ F(a,) = —oo, then lim, s a, =0,
(b) if inf F = —o0 and limy_,e &y, = 0, then limy,_,o F(a,) = —oo.

Lemma 2 ([4]). Let (X,d) be a metric space, and {x,} be a sequence in X such that
limy o0 d(Xpn, xy11) = 0. If {x,} is not a Cauchy sequence then there exists ¢ > 0 and two
sequences of positive integers {ny} and {my} with ny > my > k such that d(xu,,x, ) > €,
d(Xpy, Xn,—1) < € and

1) limy_ oo d(Xm,, Xn,) = €,

(
(2) limy_yeo d(Xpm,—1,%n,) =&,
(3) Limy—seo d(%Xmy, Xnt1) =&
(4) (

4) limy o d Xre—1s xnk+1) =&

3 MAIN RESULTS

In this section, two new contractions are introduced. In the first part of this section, the
concept of an a-type almost-F-weak contraction is defined in metric spaces. And in the second
part the concept of an a-type F-weak Suzuki contraction is introduced. Some fixed point the-
orems for these contractions are proved and suitable examples are furnished to demonstrate
the validity of the hypotheses of our results and reality of our generalizations.

We commence our main result with the following definition.

Definition 11. Let (X, d) be a metric space and « : X x X — (0, 400) U {—co} be a symmetric
function. The mapping T : X — X is said to be an a-type almost-F-weak contraction (for
simplicity we write almost-a F-weak contraction), if there exist F € F, T > 0 and L > 0 such
thatd(Tx, Ty) > 0 implies that

T+ a(x,y)F(d(Tx, Ty)) < F(m(x,y) + LNy(x,y)),

where

m(x,y) = max {d(x,y),d(x, Tx),d(y, Ty), d(x, Ty) +d(y, Tx) },

2
and
Ni(x,y) = min{d(x, Ty),d(y, Tx)}.
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Example 3. Let X = {(0,0), (0,4), (5,0), (4,5)} be endowed with the metric d defined by

d((xl,xz» (y1/y2)>= 51— | + 72— val

It is easy to see that (X, d) is a complete metric space.
Suppose that T : X — X is defined as follows :

T(0,0) = T(5,0) = T(0,4) = (0,0), T(4,5) = (5,0).

Furthermore, suppose «((x1,x2), (y1,y2)) = 1, for all (x1,x2), (y1,y2) € X. It is easily verified
that, for each F € F, the mapping T is not an a-type almost-F-contraction. Indeed, for any
T > 0andF € F, we have

T4 ((0,4), (4,5)) F (d <T(0,4), T(4,5)> ) = T+F <d<(0,0), (5,0)) ) = T+ F(5).
On the other hand, we have
F<d<(0,4), (4,5)) + Ld<(4,5), T(O,4)>> = F(5).

And T+ F(5) > F(5). So, T is not an a-type almost-F-contraction. But, one can easily see that,
for0 < T <In&and F(t) = Int, ifd(T(xl,xz), T(yl,y2)> > 0 then

e (o) ) ) F (4T, T ) ) < F ({02, G0 )+
(1)
LN ((xlf x2), (y1,y2)> ) ,

where

(), ) ) = max{a( (o mm), () )t (0,02, T ),

d <(x1,x2),T(y1,y2)> +d <(y1,y2),T(x1,x2)>
d((ylfyz)rT(y1/y2)>r }

2

and

N (52, (920 ) = min {3, 50), T, )1 (00,0, 20 )

For example d(T(O,4), T(4,5)> —=d ((0,0), (5,0)) =5 > 0and

m<(0,4), (4,5)) ~ max {d<(0,4), (4,5)>,d<(0,4),T(O,4)>,d<(4,5),T(4,5)>,

d<®ALH&®>+d<M§LHQM>
5 } = max{5,4,6, 22} =9,



480 TAHERI A., FARAJZADEH A.P.

and we have
T4a ((0, 4), (4,5)) F (d(T(O,AL), T(4,5)> ) —T+F(5) < 1n§ +1In5 = Iné.

On the other hand, we have

F(m ((0,4), (4,5)) +LN; ((0,4), (4,5))) = F(9) = In9.

Hence,

T+a<(0,4), (4,5)>F<d<T(O,4),T(4,5)>> < F<m ((0,4), (4,5)) +LN1<(0,4), (4,5))).

Or for (5,0) and (4,5), we have d(T(S, 0), T(4,5)> = d((0,0), (5,0)) =5>0and

m<(5,0),(4,5)> = max{d((S,O),(4,5)),d<(5,0),T(5,0)>,d<(4,5),T(4,5)>,

d <(5,o),r(4,5)> +d <(4,5),T(5,0)>
5 } = max{6,5,6, 2} = 6,

and we have
T+« ((5, 0), (4,5)) F (d(T(S,O), T(4,5)> ) =T1+F(5) < lng +1In5 =1Iné6.
On the other hand, we have
F(m((S,O), (4,5)) + LN1((5,0), (4,5))) = F(6) = Iné6.

Hence,

T+ a<(5,0), (4,5)>F<d <T(5, 0), T(4,5)>> < F<m<(5,0), (4,5)) +LN; ((5, 0), (4,5)) )

In the same manner, we can easily check that (1) is satisfied for (0,0) and (4,5). Therefore, T
is an almost-a F-weak contraction.

Now, we present our first result.

Theorem 1. Let (X, d) be a complete metric space, x : X X X — (0, +0c0) U {—oc0} be a symmet-
ric function, F € F and T : X — X be an almost-x F-weak contraction satisfying the following
conditions:

(i) T is a-admissible,
(ii) there exists xo € X such that a(xg, Txg) > 1,

(iii) if {x,} is a sequence in X such that x, — x asn — oo and a(x,, x,4+1) > 1, foralln € N,
then a(x,,x) > 1, foralln € IN.
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Then, if T or F is continuous then T has a fixed point.
Proof. Let xo € X be such that a(xg, Txp) > 1. For any n € IN, define:
Xpe1 = T(xy).

If xy4+1 = Xp, for some ny € IN then x,, is a fixed point of T. So, we can assume that x,, ;1 # x5,
for each n € IN. Since T is x-admissible, one can easily obtain that

a(xn, xy41) > 1, Vn € N. 2)

Now since T is an almost-aF — weak contraction, there exist T > 0 and L > 0 such that if
d(Tx, Ty) > 0, then

T+ a(x,y)E(d(Tx, Ty)) < F(m(x,y) + LN (x,1)). ©)
Therefore, by (2) and (3)

T+ F(d(Txn, Txpi1)) < T+ a(xn, Xp11)F(d(Txy, Txp41))
< F(m(xn, Xp41) + LN1 (X0, Xn41)) < F(m(xn, Xpi1) + Ld(xp41, Txn))
= F(m(xy, xy+1) +0) = F(m(xn, Xp11)).
Hence, we have
T+ F(d(xXn41, Xn42)) < F(m(xn, Xn41))- (4)
But

A(xn, Xp41),d(xn, Txn), d(xp41, TXnt1),

d(x,, T d T
m(xn, Xy41) = max Gt an)er (s, x”)}

d
max d(xn’ x”Jrl)r d(xn+1, xn+2), W}

) d(xn/xn+1)+d(xn+1rxn+2) }
4 2

IN

max d(xn; xn—i—l)/ d(xn—i—l/ Xn4-2

—

< max{d(xy, Xy 41),d(Xp11, Xn12) }-
Now, if d (X, 11, Xng4+2) > d(Xny, X4y+1) for some ny € IN, then
m(xno,anH) < d(xno+1/xno+2)/
and since F is strictly increasing,
F(m(xno,xn0+1)) < F(d(xno+1rxno+2));
so, it follow from (4)
T+ F(d(xng11, Xng+2)) < F(d(Xug+1, Xngt2))-

So, T < 0is a contradiction. Consequently,

d(Xp41, Xns2) < d(xn, Xpy1), V1 € N. (5)
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Hence, from (4) and (5), we have

T+ P(d(xn+lrxn+2>> < F(d(xn/ anrl))r
or

F(d(xp41, Xn12)) < F(d(xn, Xp41)) — T

In general, one can get

F(d(xn11,xn42)) < F(d(x0,x1)) — 1. (6)

Hence limy,_yo0 F(d(xy, X;11)) = —00. So, from (F,) we have,

nlgrc}o d(xp, xp41) = 0.

Therefore, with notice to (F3), there exists k € (0,1) such that

lim (d (%, Xpi1))¥F(d(x, X41)) = 0.

n—oo

Now, (6) implies that
(d(xn, % 11) ) F(d(xn, Xu11)) < (d(xn, x011)) (F(d(x0, %1)) — n7).
Then, it can be easily seen that

Tim 1(d(xs, %11))* = 0.

So, there exists ny € IN such that
1

=, Vn>n.
nk

d(xp, Xp41) <

Consequently, if m > n > no, then

d(xXn, xm) < L, d(xi, xip1) < Zi:né < YiZu l%
1 1

Since k € (0,1), the series };° 1 is convergent. Therefore, {x,} is a Cauchy sequence, and
ik

since X is complete, there exists u € X such that x, — u as n — oo. We claim that u is a fixed
point of T.
To prove the claim, at first suppose that T is continuous, then we have

u= lim x,11 = lim Tx, = T(u),
n—oo n—oo

and so u is a fixed point of T. Now, suppose that F is continuous and in contrary, suppose
that Tu # u. Without lose of generality, one can assume that there exists nyp € IN such that
Txn # Tu, for all n > ny. (Indeed, if x,, 11 = Tx,, = Tu for infinite values of 1, then uniqueness
of the limit concludes that Tu = u).

From (iii) and (4), we have

T+ F(d(Tx,, Tu)) T+ a(xy, u)F(d(Txy, Tu)) < F(m(xy, 1) + LNy (xy, 1))

F(m(xy,u) 4+ Ld(Tx,,u)) = F(m(x,, u) + Ld(x,41,1))
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And since F is continuous, as n — co we get

T+ F(d(u,Tu)) < F(i}iigo(m(xn,u) + Ld(xy51,1))), (7)
where
m(x,, u) = max {d(xn, u),d(xp, xy41),d(u, Tu), A(xn, Tu) —;d(u, Xni1) },
SO,
nlgrc}o m(x,, u) = max {O, 0,d(u, Tu), W} =d(u, Tu).

Also, we have

nlgrolo Ld(xy41,u) = 0.

Therefore, from (7) we have
T+ F(d(u, Tu)) < F(d(u, Tu)),
which is contradicted by positivity of T . So, d(u, Tu) = 0i.e. Tu = u. O
The next result establishes a sufficient condition for uniqueness of fixed point.

Theorem 2. Let (X,d) be a complete metric space and T : X — X be a mapping for which
there exist F € F and T > 0 and L > 0 such that d(Tx, Ty) > 0 implies that

T+a(xy)F(d(Tx, Ty)) < F(m(x,y) + LN2(x,y)), (8)
where m(x,y) is defined as in Definition 11 and
Na(x,y) = min{d(x, Tx),d(x, Ty),d(y, Tx)}.

We further assume that a(x,y) > 1, for each x,y € Fix(T). Then if T is satisfies the conditions
(i), (ii) and (iii) of Theorem 1 and T or F is continuous, then T has a unique fixed point.

Proof. 1t is clear that T is an almost-a F-weak contraction. So, by Theorem 1, T has a fixed
point.

Now, suppose that u and v are two fixed point of T. If u # v, then d(Tu, Tv) > 0. Also
a(u,v) > 1, because u, v € Fix(T), hence (8) implies that

T+ F(d(u,v)) T+ F(d(Tu, Tv)) < T+ a(u,v)F(d(Tu, Tv))
F(m(u,v) + LN2(u,v)) < F(m(u,v) + Ld(u, Tu))

F(m(u,v) 4+ 0) = F(m(u,v)),

Al

where
d(u,Tv)+d(v,Tu
m(u,v) = max{d(u,’()),d(u,Tu),d(’(J,T’(J),%}

— max{d(x,0),0,0, 2 TACMY _ g0y, 7).

So, we have
T+ F(d(u,v)) < F(d(u,v)),

which is contradicted by positivity of 7. So, u = v. O
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Corollary 1 ([3], Theorem 3.1). Let (X,d) be a complete metric space and T : X — X be an
a-type almost-F-contraction, where F € F, satisfying the following conditions:

(i) T is a-admissible,
(ii) there exists xo € X such that a(xg, Txg) > 1,

(iii) if {x,} is a sequence in X such that x, — x asn — oo and a(xp, x,41) > 1 foralln € N,
then a(x,,x) > 1, foralln € IN.

Then, T has a fixed point.

Proof. 1t is enough to notice that T is an almost-« F-weak contraction in which m(x,y) =
d(x,y). One can prove this corollary by applying the proof of Theorem 1, without needing
to continuity of T or F. O

The following corollaries are some obvious results of Theorem 1.

Corollary 2. Let (X, d) be a complete metric space and T : X — X be an almost F-contraction.
Then, T has a fixed point.

Proof. In Theorem 1, put a(x,y) = 1, foreach x,y € X. O

Corollary 3. Let (X,d) be a complete metric space and T : X — X be an F-contraction. Then,
T has a unique fixed point.

Proof. In the Theorem 1, put a(x,y) = 1, for each x,y € X, and L = 0. O
The following example shows that Theorem 1 is a generalization of the Theorem 3.1 in [3].

Example 4. In the Example 3, we observed that the mapping T is not an a-type almost-F-
contraction. So, T does not satisfy to Theorem 3.1 in [3]. But T is an almost-x F-weak contrac-
tion, and we can easily see that T satisfies all conditions of Theorem 1 and (0, 0) is a fixed point
of T. Also, all conditions of the Theorem 2 are satisfied and (0, 0) is the unique fixed point of
themap T.

Here, to obtain our next results, we first introduce the following definition.

Definition 12. Let (X, d) be a metric space and a : X x X — (0, 400) U {—co} be a symmetric
function. The mapping T : X — X is said to be an x-type F-weak Suzuki contraction (for
simplicity we write & F-weak Suzuki contraction) if there exists F € G and T > 0 such that for
all x,y € X with Tx # Ty,

%d(x, Tx) <d(x,y) impliesthat T+ a(x,y)F(d(Tx,Ty)) < F(m(x,y)),

where m(x,y) is defined as in Definition 11.

Example 5. Let X = {0,1,2} be endowed with the metric d defined by

d(x,y) =[x —y|.
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And T : X — X is defined as follows
T(1)=T(2)=1 and T(0) =2.

Furthermore, suppose thata(x,y) = 1, forall x,y € X. It is easily verified that, foreach F € F,
the mapping T is not an a-type F-Suzuki contraction. Indeed, for any T > 0 and F € F, we
have

%d(o, TO) = %d(o,z) —1=d(0,1),

and
T+wa(0,1)F(d(T0,T1)) = t+ F(d(2,1)) = T+ F(1).

On the other hand, we have
F(d(0,1)) = F(1).

And T+ F(1) > F(1). So, T is not an a-type F-Suzuki contraction. But one can easily see that,
for0 < 7 <In2andF(t) = Int, ifd(Tx, Ty) # 0 then

%d(x, Tx) <d(x,y) impliesthat T+ a(x,y)F(d(Tx,Ty)) < F(m(x,y)), 9)

where m(x,y) is defined as in Definition 11. For example, d(T(0),T(1)) = d(2,1) = 1 and

m(0,1) = max {d(O, 1),d(0, T0),d(1, T1), d(0,T1) +d(1,T0) }

=2,
2

and we have
T+a(0,1)F(d(T0,T1)) =7t+ F(1) <In2+Inl=1In2.

On the other hand, we have
F(m(0,1)) = F(2) =In2.

Hence,
T+ w(0,1)F(d(T0,T1)) < F(m(0,1)).

In the same manner, we can easily check that (9) is satisfied for x = 0,y = 2. Therefore, (9) is
satisfied for any x,y € X whichd(Tx, Ty) # 0. So, T is an « F-weak Suzuki contraction.

Theorem 3. Let (X,d) be a complete metric space and T : X — X be an a F-weak Suzuki
contraction, satistying the following conditions:

(i) T is a-admissible,
(ii) there exists xo € X such that a(xg, Txg) > 1,

(iii) if {x,} is a sequence in X such that x, — x asn — oo and «(x,,x,+1) > 1, for all
n € NU{0}, then a(x,,x) > 1, foralln € NU {0},

(iv) T has the K-property.

Then, T has a fixed point in X.
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Proof. Let xo € X be such that a(xg, Txp) > 1. For any n € IN U {0}, define:
Xp1 = T(xn).
Since T is a-admissible, one can easily obtain that
a(xp, Xp41) >1, Vn € NU{0}. (10)

If X4y41 = Xy, for some ny € IN U {0}, then x,, is a fixed point of T. So, we can assume that
Xpi1 # X foreachn € N U {0}, i.e. d(xy, x,,+1) > 0 and so

1 1
Ed(xn, Txn) = Ed(xn,xnﬂ) < d(xn, Xp41)- (11)

Now, since T is an a« F-weak Suzuki contraction, there exist F € G and T > 0 such that if
d(Tx, Ty) > 0, then

%d(x, Tx) <d(x,y) impliesthat T+ a(x,y)F(d(Tx,Ty)) < F(m(x,y)), (12)

where m(x, y) is defined as in Definition 11.
Therefore, by (11) and (12)

T+ F(d(Txy, TXp11)) T+ a(xy, Xp01)F(d(Txn, Txpi1))

F(m (X, Xs1)), 13)

[VANRVAN

in which

m(xn’ xn+1) — max {d(xn, anrl), d(xn, Txn), d(xn+1, Txn+1), d(xn,Txn+1)-£d(xn+1,Txn) }

d
= max {d(xn, Xni1), A(Xni1, Xns2), W }

d d
< max {d(xn,xn+1),d(xn+1,xn+2), (x”’x”“Hz(x"“'x””)}

< max{d(xy, X, 41),d(Xp11, Xn12) }-
Now, if d(Xp, 11, Xny+2) = d(Xny, Xny+1) for some ng € IN U {0}, then
M (Xng, Xng41) < d(Xng41, Xng42),
and since F is strictly increasing,
F(m(xny, Xny+1)) < F(d(Xpg+1, Xno+2))-

Therefore by (13)
T+ F(d(xﬂoJrl/ xn0+2)) < F(d(xno+1r xno+2>>'

So, T < 0 a contradiction. Consequently,

d(Xp41, Xns2) < d(xn, Xpy1), ¥n € N. (14)
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Therefore,
m(xn, Xp41) < d(xn, x,41), ¥Yn € NU{0}.

So, from (13) and (14) one can obtain that

T+ F(d(Xpq1, Xn42)) < F(d(xn, Xp41)),

or
F(d(xn41, Xn42)) < F(d(xn, Xp11)) — T.

In general, one can get
F(d(xpq1,xn42)) < F(d(x0,x1)) — nt.

Hence,

JE)I(}OF(d(xn’ xn+1)) = —o0,

which together with (G2) and Lemma 1, gives

lim d(x, X11) = 0.
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(15)

Now, we claim that {x, } is a Cauchy sequence. If it is not true, then by Lemma 2, there exists
ep > 0 and two sequences of positive integers {ny} and {m;} with n; > my > k such that

d(Xpy, Xn,) > €0, A(Xmy, Xn—1) < €0 and
Ll hmk%ood xnerTka> = €0,
L2

(
limy 0 d(xnk/ xmk—l) = €0,
(

(L1)
(L2)
(L3) limy_yeo d(Xy,41, Xm,) = €0,

(L4) limyyeo d(Xp+1, Xmy—1) = €0

Therefore, with notice to definition of m(x, y) we have:

lm m(xp, Xp—1) = lim max < d(xp, X —1), d(Xn, Xnp11), (-1, Xmy),

k—o0 k—o0
d(xnermk +d(xmk711xnk+1))

gote
> } = max{gg, 0,0, 252

So

I}L)r&m(xnermk 1) = €o.

(16)

On the other hand, since limy_,o d(Xy,, X —1) = €0 > 0, and limy_, d(xp,, X, +1) = O, by
considering a subsequence if necessary, one can assume that, there exists k; € IN such that for

any k > ki and ng > my > k

d(xnk/ xnk+1) S d(x}’lk/ xmk—l)-
So, it is clear that

1
2

1
—d(xpn,, Txn,) = Ed(xnk,xnkﬂ) < d(xn, Xm—1), Yk > ki and ng > my > k.

(17)
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Also, using the K-property, there exists k, € IN such that
& (X, Xpy—1) > 1, Vk > ko. (18)
Let k > max{kq, ky}, then from (18), (17) and (12) we have

T+F(d(Tx”k’xmk—1)) S T+a(xnkl xmk—l)F(d(Txnk/Txmk—l))
< F(m(xnk/xmk—l))'

Letting n — oo, since F is continuous, by (L1) and (16) we have
T+ F(So) < F(S()),

which is a contradiction, as T > 0. Consequently, {x,} is a Cauchy sequence in the complete
metric space X. So, there exists u € X such that x, — u, as n — co. To complete the proof, we
show that u is a fixed point of T. At first, we claim that, foralln > 0

1 1
5, Xn41) < d(xn,u) or Sd(Xn1, Xnr2) < d(Xnpr,u). (19)

In fact, if for some 1y > 0, both of them are false then we will have

1 1
Ed(xno,xnoﬂ) > d(xp,,u) and Ed(xn0+1,xn0+2> > d(Xpy41,1).

So, with notice of (14) we have
d(xnol x”oJrl) < d(xn()/ u) =+ d(ur xi’loJrl) < %d(x?lol xn0+1> + %d(xn0+1/ xn0+2>
< %d(xnorxnoJrl) + %d(xnorxnoqu) = d(x?lorxnoJrl)'

Which is a contradiction and the claim is proved.
Well, let us begin with the first part of (19), i.e. suppose that

1
50 (xn, Xi1) < d(xn, 1),

and in contrary, assume that Tu # u. Without lose of generality, one can assume that Tx,, # Tu,
forall n € IN. (Indeed, if x,,+1 = Tx,, = Tu for infinite values of n, then uniqueness of the limit
concludes that Tu = u). Then, from (14) and (iii) we get

T+ F(d(xy41, Tu)) T+ F(d(Txy, Tu))

< T+ a(x,, u)F(d(Tx,, Tu)) < F(m(x,,u)),
and since F is continuous on (0, +c0) and d(u, Tu) > 0 as n — oo, we get
T+ F(d(u, Tu)) < F(nh_{n m(xn, u)). (20)

But

m(xy, u) = max {d(xn, ), d(xn, Xni1),d(u, Tu), d(xy, Tu) +d(u, x,41) }

2

So, we have

lim m(x,, u) = max {O, 0,d(u, Tu), W} =d(u, Tu).

n—o0
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Therefore, if d(u, Tu) # 0 then from (20) we have
T+ F(d(u,Tu)) < F(d(u, Tu)),
which is contradicted by positivity of T. So, d(u, Tu) = 0, i.e. Tu = u. Finally, if we assume

that the second part of (19) is true, i.e.

1
Ed(xn-i-l/ xﬂ+2) < d(xn+1/ u)'
Then, as the same manner, we can prove that d(u, Tu) = 0, i.e. Tu = u. O

The next result establishes a sufficient condition for uniqueness of fixed point of an « F-
weak Suzuki contraction.

Theorem 4. Suppose that all the conditions of Theorem 3 are satisfied. In addition, assume
that a(x,y) > 1, for all x,y € Fix(T). Then, T has a unique fixed point.

Proof. Suppose that u and v are two fixed point of T. If u # v, then d(Tu, Tv) > 0. Also
a(u,v) > 1, because u,v € Fix(T). Also, it is clear that 1d(u, Tu) = 0 < d(u,v). Hence, (12)
implies that

T+ F(d(u,v)) = T+ F(d(Tu,Tv)) < v+ a(u,v)F(d(Tu, Tv)) < F(m(u,v)),

where
m(u,v) = max{d(u,v),d(u,Tu),d(U,TU),W}

= max{d(u,0),0,0, W} =d(u,v).
So, we have

T+ F(d(u,v)) < F(d(u,0)),

which is a contradiction, as T > 0. So, u = v. O

Since each a-type F-Suzuki contraction is obviously an & F-weak Suzuki contraction, the
following two corollaries are elementary results of Theorems 3 and 4 respectively.

Corollary 4 ([3], Theorem 3.3). Let (X,d) be a complete metric space and T : X — X be an a-
type F-Suzuki contraction, satistying the conditions (i)—(iv) of Theorem 3. Then, T has a fixed
point.

Corollary 5 (3], Theorem 3.4). If in the Corollary 4, we further assume that «(x,y) > 1, for all
x,y € Fix(T), then T has a unique fixed point.

The following example shows that Theorem 3 is a generalization of Theorem 3.3 in [3].

Example 6. In the Example 5, we saw that the mapping T is not an a-type F-Suzuki contraction.
So, T does not satisty to Theorem 3.3 in [3]. But T is an « F-weak Suzuki contraction, and we
can easily see that T satisfies all conditions of Theorem 3. And u = 1 is a fixed point of T. Also,
all conditions of Theorem 4 are satisfied and u = 1 is the unique fixed point of T.
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4 CONSEQUENCES

In this section, one of the consequences of our research in metric spaces with graph is
introduced. First, we remind a series of definitions and notions in graph theory.

Let (X, d) be a metric space and A = {(x,x),x € X}. Suppose that G is a graph, V(G) is
the set of all its vertices and E(G) is the set of all edges of G. We say that G has no parallel
edge, if (x,y), (v, x) € E(G) implies that x = y. Also G is directed if the edges have a direction
associated with them. We denoted by G(X) the set of all directed graph G with no parallel
edge in which V(G) = X and A C E(G).

Definition 13 ([9]). The mapping T : X — X is called G-continuous, if for each sequence
{x,}$> 1 in X that (x4, x,41) € E(G) Vn € N and x, — x asn — oo one can conclude that
Tx, — Tx asn — oo.

Theorem 5. Let (X,d) be a complete metric space endowed with a graph G € G(X) and
T : X — X be a mapping with the following conditions:

(i) forallx,y € X, (x,y) € E(G) = (Tx,Ty) € E(G),
(ii) there exists xy € X such that (xy, Txg) € E(G),

(iii) for any sequence {x,}° ; € X and x € X if limy . X, = x and (x,, X,+1) € E(G), for
alln € N, then (x,,x) € E(G), foralln € N,

(iv) there existF € F,and T > 0 and L > 0 such that if (x,y) € E(G) and d(Tx, Ty) > 0 then
T+ F(d(Tx, Ty)) < F(m(x,y) + LN1(x,y)), (21)
where m(x,y) and Ni(x,y) are defined as in Definition 11.

Then, if T is G-continuous or F is continuous, then T has a fixed point.

Proof. Define a : X x X — (0, +00) U {—o0} by
1, if (x,y) € E(G),
. (x,y) € E(G)

—o0, otherwise.

We show that all condition of Theorem 1 are satisfied. First, prove that T is a-admissible, it is
enough to notice that if a(x,y) > 1, then (x,y) € E(G) and it follows from (i) that (Tx, Ty) €
E(G). Hence, a(Tx,Ty) > 1. By (ii) there exists xo € X such that (xp, Txg) € E(G) i.e.
a(xp, Txp) > 1. Now, suppose that {xn};l’ll C X is asequence in X such that x, = xasn — oo
and a(x,, x,41) > 1, for all n € N, Then, (x,,x,11) € E(G) and it follows from (iv) that
(xn,x) € E(G), foralln € N, i.e. a(xy,x) > 1, foralln € NU {0}. Finally, we show that T
is an almost-a F-weak contraction on X. For this, suppose that x,y € X and d(Tx, Ty) > 0. If
(x,y) ¢ E(G), then a(x,y) = —o0 and so we have

© (o, y)E(@(Tx, Ty)) < F(m(x,y) + LNy (x,9)).
If (x,y) € E(G), then a(x,y) = 1 and it follows from (21) that
T+ a(x,y)F(d(Tx, Ty)) = v+ F(d(Tx, Ty)) < F(m(x,y) + LN1(x,y)).

Thus, T is an almost-a F-weak contraction on X. It follow from all the conditions of Theorem
1 are satisfied and T has a fixed point in X. O
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The following result is immediately deduced from Theorem 5.

Corollary 6 ([6], Theorem 4.1). Let (X, d) be a complete metric space endowed with a graph
G € G(X) and T : X — X be a mapping with the following conditions:

(i) forallx,y € X, (x,y) € E(G) = (Tx,Ty) € E(G),

(ii) there exists xy € X such that (xg, Txy) € E(G),

(iii) for any sequence {x,}° ; € X and x € X if limy X, = x and (x,, x,41) € E(G), for

alln € IN, then (x,,x) € E(G), foralln € IN or T is G-continuous.

(iv) there exist F € F, T > 0and L > 0 such thatif (x,y) € E(G) and d(Tx, Ty) > 0 then

T+ F(d(Tx, Ty)) < F(d(x,y) + LNy(x,y)).

Then, T has a fixed point.
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Taxepi A., ®apaaxaare A.IL Hosa xapakmepusayia matisce-F-cmucky a-muny i F-Cysyki cmucky a-
MUnY 6 MeMpUUHUX NPOCIOpPAx i meopemu npo ¢ixcosary mouxy 019 Hux // Kapmnarcbki MaTeM. my6a.
—2019. — T.11, N22. — C. 475-492.

Y miit cTaTTi 3apONOHOBAHO HOBe y3araAbHeHHsI Mavbke-F-cTucKy a-Tumy i mpoaosxeHHs F-
Cy3syxki ctucky a-tymy. Kpim Toro, A0BeaeHO Aesiki HOBi TeopeMut IIpo (piKCOBaHY TOUKY AAST WX
BrIIaAKiB. HaBeaeHO mpMKAaaM i 3aCTOCYBaHHsI, SIKi IAFOCTPYIOTh OCHOBHI pe3yAbTaTi. PesyabraTi
1Ii€i CTaTTi HOKPAIIYIOTh Pe3yAbTaTH, sIKi A0bpe BiaOMi ¥ AiTepaTypi.

Kntouosi cnosa i ppasu: mavixe-F-ctyek a-tvmy, F-Cysyxi cTmck a-Tuy.



