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ON ADDITIVITY OF DERIVATIONS

Let R be a ring and M be an R-bimodule. A mapping d : R → M (not necessarily additive)

is called multiplicative derivation of R if d(xy) = d(x)y + xd(y) for all x, y ∈ R. In this paper, we

intend to establish the additivity of d under some suitable restrictions. Moreover, we introduce

multiplicative semi-derivations of rings and discuss their additivity.
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INTRODUCTION

All through this paper, R denotes an associative ring (not necessarily with unity). A map-

ping d : R → R is called a derivation of R if for any x, y ∈ R

d(x + y) = d(x) + d(y) (1)

and d(xy) = d(x)y + xd(y). (2)

If d satisfies (2) but not necessarily (1), then d is called a multiplicative derivation of R (see

[3]). In [2] Bergen extended the notion of a derivation by introducing semi derivation of a ring.

Accordingly, a semi derivation (d, g) of a ring R is an additive mapping d : R → R associated

with a ring endomorphism g of R such that d(xy) = d(x)y + g(x)d(y) = d(x)g(y) + xd(y)

and d(g(x)) = g(d(x)) for all x, y ∈ R. Clearly, every derivation is a semi derivation but the

converse is not true always. We denote the Lie commutator xy − yx by the symbol [x, y]. A

non-zero element e ∈ R is said to be idempotent if e2 = e and by a non-trivial idempotent we

mean an idempotent element e different from the multiplicative identity of R. Let M be an

R−bimodule and e1 ∈ R be a non-trivial idempotent element. For any x ∈ M ∪ R we shall

write x(1 − e1) instead of x − xe1, (1 − e1)x instead of x − e1x and e2 instead of (1 − e1). Then

we set Rij = eiRej and Mij = eiMej, where i, j ∈ {1, 2}. Therefore, R and M can be factorized as

follows: R = R11
⊕

R12
⊕

R21
⊕

R22 and M = M11
⊕

M12
⊕

M21
⊕

M22. This representation

of R and M is called Peirce decomposition relative to e1 (see [ [5], pg. 48]). Further, the following

are some well-known facts related to this decomposition of R:

(i) RijRjk ⊆ Rik, where i, j, k ∈ {1, 2}.

(ii) RijRkl = 0, where j 6= k, and i, j, k, l ∈ {1, 2}.
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(iii) x2
ij = 0 for all xij ∈ Rij, where i 6= j and i, j ∈ {1, 2}.

The structure of rings is tightly connected with the additive mapping like isomorphisms,

derivations, centralizers etc. Therefore, the problem of exploring the conditions under which

these mappings become additive on rings (or algebras) has naturally grown as a fascinating

area of research and has been attracted many algebraists for the last six decades. In this direc-

tion, Martindale [8] considered the so called problem “When a multiplicative mapping is addi-

tive?" He gave a remarkable technique and established a set of conditions on a ring that forces

a multiplicative isomorphism to be additive. In particular, every multiplicative isomorphism

from a prime ring containing a non-trivial idempotent onto any ring is additive. Inspired by

this, Daif [3] obtained the additivity of multiplicative derivations of rings and consequently

introduced the notion of multiplicative derivations. After that a number of results has been

obtained in associative as well as alternative rings and algebras (see [4, 6, 7, 9–11]) and refer-

ences therein). Recently, Wang [11] explored the additivity of n−multiplicative isomorphisms

and n−multiplicative derivations of rings. As a consequence, one may deduce the theorem of

Martindale and theorem of Daif from corollary 3.1 and 3.3 of [11] respectively. In this paper,

we will continue the study of analogue problems for some derivable mappings on associative

rings.

1 MAIN RESULTS

1.1 Additivity of multiplicative derivations

In view of Peirce decomposition, we see that any mapping δ : R → M can be expressed as

δ(x) = δ11(x) + δ12(x) + δ21(x) + δ22(x)

for all x ∈ R, where δij : R → Mij be a mapping defined as x 7→ eixej for all i, j ∈ {1, 2}. For

any x, y ∈ R, we have x = x11 + x12 + x21 + x22 and y = y11 + y12 + y21 + y22. Further,

xy = (x11y11 + x12y21) + (x11y12 + x12y22) + (x21y11 + x22y21) + (x21y12 + x22y22).

Now, we extend the notion of multiplicative derivation of a ring R as follows:

Definition 1. Let R be a ring (not necessarily with unity) and M be a bimodule over R. A

mapping d : R → M (not necessarily additive) is said to be a multiplicative derivation of R into

M if d(xy) = d(x)y + xd(y) for all x, y ∈ R.

Since d(e1) ∈ M11
⊕

M21
⊕

M12
⊕

M22 i.e., d(e1) = m11 + m12 + m21 + m22, where mij ∈

Mij for all i, j ∈ {1, 2}. Also d(e1) = d(e2
1) = d(e1)e1 + e1d(e1). By using the value of d(e1)

we obtain that m11 = 0 = m22 and hence d(e1) ∈ M12
⊕

M21. For some fixed x ∈ M and

z ∈ R, we define a function f : R → M by a 7→ [z, x]a + a[x, z]. Clearly, f is a derivation. Fix

x = m12 + m21 and z = e1. Re-defining f as a 7→ [e1, m12 + m21]a + a[m12 + m21, e1]. Thus, we

have

f (e1) = [e1, m12 + m21]e1 + e1[m12 + m21, e1]

= (m12 − m21)e1 + e1(m12 − m21) = −m12 − m21 = −d(e1).
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Hence, ( f + d)(e1) = 0. We set f + d = D. That means D(e1) = 0. Now, we have the following

relations:

D11(xy) = D11(x)y11 + x11D11(y) + D12(x)y21 + x12D21(y), (3)

D12(xy) = D11(x)y12 + D12(x)y22 + x11D12(y) + x12D22(y), (4)

D21(xy) = x21D11(y) + D21(x)y11 + x22D21(y) + D22(x)y21,

D22(xy) = x21D12(y) + D21(x)y12 + D22(x)y22 + x22D22(y).

Further, it is easy to check that Dij(e1) = 0 and Dij(xy) = Dij(x)y + xDij(y) for all i, j ∈ {1, 2}.

Lemma 1. Let R be a ring (not necessary with unity) and M be a bimodule over R. Suppose

that R contains a non-trivial idempotent e1 such that for any m ∈ M, the following are satisfied:

(H1) e1me1R12 = (0) implies e1me1 = 0,

(H2) e1me2R22 = (0) implies e1me2 = 0,

(H3) e1me2R21 = (0) implies e1me2 = 0.

Then D11 and D12 are additive.

Proof. Firstly, we shall show that D11 is additive on R11
⊕

R12
⊕

R22 and that D12 is additive

on R11
⊕

R12
⊕

R21. We begin with

D11(x11 + x12 + x21 + x22) = e1D(x11 + x12 + x21 + x22)e1 = e1D((x11 + x12 + x21 + x22)e1)e1

= e1D(x11 + x21)e1 = D11(x11 + x21).

That is

D11(x11 + x12 + x21 + x22) = D11(x11 + x21). (5)

In particular, we have

D11(x11 + x12 + x22) = D11(x11). (6)

For any y12 ∈ R12, we have D11(x12)y12 = D11(x12y12) − x12D11(y12) = 0. That means

D11(x12)R12 = (0). By (H1), we obtain D11(x12) = 0 for all x12 ∈ R12. Likewise D11(x22)R12

= (0) for all x22 ∈ R22. Again by (H1), we find D11(x22) = 0 for all x22 ∈ R22. Now, we can

rewrite (6) as

D11(x11 + x12 + x22) = D11(x11) + D11(x12) + D11(x22).

It means that D11 is additive on R11
⊕

R12
⊕

R22. On the other hand, for any r ∈ R, we find

that

(D12(x11 + x12 + x21 + x22)− D12(x12 + x22))r

= D12(x11 + x12 + x21 + x22)r − D12(x12 + x22)r

= D12(x11 + x12 + x21 + x22)(r21 + r22)− D12(x12 + x22)(r21 + r22)

= D12((x11 + x12 + x21 + x22)(r21 + r22))− (x11 + x12 + x21 + x22)

D12(r21 + r22)− D12((x12 + x22)(r21 + r22)) + (x12 + x22)D12(r21 + r22)

= −(x11 + x21)D12(r21 + r22) = −(x11 + x21)e1D12(r21 + r22)

= −(x11 + x21)D12(e1(r21 + r22)) + (x11 + x21)D12(e1)(r21 + r22) = 0.



456 SANDHU G. S., KUMAR D.

Hence (D12(x11 + x12 + x21 + x22)− D12(x12 + x22))R = (0). In particular, (D12(x11 + x12 +

x21 + x22)− D12(x12 + x22))R22 = (0). By (H2), we find

D12(x11 + x12 + x21 + x22) = D12(x12 + x22).

Consequently

D12(x11 + x12 + x21) = D12(x12). (7)

Now, for any z22 ∈ R22, we get D12(x11)z22 = D12(x11z22)− x11D12(z22) = −x11e1D12(z22) =

−x11D12(e1z22) + x11D12(e1)z22 = 0. That is D12(x11)R22 = (0) for all x11 ∈ R11. Thus we may

apply hypothesis (H2), which forces that D12(x11) = 0 for all x11 ∈ R11. In the similar manner,

we find that D12(x21)R22 = (0) for all x21 ∈ R21. Again applying (H2), we get D12(x21) = 0 for

all x21 ∈ R21. Thus expression (7) assures that D12 is additive on R11
⊕

R12
⊕

R21.

We now proceed to show that D11 is additive on R21 and D12 is additive on R22. For any

x, y ∈ R, we have

D11(xy) = D11((x11 + x12 + x21 + x22)(y11 + y12 + y21 + y22))

= D11((x11y11 + x12y21) + (x21y11 + x22y21) + (x11y12 + x12y22)

+(x21y12 + x22y22)) = D11((x11y11 + x12y21) + (x21y11 + x22y21))( using (5) ).

and

D11(x)y11 + x11D11(y) + D12(x)y21 + x12D21(y) = D11(x11 + x21)y11

+ x11D11(y11 + y21) + D12(x12 + x22)y21 + x12D21(y11 + y21).

Now, relation (3) can be expressed as

D11((x11y11 + x12y21) + (x21y11 + x22y21)) = D11(x11 + x21)y11

+ x11D11(y11 + y21) + D12(x12 + x22)y21 + x12D21(y11 + y21).
(8)

In particular, putting x11 = 0 = x12 in (8), we obtain

D11(x21y11 + x22y21) = D11(x21)y11 + D12(x22)y21. (9)

It follows that

D11(x21y11) = D11(x21)y11, D11(x22y21) = D12(x22)y21. (10)

Thus, (9) can be written as

D11(x21y11 + x22y21) = D11(x21y11) + D11(x22y21). (11)

Replacing y11 by x12y21 and x22 by z21x12 in (11), we get

D11(x21x12y21 + z21x12y21) = D11(x21x12y21) + D11(z21x12y21),

D11((x21 + z21)x12y21) = D11((x21)(x12y21)) + D11((z21)(x12y21)).

Application of (10) yields that

D11(x21 + z21)x12y21 = D11(x21)(x12y21) + D11(z21)(x12y21).
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That is,

(D11(x21 + z21)− D11(x21)− D11(z21))R12R21 = (0).

Application of (H3) and (H1) respectively yields

D11(x21 + z21) = D11(x21) + D11(z21) for all x21, z21 ∈ R21.

From (10), we have D12(x22)y21 = D11(x22y21). Therefore

D12(x22 + z22)y21 = D11((x22 + z22)y21) = D11(x22y21 + z22y21)

= D11(x22y21) + D11(z22y21) = D12(x22)y21 + D12(z22)y21.

It implies that

(D12(x22 + z22)− D12(x22)− D12(z22))R21 = (0).

We may apply (H3) in order to obtain D12(x22 + z22) = D12(x22) + D12(z22). Hence, D12 is

additive on R22.

Next, we shall show that D11 is additive on R11 and D12 is additive on R11. It is straight

forward to check that, for any x12, y12 ∈ R12

(D11(x12 + y12)− D11(x12)− D11(y12))R12 = (0).

Thus, hypothesis (H1) forces D11(x12 + y12) = D11(x12) + D11(y12). Let r12 ∈ R12. Then

D11(x11 + y11)r12 = D11((x11 + y11)r12)− (x11 + y11)D11(r12) = D11(x11r12 + y11r12)

− x11D11(r12)− y11D11(r12) = D11(x11r12) + D11(y11r12)− x11D11(r12)− y11D11(r12)

= D11(x11)r12 + D11(y11)r12.

That is (D11(x11 + y11)− D11(x11)− D11(y11))r12 = 0 for all r12 ∈ R12. Again we apply (H1) in

order to obtain

D11(x11 + y11) = D11(x11) + D11(y11) for all x11, y11 ∈ R11.

In like manner, for any r21 ∈ R21, we see (D12(x11 + y11)− D12(x11)− D12(y11))r21 = 0. Thus

(D12(x11 + y11) − D12(x11) − D12(y11))R21 = (0). On utilizing (H3), D12 is additive on R11.

Further, we consider

(D12(x12 + y12)− D12(x12)− D12(y12))r21 = D12(x12 + y12)r21 − D12(x12)r21 − D12(y12)r21

= D12(x12r21 + y12r21)− D12(x12r21)− D12(y12r21) = 0.

Therefore, we obtain (D12(x12 + y12) − D12(x12) − D12(y12))R21 = (0). Hypothesis (H3)

yields

D12(x12 + y12) = D12(x12) + D12(y12).

Now, we are well occupied to prove that D11 and D12 are additive on R. Observe that, as

per the results derived above it is enough to show that D11(x11 + x21) = D11(x11) + D11(x21)

and D12(x12 + x22) = D12(x12) + D12(x22).

Firstly, note that

D21(y) = D21(y11 + y12 + y21 + y22) = e2D(y11 + y12 + y21 + y22)e1

= e2D((y11 + y12 + y21 + y22)e1)e1 = e2D(y11 + y21)e1 = D21(y11 + y21).
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and

(D22(x11 + x12 + x21 + x22)− D22(x12 + x22))r

= D22(x11 + x12 + x21 + x22)(r21 + r22)− D22(x12 + x22)(r21 + r22)

= D22((x11 + x12 + x21 + x22)(r21 + r22))− (x11 + x12 + x21 + x22)D22(r21

+r22)− D22((x12 + x22)(r21 + r22)) + (x12 + x22)D22(r21 + r22) = 0.

Let us rewrite expression (4) as

D12((x11y12 + x12y22) + (x21y12 + x22y22)) = D11(x11 + x21)y12

+ D12(x12 + x22)y22 + x11D12(y12 + y22) + x12D22(y12 + y22).
(12)

In particular, we put x12 = 0 = x21 in (12), we find

D12(x11y12 + x22y22) = D11(x11)y12 + D12(x22)y22 + x11D12(y12 + y22). (13)

On substituting x11 = e1, y12 = z12y22 in (13), we get

D12((z12 + x22)y22) = D11(e1)z12y22 + D12(x22)y22 + e1D12(z12y22 + y22)

= D12(x22)y22 + D12(e1(z12y22 + y22))− D12(e1)(z12y22 + y22)

= D12(x22)y22 + D12(z12y22) = D12(x22)y22 + D12(z12)y22.

That gives

D12((z12 + x22)y22) = D12(z12)y22 + D12(x22)y22. (14)

We next put y12 = 0 = x11 in (12), we get

D12((x12 + x22)y22) = D12(x12 + x22)y22 + x12D22(y22). (15)

On combining (14) and (15), it follows that

D12(x12 + x22)y22 + x12D22(y22) = (D12(z12) + D12(x22))y22.

On substituting y22 = y21t12 in the above expression in order to obtain

(D12(z12) + D12(x22))y21t12 = D12(x12 + x22)y21t12 + x12D22(y21t12)

= D12(x12 + x22)y21t12 + x12D22(y21)t12 + x12y21D22(t12) = D12(x12 + x22)y21t12.

That is (D12(x12 + x22) − D12(z12)− D12(x22))y21t12 = 0 for all y21 ∈ R21 and t12 ∈ R12.

Thus (D12(x12 + x22) − D12(z12) − D12(x22))R21R12 = (0). An application of (H1) and (H3)

successively yields D12(z12 + x22) = D12(z12) + D12(x22). Moreover, we put x12 = 0 = y22 in

(14) in order to obtain

D11(x11 + x21)y12 + x11D12(y12) = D12(x11y12 + x21y12)

= D12(x11y12) + D12(x21y12).
(16)

It follows that

D12(x11y12) = D11(x11)y12 + x11D12(y12), D12(x21y12) = D11(x21)y12. (17)

By utilizing (17) in (16), we find (D11(x11 + x21)− D11(x11)− D11(x21))y12 = 0 for all y12 ∈ R12.

That means (D11(x11 + x21)− D11(x11)− D11(x21))R12 = (0). By (H1), we get D11(x11 + x21) =

D11(x11) + D11(x21).
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Analogously, we can prove the following lemma:

Lemma 2. Let R be a ring (not necessary with unity) and M be a bimodule over R. Suppose

that R contains a non-trivial idempotent e1 such that for any m ∈ M, the following are satisfied:

(H4) e2me2R21 = (0) implies e2me2 = 0,

(H5) e2me1R11 = (0) implies e2me1 = 0,

(H6) e2me1R12 = (0) implies e2me2 = 0.

Then D21 and D22 are additive.

Since D = D11 + D12 + D21 + D22, Lemma 1 and Lemma 2 proves our main result:

Theorem 1. Let R be a ring and M be a bimodule over R. If e1 is a non-trivial idempotent in R

such that for all m ∈ M the conditions (H1)-(H6) hold. Then every multiplicative-derivation

d : R → M is additive.

Recall that R is said to be a prime ring if aRb = (0) implies either a = 0 or b = 0 and

is called semiprime if aRa = (0) for all a ∈ R. Let R be a semiprime ring and Q be the two

sided Martindale quotient ring of R. The maximal left ring of quotients (also called left Utumi

quotient ring) of R is denotes by Qml . The center C of Q is called the extended centroid of R. If

R happens to be prime, then C is a field. Moreover, the extended centroid C of R coincides with

the center of Qml and is reduced in the sense that C does not have nonzero nilpotent elements.

For more information of these objects, we refer the reader to [1]. As an application of Theorem

1, we obtain the following consequent results:

Corollary 1. Let R be a semiprime ring containing a non-trivial idempotent e. Suppose that for

any a ∈ Qml the following holds:

(I) e1ae1Re2 = (0) implies e1ae1 = 0,

(II) e2ae2Re1 = (0) implies e2ae2 = 0.

Then any multiplicative-derivation d : R → Qml is additive.

Proof. Let a ∈ Qml be an element such that eiaejRek = (0) for all i, j, k ∈ {1, 2}. We have the

following possible cases:

Case 1. If i = k, then we have (eiaejRei)aej = 0. It yields that eiaej = 0 for all i, j ∈ {1, 2}.

Case 2. Suppose that j = k. In the view of proposition 2.1.7 (ii) of [1], there exist a dense left

ideal D of R such that Deia ⊆ R. It implies that (Deiaej)R(Deiaej) ⊆ (Deiaej)Rej = (0). It

follows that Deiaej = (0) for all i, j ∈ {1, 2}. With the aid of proposition 2.1.7 (iii) of [1], we

obtain eiaej = 0 for all i, j ∈ {1, 2}.

Case 3. In latter case i = j. By our hypothesis eiaeiRek = (0) implies eiaei = 0 for all i ∈ {1, 2}.

Now, we see that the condition (H1)-(H6) hold here. Therefore, d is additive by Theorem 1.

In case R is a prime ring, every derivation d : R → Qml is additive automatically, since if

for any q1, q2 ∈ Qml , q1Rq2 = (0) implies q1 = 0 or q0 = 0. Thus, we obtain

Corollary 2. Let R be a prime ring containing a non-trivial idempotent e. Then every multipli-

cative-derivation d : R → Qml is additive.
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1.2 Additivity of multiplicative semi-derivations

In [8] Martindale give a set of conditions that are sufficient for the additivity of ring iso-

morphisms. Precisely, he proved that “Let R be a ring containing a family {eλ : λ ∈ Λ} of

idempotents satisfying (Martindale’s conditions)

(I) xR = (0) implies x = 0,

(II) If for each λ ∈ Λ, eλRx = (0), then x = 0 (hence Rx = (0) implies x = 0),

(III) If eλxeλR(1 − eλ) = (0) for each λ ∈ Λ, then eλxeλ = 0.

Then any multiplicative isomorphism of R onto an arbitrary ring S is additive”. It is natural

to think of a unified notion of multiplicative derivation and a semi derivation. In view of this

idea, we now give the notion of multiplicative semi-derivation, as follows:

Definition 2. Let R be a ring. A mapping g : R → R (not necessarily additive) defined by

g(xy) = g(x)g(y) for all x, y ∈ R is called a multiplicative homomorphism of R. Then the

mapping δ : R → R (not necessarily additive) together with g is called multiplicative semi-

derivation of R if

δ(xy) = δ(x)g(y) + xδ(y) = δ(x)y + g(x)δ(y).

holds for all x, y ∈ R.

Example 1. Let R = {

(

u v

0 w

)

: u, v, w ∈ R}, where R denotes the field of real numbers.

Define a mapping g : R → R by g

(

u v

0 w

)

=





u 0

0 det

(

u v

0 w

)



 , which is clearly a

ring endomorphism of R. Now, it can be easily verified that δ = g − I is the multiplicative

semi-derivation of R.

In this section, our aim is to obtain the additivity of multiplicative semi-derivations of rings

under certain conditions. Precisely, we obtain the following result:

Theorem 2. Let R be a ring satisfying Martindale’s conditions (I)-(III). If d : R → R is a

multiplicative semi-derivation of R associated with a multiplicative isomorphism g : R → R,

then d is additive.

Let us define a function ϕ : R × R → R that ϕ(x, y) = d(x + y) − d(x) − d(y), where d is

a multiplicative semi-derivation of R. Clearly, ϕ is a well-define mapping and ϕ(x, 0) = 0 =

ϕ(0, x) for all x ∈ R. Now, it is clear that d is additive if and only if ϕ = 0. This observation

motivated the technique opted in this paper. We prove Theorem 2 through a sequence of

lemmas.

Lemma 3. For any x, y, k ∈ R, kϕ(x, y) = ϕ(kx, ky) and ϕ(x, y)k = ϕ(xk, yk).

Proof. In the view of [ [8], Theorem], g must be additive on R. For any x, y, k ∈ R, we have

ϕ(kx, ky) = d(k(x + y)) − d(kx) − d(ky) = d(k)g(x + y) + kd(x + y) − d(k)g(x) − kd(x) −

d(k)g(y) − kd(y) = k(d(x + y)− d(x) − d(y)) = kϕ(x, y). On the other hand, let us consider

ϕ(xk, yk) = d((x + y)k) − d(xk) − d(yk) = d(x + y)k + g(x + y)d(k) − d(x)k − g(x)d(k) −

d(y)k − g(y)d(k) = (d(x + y)− d(x)− d(y))k = ϕ(x, y)k.
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Lemma 4. ϕ(xii, xjk) = 0 = ϕ(xjk, xii); j 6= k, where i, j, k ∈ {1, 2}.

Proof. In case i = j. For any ril ∈ Ril, we find ϕ(xii, xjk)ril = ϕ(xiiril, xjkril) = ϕ(zil , 0) = 0 for

all i, j, , k, l ∈ {1, 2}, by Lemma 3. For any rkl ∈ Rkl, we have ϕ(xii, xjk)rkl = ϕ(xiirkl, xjkrkl) =

ϕ(0, wjl) = 0 for all i, j, k, l ∈ {1, 2}. Since i = j 6= k, it implies ϕ(xii, xjk) R = (0). By

hypothesis (I), we obtain ϕ(xii, xjk) = 0. In the latter case, we assume i 6= j. For any rmi ∈ Rmi,

we have rmi ϕ(xii, xjk) = ϕ(rmixii, rmixjk) = ϕ(zmi, 0) = 0 for all i, j, k, m ∈ {1, 2}. Similarly,

we may infer that rmj ϕ(xii, xjk) = 0 for all rmj ∈ Rmj and i, j, k, m ∈ {1, 2}. Combining these

relation, we get Rϕ(xii, xjk) = (0). By hypothesis (II), we get ϕ(xii, xjk) = 0. Hence, we conclude

that ϕ(xii, xjk) = 0 for all j 6= k and i, j, k ∈ {1, 2}. Analogously, we obtain ϕ(xjk, xii) = 0 for all

j 6= k and i, j, k ∈ {1, 2}.

Lemma 5. ϕ(x12, y12) = 0.

Proof. Clearly, e1ϕ(x12, y12) = ϕ(e1x12, e1y12) = ϕ(x12, y12) and ϕ(x12, y12)e1 = ϕ(x12e1, y12

e1) = ϕ(0, 0) = 0. It implies that ϕ(x12, y12) ∈ R12. Therefore, ϕ(x12, y12)a11 = 0 and

ϕ(x12, y12)a12 = 0 for all a11 ∈ R11, a12 ∈ R12. Now for any a21 ∈ R21, we have

ϕ(x12, y12)a21 = ϕ(x12a21, y12a21) = ϕ(x12(a21 + y12a21), e1(a21 + y12a21))

= ϕ(x12, e1)(a21 + y12a21) = 0 (using Lemma 4).

In the similar way, we can show that ϕ(x12, y12)a22 = 0 for all a22 ∈ R22. Combining all these

relations, we get ϕ(x12, y12)R = (0). Hence, ϕ(x12, y12) = 0 by condition (I).

Lemma 6. ϕ(x11, y11) = 0.

Proof. Under the influence of Lemma 3, it is easy to see that ϕ(x11, y11) ∈ R11. For any a12 ∈

R12, we have ϕ(x11, y11)a12 = ϕ(x11a12, y11a12) = ϕ(y12, z12) = 0 by Lemma 5. That means

ϕ(x12, y12)R12 = (0). (18)

Since ϕ(x11, y11) ∈ R11, so ϕ(x11, y11) = e1ϕ(x11, y11)e1. From Eq. (18), we get ϕ(x11, y11)R12

= e1ϕ(x11, y11)e1R(1 − e1) = (0). By condition (III), we obtain e1 ϕ(x11, y11)e1 = 0 and hence

ϕ(x11, y11) = 0.

Lemma 7. ϕ(x11 + x12, y11 + y12) = 0.

Proof. For any a11 ∈ R11 and a12 ∈ R12 we see that ϕ(x11 + x12, y11 + y12)a11 = ϕ(x11a11, y11

a11) = 0 by Lemma 6, and ϕ(x11 + x12, y11 + y12)a12 = ϕ(x11a12, y11a12) = 0 by Lemma 5. By

repeating same arguments and utilization of Lemma 5, 6 we get ϕ(x11 + x12, y11 + y12)a21 = 0

for all a21 ∈ R21 and ϕ(x11 + x12, y11 + y12)a22 = 0 for all a22 ∈ R22. Add up all these equations

in order to find ϕ(x11 + x12, y11 + y12)R = (0). Hence, ϕ(x11 + x12, y11 + y12) = 0 by hypothesis

(I).

Proof of Theorem 2: By Lemma 7, ϕ(u, v) = 0 for all u, v ∈ e1R. For any x, y, r ∈ R, we have

e1rϕ(x, y) = ϕ(e1rx, e1ry) = 0. Since e1 was arbitrary member chosen from the family {eλ :

λ ∈ Λ}, so we must have eλRϕ(x, y) = (0) for all λ ∈ Λ. By our hypothesis (II), we find that

ϕ(x, y) = 0 for all x, y ∈ R.
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Нехай R — деяке кiльце i M — деякий R-бiмодуль. Вiдображення d : R → M (не обов’яз-

ково адитивне) називається мультиплiкативним диференцiюванням кiльця R, якщо d(xy) =

d(x)y + xd(y) для всiх x, y ∈ R. У цiй статтi ми намагаємось встановити адитивнiсть d при

деяких додаткових обмеженнях. Крiм того ми вводимо мультиплiкативне напiвдиференцiю-

вання кiльця i обговорюємо його адитивнiсть.

Ключовi слова i фрази: диференцiювання, мультиплiкативне диференцiювання, мультиплi-

кативне напiвдиференцiювання кiльця, адитивнiсть, розклад Пiрса.


