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ON ADDITIVITY OF DERIVATIONS

Let R be a ring and M be an R-bimodule. A mapping d : R — M (not necessarily additive)
is called multiplicative derivation of R if d(xy) = d(x)y + xd(y) for all x,y € R. In this paper, we
intend to establish the additivity of d under some suitable restrictions. Moreover, we introduce
multiplicative semi-derivations of rings and discuss their additivity.
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INTRODUCTION

All through this paper, R denotes an associative ring (not necessarily with unity). A map-
ping d : R — Riis called a derivation of R if for any x,y € R

d(x +y) = d(x) +d(y) @
and d(xy) = d(x)y + xd(y). ()

If d satisfies (2) but not necessarily (1), then d is called a multiplicative derivation of R (see
[3]). In [2] Bergen extended the notion of a derivation by introducing semi derivation of a ring.
Accordingly, a semi derivation (d, ) of a ring R is an additive mapping d : R — R associated
with a ring endomorphism g of R such that d(xy) = d(x)y + g(x)d(y) = d(x)g(y) + xd(y)
and d(g(x)) = g(d(x)) for all x,y € R. Clearly, every derivation is a semi derivation but the
converse is not true always. We denote the Lie commutator xy — yx by the symbol [x,y]. A
non-zero element ¢ € R is said to be idempotent if > = e and by a non-trivial idempotent we
mean an idempotent element e different from the multiplicative identity of R. Let M be an
R—bimodule and e; € R be a non-trivial idempotent element. For any x € M U R we shall
write x(1 — e1) instead of x — xeq, (1 — e1)x instead of x — e;x and e; instead of (1 — e1). Then
we set R;j = ¢;Rej and M;; = e;Me;, where i, j € {1,2}. Therefore, R and M can be factorized as
follows: R = Rq11 @ R12 @ Ro1 @ Rop and M = My @ Mip @ My @ M. This representation
of R and M is called Peirce decomposition relative to ey (see [[5], pg. 48]). Further, the following
are some well-known facts related to this decomposition of R:

(i) Rz’jR]’k C Rjx, where i,j,k S {1,2}.
(11) Rinkl =0, wherej 7é k, and i,j, k1 e {1, 2}
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(iii) xiz]. = 0 for all x;; € R;j, where i # jand i,j € {1,2}.

The structure of rings is tightly connected with the additive mapping like isomorphisms,
derivations, centralizers etc. Therefore, the problem of exploring the conditions under which
these mappings become additive on rings (or algebras) has naturally grown as a fascinating
area of research and has been attracted many algebraists for the last six decades. In this direc-
tion, Martindale [8] considered the so called problem “When a multiplicative mapping is addi-
tive?" He gave a remarkable technique and established a set of conditions on a ring that forces
a multiplicative isomorphism to be additive. In particular, every multiplicative isomorphism
from a prime ring containing a non-trivial idempotent onto any ring is additive. Inspired by
this, Daif [3] obtained the additivity of multiplicative derivations of rings and consequently
introduced the notion of multiplicative derivations. After that a number of results has been
obtained in associative as well as alternative rings and algebras (see [4, 6,7,9-11]) and refer-
ences therein). Recently, Wang [11] explored the additivity of n—multiplicative isomorphisms
and n—multiplicative derivations of rings. As a consequence, one may deduce the theorem of
Martindale and theorem of Daif from corollary 3.1 and 3.3 of [11] respectively. In this paper,
we will continue the study of analogue problems for some derivable mappings on associative
rings.

1 MAIN RESULTS

1.1 Additivity of multiplicative derivations

In view of Peirce decomposition, we see that any mapping d : R — M can be expressed as
6(x) = 011 (x) + b12(x) + 021 (x) + d22(x)

for all x € R, where §;; : R — M;; be a mapping defined as x + e;xe; for all i,j € {1,2}. For
any x,y € R, we have x = x11 + x12 + x21 + x22 and y = y11 + y12 + Y21 + y22. Further,

xy = (x11y11 + x12921) + (X11y12 + X12y22) + (x21y11 + X20¥21) + (X21Y12 + X22Y22)-
Now, we extend the notion of multiplicative derivation of a ring R as follows:

Definition 1. Let R be a ring (not necessarily with unity) and M be a bimodule over R. A
mapping d : R — M (not necessarily additive) is said to be a multiplicative derivation of R into
M ifd(xy) = d(x)y + xd(y) forall x,y € R.

Since d(el) € M1 P My M1 P My ie., d(el) = my + mip + Moy + mpy, where mjj €
M;; for all i,j € {1,2}. Also d(e;) = d(e?) = d(e)er + e1d(eq). By using the value of d(e;)
we obtain that mj;; = 0 = myp and hence d(e;) € Mip @ My;. For some fixed x € M and
z € R, we define a function f : R — M by a — [z,x]a + a[x,z]. Clearly, f is a derivation. Fix
X = myp + My and z = e1. Re-defining f as a — [61,71’[12 + 71121]{1 + a[m12 + 11121,61]. Thus, we
have

f(er) = [e1, mip + mp)er + e1[min + myy, eq]

= (mpp —mor)er +e1(myp —mp) = —myp — my = —d(ey).
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Hence, (f +d)(e1) = 0. We set f +d = D. That means D(e;) = 0. Now, we have the following
relations:

D11(xy) = D11(x)y11 + x11D11(y) + D12(x)y21 + x12D21 (), (3)
D1a(xy) = D11(x)y12 + D12(x)y22 + x11D12(y) + x12D22(y), (4)
Dy (xy) = x21D11(y) + D21 (x)y11 + x22D21(y) + Do (x)y21,

Dy (xy) = x21D12(y) + D21(x)y12 + Do (x)y2 + x20Dxn(y).
Further, it is easy to check that D;;(e;) = 0 and D;;(xy) = D;;(x)y + xDj;(y) for alli,j € {1,2}.

Lemma 1. Let R be a ring (not necessary with unity) and M be a bimodule over R. Suppose
that R contains a non-trivial idempotente; such that for any m € M, the following are satistied:

(H1) eyme Ry = (0) implies eyme; = 0,
(H2) eymeyRyp = (0) implies eymep = 0,
(H3) eymeyRy1 = (0) implies eymep = 0.
Then Dy and Dy are additive.

Proof. Firstly, we shall show that D1 is additive on Ry1 @ Rix @ Rao and that Dy, is additive
on Ry; @ Ri2 @ Ry1. We begin with

D11(x11 + x12 + X21 + X22) = erD(x11 + X12 + X21 + x22)e1 = erD((x11 + x12 + x21 + X22)e1)ex
= e1D(x11 + x21)er = D11 (x11 + x21).
That is
D11 (x11 + x12 + X21 + X20) = D11(x11 + %21)- 5)
In particular, we have
D11(x11 + x12 + x22) = D11(x11). (6)

For any y12 € Ry, we have Diy(x12)y12 = Di1(x12y12) — x12D11(y12) = 0. That means
Dll (x12)R12 = (0) By (Hl), we obtain Dll (Xlz) = 0 for all X12 € RlZ- Likewise Dll (sz)Rlz
= (0) for all xp» € Rpy. Again by (H1), we find Dj1(x2) = 0 for all xpp € Rp. Now, we can
rewrite (6) as

D11 (x11 + x12 + x22) = D11(x11) + D11(x12) + D11(x22).

It means that D1y is additive on Ry; @ Ry @ Ry. On the other hand, for any r € R, we find
that

(D12(x11 + X12 + X21 + x22) — D12(x12 + x22))7
= D1a(x11 + x12 + x21 + x22)7 — D12(x12 + x22)7
D12 (x11 + x12 + x21 + x22) (r21 + 122) — D12(x12 + x22) (121 +722)
= Dra((x11 + x12 + x21 + %22) (r21 +722)) — (%11 + X12 + X21 + X22)
D1a(ra1 +122) — D1a((%12 + x22) (21 + 722)) + (x12 + x22) D12(721 + 722)
= —(x11 + x21)D12(r21 +r22) = —(x11 + x21)e1D12(r21 + 122)
= —(x11 + x21)D12(e1(ra1 +722)) + (%11 + x21) D12(e1) (r21 +r22) = 0.
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Hence (D12 (x11 + x12 + %21 + X22) — D12(%12 + x22) )R = (0). In particular, (D1p(x11 + x12 +
X21 + x22) — D12(x12 + x22) )R = (0). By (H2), we find

D1p(x11 + x12 + X1 + x22) = D12 (%12 + x22).

Consequently
D1a(x11 4 x12 + x21) = D12(x12). (7)

Now, for any zp € Rop, we get D1p(x11)222 = D12(x11222) — X11D12(222) = —x11€1D12(222) =
—X11D12(€1222) + x11D12(el)zzz = 0. That is Dlz(xll)Rzz = (O) for all X11 € Rll- Thus we may
apply hypothesis (H2), which forces that D15(x11) = 0 for all x1; € Ryp. In the similar manner,
we find that D15 (x21)Roo = (0) for all xp1 € Rp1. Again applying (H2), we get D15(xp1) = 0 for
all xp; € Rp;. Thus expression (7) assures that D1, is additive on Ry; @ Rz @ Rp;.

We now proceed to show that Dj; is additive on Rp; and Dy, is additive on Ry,. For any
x,y € R, we have

Dy1(xy) = D11((x11 + x12 + %21 + x22) (Y11 + Y12 + Y21 + Y22))
= D1y1((x11y11 + x12v21) + (x21y11 + X20Y21) + (*¥11Y12 + X12Y22)
+(x21v12 + x2Y22)) = D11((x11y11 + X12¥21) + (X21y11 + X202Y21) ) ( using (5) ).

and

D11 (x)y11 + x11D11(y) + D12(x)y21 + x12D21(y) = D11(x11 + x21)y11
+ x11D11(y11 + y21) + D12(x12 + x22)y21 + X12D21 (Y11 + Y21)-

Now, relation (3) can be expressed as

D11 ((x11y11 + x12y21) + (221¥11 + X22Y21)) = D11(x11 + %21)y11

+ x11D11(y11 + y21) + D12(x12 + x22)y21 + x12D21 (Y11 + Y21)- ®
In particular, putting x;; = 0 = x1 in (8), we obtain
D11 (x21y11 + x22y21) = D11(x21)y11 + D12(x22)y21- )
It follows that
Dy1(x21y11) = Dun(x21)y11,  D1a(x22y21) = D1a(x22)ym- (10)
Thus, (9) can be written as
D11 (x21y11 + x22y21) = D11(x21y11) + D11 (x22y21)- (11)

Replacing y11 by x12y21 and xp; by z1x12 in (11), we get

D11 (x21%12Y21 + 221X1221) = D11 (x21x12Y21) + D11 (221%12Y21),
D11 ((x21 4 z21)x12y21) = D11((x21)(x12Y21)) + D11((221) (X12Y21) ).

Application of (10) yields that

D11 (x21 + 221)x12Y21 = D11(x21) (X12Y21) + D11(221) (X12Y21)-
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That is,
(D11(x21 4 221) — D11(x21) — D11(221))R12R21 = (0).

Application of (H3) and (H1) respectively yields
D11(x21 +z21) = D11(x21) + D11(za1) forall xa1,221 € Roy.

From (10), we have D15(x22)y21 = D11(x22¥21). Therefore

Dip(x22 +z22)y21 = Di1((x2 + z2)y21) = D11(x22y21 + 22221)
= Di1(x22y21) + D11(220¥21) = D12(x22)y21 + D12(222)y21.

It implies that
(D12(x22 +2z22) — D12(x22) — D12(222))Ro1 = (0).

We may apply (H3) in order to obtain D1y(x22 + z22) = Dia(x22) + D12(z22). Hence, Dy; is
additive on Ry).

Next, we shall show that Dj; is additive on Ry; and Dy, is additive on Ry;. It is straight
forward to check that, for any x13,y12 € Ry»

(D11(x12 +y12) — D11(x12) — D11(y12))Ri2 = (0).

Thus, hypothesis (H1) forces D11 (x12 + y12) = D11(x12) + D11(y12)- Let r12 € Ryp. Then

D11 (x11 +y11)r12 = D11 ((x11 + y11)r12) — (x11 + y11) D11 (r12) = D11 (x11712 + y11712)
— x11D11(r12) — y11D11(r12) = D1i(x11712) + D11 (y11r12) — x11D11(r12) — y11 D11 (r12)
= D11(x11)r12 + D11(y11)712-

That is (D11(x11 +y11) — D11(%11) — D11(y11))r12 = O for all 11 € Ryp. Again we apply (H1) in
order to obtain

D11(x11 +v11) = D11(x11) + D11(y11) for all x11,y11 € Rys.

In like manner, for any 71 € R21, we see (Dlz(xll + yll) - Dlz(xll) - DlZ(yll))rﬂ = 0. Thus
(Dlz(xll + yll) - Dlz(xll) - DlZ(]/ll))Rﬂ = (0) On utilizing (H3), D12 is additive on Rll-
Further, we consider

(D12(x12 +y12) — D12(x12) — D12(y12))721 = D12(x12 + y12)721 — D12(x12)721 — D12(y12)721
= D12(x12721 + y12r21) — D12(x12721) — D12(y12721) = 0.
Therefore, we obtain (D1(x12 + y12) — D12(x12) — D12(y12))R21 = (0). Hypothesis (H3)
yields
D12(x12 + y12) = D12(x12) + D12(y12)-
Now, we are well occupied to prove that Dj; and Dj; are additive on R. Observe that, as
per the results derived above it is enough to show that Dy1(x11 + x21) = D11(x11) + D11(%x21)

and Dyp(x12 + x22) = D12(x12) + D12(x22).
Firstly, note that

D21(y) = Da1(y11 + y12 + y21 + y2) = e2D(y11 + y12 + y21 + y22)er
= e;D((y11 + y12 + y21 + y22)er)er = e2D(y11 + y21)er = Doi(y11 + va1)-
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and
(Da2 (11 + x12 + x21 + x22) — Do (12 + x22) )7
= Dy (x11 + x12 + %21 + x22) (21 + 122) — Do (%12 + x22) (121 + 122)
= Dop((x11 + x12 + x21 + x22) (21 + 722)) — (X171 + X120 + X21 + X22) D2 (721

+722) — Do ((x12 + x22) (121 + 722)) + (xX12 + x22) D2a (121 + 122) = 0.

Let us rewrite expression (4) as

D1p((x11y12 + x12y22) + (22112 + X22Y22)) = D11(%11 + X21)Y12
+ D1 (x12 + x22)y22 + x11D12 (Y12 + ¥22) + X12D22 (Y12 + Y22).

In particular, we put x1, = 0 = xp; in (12), we find

(12)

D12 (x11y12 + x22y22) = D11(x11)y12 + D12(x22)y22 + *11 D12 (Y12 + ¥22)- (13)
On substituting x1; = €1, y12 = z12y22 in (13), we get
D12((z12 + x22)y22) = Di1(e1)z12y22 + D12(x22)y22 + e1D12(z12y22 + Y22)
= D1a(x22)y22 + D12(e1(z12y22 + ¥22)) — D12(e1)(z12y22 + y22)
= D12(x22)y22 + D12(z12Y22) = D12(x22)y22 + D12(212)y22-
That gives
D12((z12 + x22)y22) = D12(212)y22 + D12 (x22)y20- (14)
We next put y1p = 0 = x1; in (12), we get
D1a((x12 + x22)y22) = D1a(x12 + x22)y22 + x12D2(y22)- (15)
On combining (14) and (15), it follows that

D1p(x12 + x22)y22 + x12D22(y22) = (D12(212) + D12(x22) )y20.

On substituting y22 = y21t12 in the above expression in order to obtain

(D12(z12) + D12(x22))y21t12 = D1a(x12 + x22)y21t12 + X12D22 (Y21 t12)
= D1p(x12 + x22)y21t12 + ¥12D20 (Y21) t12 + X12y21 D22 (t12) = D12(x12 + X22)y21t10.
That is (Dlz(xlz + Xzz) — D12(212) — Dlz(X22))y21i'12 = 0 for all yp; € Ry and t15 € Ryp.
Thus (D12(x12 + x22) — D12(212) — D12(x22))R21R12 = (0). An application of (H1) and (H3)
successively yields D1p(z12 + X22) = D12(2z12) 4+ D12(x22). Moreover, we put x5 = 0 = yzp in
(14) in order to obtain

D11 (x11 + x21)y12 + x¥11D12(y12) = D1a(x11¥12 + X21Y12) (16)
= D1a(x11¥12) + D12(x21Y12)-

It follows that

D12(x11y12) = D11(x11)y12 + x11D12(y12),  D1a(x21¥12) = D11(x21)y12- (17)
By utilizing (17) in (16), we find (D11 (x11 + x21) — D11(x11) — D11(X21))y12 = O for all y1» € Ry.
That means (D11 (x11 + x21) — D11(x11) — D11(%21))R12 = (0). By (H1), we get D11 (x11 + x21) =
D11(x11) + D11(x21). O
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Analogously, we can prove the following lemma:

Lemma 2. Let R be a ring (not necessary with unity) and M be a bimodule over R. Suppose
that R contains a non-trivial idempotente; such that for any m € M, the following are satistied:

(H4) e;me;Ry1 = (0) implies epmep = 0,
(H5) e;me1Rq1 = (0) implies epme; = 0,
(H6) e;me1Rq = (0) implies epmep = 0.
Then D5 and D5, are additive.
Since D = Dy + D1y + Dy 4 D2y, Lemma 1 and Lemma 2 proves our main result:

Theorem 1. Let R be a ring and M be a bimodule over R. If e is a non-trivial idempotent in R
such that for all m € M the conditions (H1)-(H6) hold. Then every multiplicative-derivation
d : R — M is additive.

Recall that R is said to be a prime ring if aRb = (0) implies either a = 0 or b = 0 and
is called semiprime if aRa = (0) for all @ € R. Let R be a semiprime ring and Q be the two
sided Martindale quotient ring of R. The maximal left ring of quotients (also called left Utumi
quotient ring) of R is denotes by Q,,;. The center C of Q is called the extended centroid of R. If
Rhappens to be prime, then C is a field. Moreover, the extended centroid C of R coincides with
the center of Q,,; and is reduced in the sense that C does not have nonzero nilpotent elements.
For more information of these objects, we refer the reader to [1]. As an application of Theorem
1, we obtain the following consequent results:

Corollary 1. Let R be a semiprime ring containing a non-trivial idempotent e. Suppose that for
any a € Q,, the following holds:

(I) ejae1Rey; = (0) implies eqae; =0,
(II) epaepReq = (0) implies epae; = 0.
Then any multiplicative-derivationd : R — Q,,; is additive.

Proof. Leta € Q, be an element such that e;ae;Re; = (0) for all 7,j,k € {1,2}. We have the
following possible cases:

Case 1. If i = k, then we have (e¢;ae;Re;)ae; = 0. It yields that e;ae; = 0 for all i, j € {1,2}.

Case 2. Suppose that j = k. In the view of proposition 2.1.7 (ii) of [1], there exist a dense left
ideal D of R such that De;a C R. It implies that (De;aej)R(De;ae;) C (Dejaej)Re; = (0). It
follows that De;ae; = (0) for all i,j € {1,2}. With the aid of proposition 2.1.7 (iii) of [1], we
obtain ¢;ae; = 0 for all i,j € {1,2}.

Case 3. In latter case i = j. By our hypothesis e;ae;Re; = (0) implies e;ae; = 0 for all i € {1,2}.
Now, we see that the condition (H1)-(H6) hold here. Therefore, d is additive by Theorem 1. [

In case R is a prime ring, every derivation d : R — Q,,; is additive automatically, since if
for any g1, 92 € Qui, 1Rq2 = (0) implies g1 = 0 or qo = 0. Thus, we obtain

Corollary 2. Let R be a prime ring containing a non-trivial idempotent e. Then every multipli-
cative-derivationd : R — Q,,; is additive.
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1.2 Additivity of multiplicative semi-derivations

In [8] Martindale give a set of conditions that are sufficient for the additivity of ring iso-
morphisms. Precisely, he proved that “Let R be a ring containing a family {e) : A € A} of
idempotents satisfying (Martindale’s conditions)

(I) xR = (0) implies x = 0,
(IT) If for each A € A, e,Rx = (0), then x = 0 (hence Rx = (0) implies x = 0),
(II) IfepxeyR(1 —ey) = (0) foreach A € A, then eyxe, = 0.

Then any multiplicative isomorphism of R onto an arbitrary ring S is additive”. It is natural
to think of a unified notion of multiplicative derivation and a semi derivation. In view of this
idea, we now give the notion of multiplicative semi-derivation, as follows:

Definition 2. Let R be a ring. A mapping ¢ : R — R (not necessarily additive) defined by
g(xy) = g(x)g(y) for all x,y € R is called a multiplicative homomorphism of R. Then the
mapping 6 : R — R (not necessarily additive) together with g is called multiplicative semi-
derivation of R if

(xy) = 6(x)g(y) +x6(y) = 6(x)y + g(x)é(y)-
holds for all x,y € R.

Example 1. Let R = {( ! ZJ > : u,v,w € R}, where R denotes the field of real numbers.

u 0
Define a mapping § : R —+ R byg< ! Z) ) = ( 0 det ( u v ) ), which is clearly a
0 w

ring endomorphism of R. Now, it can be easily verified that 6 = g — I is the multiplicative
semi-derivation of R.

In this section, our aim is to obtain the additivity of multiplicative semi-derivations of rings
under certain conditions. Precisely, we obtain the following result:

Theorem 2. Let R be a ring satisfying Martindale’s conditions (I)-(IlI). If d : R — R is a
multiplicative semi-derivation of R associated with a multiplicative isomorphism g : R — R,
then d is additive.

Let us define a function ¢ : R x R — R that ¢(x,y) = d(x +y) —d(x) —d(y), where d is
a multiplicative semi-derivation of R. Clearly, ¢ is a well-define mapping and ¢(x,0) = 0 =
¢(0,x) for all x € R. Now, it is clear that d is additive if and only if ¢ = 0. This observation
motivated the technique opted in this paper. We prove Theorem 2 through a sequence of
lemmas.

Lemma 3. Forany x,y,k € R, ko(x,y) = ¢(kx,ky) and ¢(x,y)k = ¢(xk, yk).

Proof. In the view of [ [8], Theorem], ¢ must be additive on R. For any x,y,k € R, we have
p(kx, ky) = d(k(x +y)) —d(kx) —d(ky) = d(k)g(x +y) + kd(x +y) —d(k)g(x) — kd(x) —
d(k)g(y) —kd(y) = k(d(x +y) —d(x) —d(y)) = k¢(x,y). On the other hand, let us consider
¢(xk,yk) = d((x +y)k) —d(xk) —d(yk) = d(x +y)k + g(x +y)d(k) —d(x)k — g(x)d(k) —
d(y)k —g(y)d(k) = (d(x +y) —d(x) —d(y))k = ¢(x,y)k. O
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Lemma 4. ¢(x;;, xjx) = 0= ¢(xj, x;i); ] # k, wherei, j,k € {1,2}.

Proof. In case i = j. For any r;; € Ry, we find ¢(x;;, xjx)ryy = @(xiiriy, Xjxrit) = ¢(z,0) = 0 for
alli,j, k1 € {1,2}, by Lemma 3. For any ryy € Ry, we have ¢(x;;, Xjx)rin = @(Xiitw, Xjxta) =
@(0,wj;) = 0 for all i,j,k, 1 € {1,2}. Since i = j # k, it implies ¢(x;;,x3) R = (0). By
hypothesis (I), we obtain ¢(x;;, x]-k) = 0. In the latter case, we assume i # j. For any r,,; € Ry,
we have 7,,;¢(xii, Xj) = @("miXii, TmiXjx) = @(zmi,0) = 0 for all i,j,k,m € {1,2}. Similarly,
we may infer that r,,;¢(x;;, xjx) = 0 for all r,;; € Ryj and i,j,k,m € {1,2}. Combining these
relation, we get Rg(x;;, xjx) = (0). By hypothesis (II), we get ¢ (x;;, x;x) = 0. Hence, we conclude
that ¢(x;;, xjx) = 0 forall j # kand i,j,k € {1,2}. Analogously, we obtain ¢(xj, x;;) = 0 for all
j#kandi,j k € {1,2}. O

Lemma 5. ¢(x12,y12) = 0.

Proof. Clearly, e19(x12,y12) = ¢(e1x12,€1912) = @(x12, ¥12) and @(x12,y12)e1 = @(x121, Y12
61) = q)(O, 0) = 0. It implies that q)(xlz, ]/12) € Rjpp. Therefore, go(xlz, ylz)ﬂll = 0 and
gD(Xlz, ]/12)&12 = 0 for all a17 € Rq1,a12 € Rqp. Now for any ap; € R»1, we have

¢(x12,¥12)a21 = @(X12021, Y12021) = @(X12(a21 + Y12021), €1(a21 + Y12421))
= ¢(x12,€1)(a21 + y12a21) =0 (using Lemma 4).

In the similar way, we can show that ¢(x12,y12)a2 = 0 for all ay; € Ry. Combining all these
relations, we get ¢(x12,y12)R = (0). Hence, ¢(x12,y12) = 0 by condition (I). O

Lemma 6. q)(xll,yll) =0.

Proof. Under the influence of Lemma 3, it is easy to see that ¢(x11,¥11) € Ryi1. For any aj, €
Rqp, we have ¢(x11,y11)a12 = ¢(X11412, ¥y11412) = ¢(Y12,212) = 0 by Lemma 5. That means

@(x12,y12)R12 = (0). (18)

Since ¢(x11,Y11) € Ri1, 50 @(x11,y11) = e1@(x11,y11)e1. From Eq. (18), we get ¢(x11, y11)R12
= e19(x11,y11)e1R(1 — e1) = (0). By condition (III), we obtain e;¢(x11,¥11)e1 = 0 and hence

¢(x11,y11) = 0. -
Lemma 7. ¢(x11 + x12, 11 + y12) = 0.

Proof. For any a17 € Ry1 and ajp € Ryp we see that ¢(x11 + x12, 11 + Y12)a11 = @(X11411, Y11

a11) = 0 by Lemma 6, and ¢(x11 + x12, 11 + Y12)a12 = ¢(x11412, Y11412) = 0 by Lemma 5. By
repeating same arguments and utilization of Lemma 5, 6 we get ¢(x17 + x12, y11 + Yy12)a21 =0
forall ay; € Ryp and ¢(x11 + X12, Y11 + Y12)a = 0 for all ay; € Ry. Add up all these equations
in order to find ¢(x11 + x12, y11 + ¥12)R = (0). Hence, ¢(x11 + x12, y11 + y12) = 0 by hypothesis
). 0

Proof of Theorem 2: By Lemma 7, ¢(u,v) = 0 for all u,v € e;R. For any x,y,r € R, we have
e1re(x,y) = ¢(e1rx,e;ry) = 0. Since e; was arbitrary member chosen from the family {e, :
A € A}, so we must have eyRe(x,y) = (0) for all A € A. By our hypothesis (II), we find that
¢(x,y) =0forall x,y € R. O
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Hexait R — aesike kinblle i M — aestkmii R-6iMoayAb. Biaobpaxkenss d : R — M (He 060B’s13-
KOBO aAUTMBHE) Ha3UBAETHCSI MYABTUIAIKATUBHUM AV(PEPEHIIIIOBAHHSIM KiABLS R, SIKIIO d(xy) =
d(x)y + xd(y) aast Bcix x,y € R. VY it cTaTTi My HaMaraéMoch BCTAHOBUTY AAMTUBHICTG d IIpu
AESIKMX AOMATKOBMX O6MexxeHHsIX. KpiM TOro mMu BBOAMMO MYABTUIIAIKATHBHE HaIiBAMpEpEeHIIio-
BaHHSI KiABIIS i 06TOBOPIOEMO JIOTO a AUTHUBHICTB.

Kntouosi cnosa i ¢ppasu: AMdpepeHITiOBaHHSI, MyABTUIIAIKATHUBHE AVidpepeHITiFOBaHHS, My ABTUIIAI-
KaTMBHe HamiBAVdepeHIIiFoBaHHS KiABIISI, aAMTUBHICTD, po3kaaa ITipca.



