
ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2019, 11 (2), 361–378 Карпатськi матем. публ. 2019, Т.11, №2, С.361–378

doi:10.15330/cmp.11.2.361-378

MASYUTKA O.YU. , MOKLYACHUK M.P., SIDEI M.I.

FILTERING OF MULTIDIMENSIONAL STATIONARY SEQUENCES WITH MISSING

OBSERVATIONS

The problem of mean-square optimal linear estimation of linear functionals which depend on

the unknown values of a multidimensional stationary stochastic sequence is considered. Estimates

are based on observations of the sequence with an additive stationary stochastic noise sequence

at points which do not belong to some finite intervals of a real line. Formulas for calculating the

mean-square errors and the spectral characteristics of the optimal linear estimates of the functionals

are proposed under the condition of spectral certainty, where spectral densities of the sequences are

exactly known. The minimax (robust) method of estimation is applied in the case where spectral

densities are not known exactly while some sets of admissible spectral densities are given. For-

mulas that determine the least favorable spectral densities and minimax spectral characteristics are

proposed for some special sets of admissible densities.
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INTRODUCTION

The problem of estimation of the unknown values of stochastic processes is of constant in-

terest in the theory and applications of stochastic processes. The formulation of the estimation

problems (interpolation, extrapolation and filtering) for stationary stochastic sequences with

known spectral densities and reducing these problems to the corresponding problems of the

theory of functions belongs to Kolmogorov [17]. Effective methods of solution of the estimation

problems for stationary stochastic sequences and processes were developed by Wiener [41] and

Yaglom [42,43]. Further results are described in the books by Rozanov [38], Hannan [12], Box et

al. [3], Brockwell and Davis [4]. The crucial assumption of most of the methods developed for

estimating the unobserved values of stochastic processes is that the spectral densities of the in-

volved stochastic processes are exactly known. In practice, however, complete information on

the spectral densities is impossible in most cases. In this situation one finds parametric or non-

parametric estimates of the unknown spectral densities and then apply one of the traditional

estimation methods provided that the selected spectral densities are true. This procedure can

result in significant increasing of the value of the error of estimate as Vastola and Poor [40] have

demonstrated with the help of some examples. To avoid this effect one can search estimates

which are optimal for all densities from a certain given class of admissible spectral densities.

These estimates are called minimax since they minimize the maximum value of the error of
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estimates. The paper by Grenander [11] was the first one where this approach to extrapola-

tion problem for stationary processes was proposed. Several models of spectral uncertainty

and minimax-robust methods of data processing can be found in the survey paper by Kas-

sam and Poor [16]. Franke [7, 8], Franke and Poor [9] investigated the minimax extrapolation

and filtering problems for stationary sequences with the help of convex optimization methods.

This approach makes it possible to find equations that determine the least favorable spectral

densities for some classes of admissible densities.

In the papers by Moklyachuk [23, 25, 26] results of investigation of the extrapolation, in-

terpolation and filtering problems for functionals which depend on the unknown values of

stationary processes and sequences are described. The problem of estimation of functionals

which depend on the unknown values of multivariate stationary stochastic processes is the

aim of the papers by Moklyachuk and Masyutka [28, 29]. In the book by Moklyachuk and

Golichenko [27] results of investigation of the interpolation, extrapolation and filtering prob-

lems for periodically correlated stochastic sequences are proposed. In their papers Luz and

Moklyachuk [18–22] deal with the problems of estimation of functionals which depend on

the unknown values of stochastic sequences with stationary increments. Prediction problem

for stationary sequences with missing observations is investigated in papers by Bondon [1, 2],

Cheng, Miamee and Pourahmadi [5], Cheng and Pourahmadi [6], Kasahara, Pourahmadi and

Inoue [15], Pourahmadi, Inoue and Kasahara [35], Pelagatti [34]. In papers by Moklyachuk and

Sidei [30–33] an approach is developed to investigation of the interpolation, extrapolation and

filtering problems for stationary stochastic sequences with missing observations.

In this paper we investigate the problem of the mean-square optimal estimation of the func-

tional A~ξ = ∑
j∈ZS

~a(j)⊤~ξ(−j) which depends on the unknown values of a multidimensional sta-

tionary sequence {~ξ(j), j ∈ Z} from the observations of the sequence {~ξ(j) +~η(j)} at points

j ∈ Z−\S, where {~η(j), j ∈ Z} is uncorrelated with {~ξ(j), j ∈ Z} multidimensional stationary

sequence, S =
s
⋃

l=1
{−(Ml + Nl), . . . ,−Ml}, ZS = {1, 2, . . .}\S+, S+ =

s
⋃

l=1
{Ml , . . . , Ml + Nl},

M0 = 0, N0 = 0. The problem is investigated in the case where both spectral densities of the

sequences {~ξ(j), j ∈ Z} and {~η(j), j ∈ Z} are known. In this case we derive formulas for

calculating the spectral characteristic and the mean-square error of the optimal estimate using

the method of projection in the Hilbert space of random variables with finite second moments

proposed by Kolmogorov (see, for example, selected works by Kolmogorov [17]). In the case of

spectral uncertainty, where the spectral densities of the sequences are not exactly known while

a set of admissible spectral densities is given, the minimax method is applied. Formulas that

determine the least favorable spectral densities and the minimax-robust spectral characteristics

of the optimal estimates of the functional are proposed for some specific classes of admissible

spectral densities.

1 HILBERT SPACE PROJECTION METHOD OF FILTERING

Consider multidimensional stationary stochastic sequences ~ξ(j) = {ξk(j)}T
k=1 , j ∈ Z, and

~η(j) = {ηk(j)}T
k=1 , j ∈ Z, with absolutely continuous spectral functions and correlation func-
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tions of the form

Rξ(n) = E~ξ(j + n)(~ξ(j))∗ =
1

2π

π
∫

−π

einλF(λ)dλ,

Rη(n) = E~η(j + n)(~η(j))∗ =
1

2π

π
∫

−π

einλG(λ)dλ,

where F(λ) = { fkl(λ)}
T
k,l=1, G(λ) = {gkl(λ)}

T
k,l=1 are the spectral densities of the sequences

{~ξ(j), j ∈ Z} and {~η(j), j ∈ Z} respectively. We will suppose that the spectral densities F(λ)

and G(λ) satisfy the minimality condition

π
∫

−π

Tr (F(λ) + G(λ))−1 dλ < ∞. (1)

This condition is necessary and sufficient in order that the error-free filtering of unknown

values of the sequences is impossible (see, for example, Rozanov [38]).

The stationary stochastic sequences {~ξ(j)} and {~η(j)} admit the following spectral decompo-

sition (see, for example, Gikhman and Skorokhod [10]; Karhunen [14])

ξ(j) =

π
∫

−π

eijλZξ(dλ), η(j) =

π
∫

−π

eijλZη(dλ),

where Zξ(dλ) and Zη(dλ) are orthogonal stochastic measures defined on [−π, π) such that

the following relations hold true

EZξ(∆1)(Zξ(∆2))
∗ =

1

2π

∫

∆1∩∆2

F(λ)dλ,

EZη(∆1)(Zη(∆2))
∗ =

1

2π

∫

∆1∩∆2

G(λ)dλ.

Suppose that we have observations of the sequence {~ξ(j)+~η(j)} at points j ∈ Z−\S, where

S =
s
⋃

l=1
{−(Ml + Nl), . . . ,−Ml}. The problem is to find the mean-square optimal linear esti-

mate of the functional

A~ξ = ∑
j∈ZS

~a(j)⊤~ξ(−j),

which depends on the unknown values of the sequence {~ξ(j)}, ZS = {1, 2, . . .}\S+,

S+ =
s
⋃

l=1
{Ml , . . . , Ml + Nl}.

Suppose that coefficients {~a(j), j = 0, 1, . . .} defining the functional A~ξ satisfy the condition

∑
j∈ZS

T

∑
k=1

|ak(j)| < ∞.

This condition ensures that the functional A~ξ has a finite second moment, since

E |Aξ|2 ≤ max
1≤k≤T

E |ξk(0)|
2



 ∑
j∈ZS

T

∑
k=1

|ak(j)|





2

.
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It follows from the spectral decomposition of the sequence {~ξ(j)} that the functional A~ξ

can be represented in the following form

A~ξ =

π
∫

−π

(A(eiλ))⊤Zξ(dλ), A(eiλ) = ∑
j∈ZS

~a(j)e−ijλ.

Consider values ξk(j), k = 1, . . . , T; j ∈ Z and ηk(j), k = 1, . . . , T; j ∈ Z as elements of

the Hilbert space H = L2(Ω,F , P) generated by random variables ξ with zero mathematical

expectations, Eξ = 0, finite variations, E|ξ|2 < ∞, and the inner product (ξ, η) = Eξη. Denote

by Hs(ξ + η) the closed linear subspace generated by elements {ξk(j) + ηk(j) : j ∈ Z−\S, k =

1, T} in the Hilbert space H.

Denote by L2(F + G) the Hilbert space of vector-valued functions~a(λ) = {ak(λ)}
T
k=1 such

that
∫ π

−π
~a(λ)⊤ (F(λ) + G(λ))~a(λ)dλ < ∞.

Denote by Ls
2(F + G) the subspace of L2(F + G) generated by functions of the form

einλδk, δk = {δkl}
T
l=1 , k = 1, . . . , T, n ∈ Z−\S,

where δkl are Kronecker symbols.

The mean square optimal linear estimate Â~ξ of the functional A~ξ from observations of the

sequence {~ξ(j) +~η(j)} can be represented in the form

Â~ξ =

π
∫

−π

(h(eiλ))⊤(Zξ(dλ) + Zη(dλ)),

where h(eiλ) =
{

hk(e
iλ)
}T

k=1
∈ Ls

2(F + G) is the spectral characteristic of the estimate.

The mean square error ∆(h; F, G) of the estimate Â~ξ is given by the formula

∆(h; F, G) = E
∣

∣

∣
A~ξ − Â~ξ

∣

∣

∣

2
=

1

2π

π
∫

−π

(

A(eiλ)− h(eiλ)
)⊤

F(λ)(A(eiλ)− h(eiλ))dλ

+
1

2π

π
∫

−π

(

h(eiλ)
)⊤

G(λ)(h(eiλ))dλ.

The Hilbert space projection method proposed by Kolmogorov [17] makes it possible to

find the spectral characteristic h(eiλ) and the mean square error ∆(h; F, G) of the optimal lin-

ear estimate of the functional A~ξ in the case where spectral densities F(λ) and G(λ) of the

sequences are exactly known and the minimality condition (1) is satisfied. According to this

method the optimal estimation of the functional A~ξ is a projection of the element A~ξ of the

space H on the space Hs(ξ + η). It can be found from the following conditions:

1)Â~ξ ∈ Hs(ξ + η),

2)A~ξ − Â~ξ⊥Hs(ξ + η).

It follows from the second condition that the spectral characteristic h(eiλ) for any j ∈ Z−\S

satisfies the equation

1

2π

π
∫

−π

(

A(eiλ)− h(eiλ)
)⊤

F(λ)e−ijλdλ −
1

2π

π
∫

−π

(h(eiλ))⊤G(λ)e−ijλdλ =~0.
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The last relation is equivalent to equations

1

2π

π
∫

−π

[

(A(eiλ))⊤F(λ)− (h(eiλ))⊤(F(λ) + G(λ))
]

e−ijλdλ =~0, j ∈ Z−\S.

Hence the function
[

(A(eiλ))⊤F(λ)− (h(eiλ))⊤(F(λ) + G(λ))
]

is of the form

(A(eiλ))⊤F(λ)− (h(eiλ))⊤(F(λ) + G(λ)) = (C(eiλ))⊤,

where

C(eiλ) = ∑
j∈S

~c(j)eijλ +
∞

∑
j=0

~c(j)eijλ.

Here~c(j), j ∈ U = S ∪ {0, 1, 2, . . .} are unknown coefficients that we have to find.

From the last relation we deduce that the spectral characteristic of the optimal linear esti-

mate Â~ξ is of the form

(h(eiλ))⊤ = (A(eiλ))⊤F(λ)(F(λ) + G(λ))−1 − (C(eiλ))⊤(F(λ) + G(λ))−1.

It follows from the first condition, Â~ξ ∈ Hs(ξ + η), which determine the optimal linear

estimate of the functional A~ξ, that the Fourier coefficients of the function h(eiλ) are equal to

zero for k ∈ U, namely

1

2π

π
∫

−π

(

(A(eiλ))⊤F(λ)(F(λ)+G(λ))−1 − (C(eiλ))⊤(F(λ)+G(λ))−1

)

e−ikλdλ =~0, k ∈ U.

We will use the last equality to find equations which determine the unknown coefficients

~c(j), j ∈ U. After disclosing the brackets we get the relation

∑
j∈ZS

~a(j)⊤
1

2π

π
∫

−π

F(λ)(F(λ) + G(λ))−1e−i(k+j)λdλ − ∑
j∈S

~c(j)⊤
1

2π

π
∫

−π

(F(λ)

+ G(λ))−1e−i(k−j)λdλ −
∞

∑
j=0

~c(j)⊤
1

2π

π
∫

−π

(F(λ) + G(λ))−1e−i(k−j)λdλ =~0, k ∈ U.

(2)

For the functions

(F(λ) + G(λ))−1, F(λ)(F(λ) + G(λ))−1, F(λ)(F(λ) + G(λ))−1G(λ)

we introduce the Fourier coefficients

B(k, j) =
1

2π

π
∫

−π

(F(λ) + G(λ))−1e−i(k−j)λdλ,

R(k, j) =
1

2π

π
∫

−π

F(λ)(F(λ) + G(λ))−1e−i(k+j)λdλ,
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Q(k, j) =
1

2π

π
∫

−π

F(λ)(F(λ) + G(λ))−1G(λ)e−i(k−j)λdλ.

Using the introduced notations we can verify that the equality (2) is equivalent to the fol-

lowing system of equations:

∑
j∈ZS

R(k, j)~a(j) = ∑
j∈S

B(k, j)~c(j) +
∞

∑
j=0

B(k, j)~c(j), k ∈ U.

Let us introduce notations~a(j) = ~0, j ∈ S, ~a(0) = ~0 and ~a(j) = ~0, j ∈ S+. Thus, we can

write

∑
j∈U

R(k, j)~a(j) = ∑
j∈S

B(k, j)~c(j) +
∞

∑
j=0

B(k, j)~c(j), k ∈ U.

The last equations can be rewritten in the following form

R~a = B~c, (3)

where ~c is a vector constructed from the unknown coefficients ~c(j), j ∈ U, vector ~a has the

same with the vector~c dimension, it is of the form

~a⊤ = (~0⊤0 ,~a⊤1 ,~0⊤1 ,~a⊤2 ,~0⊤2 , . . .~a⊤i ,~0⊤i , . . . ,~a⊤s ,~0⊤s ,~a⊤s+1),

where~00 is the vector which consists of (|S|+ 1)T zeros, where |S| =
s

∑
k=1

(Nk + 1) is the amount

of missing values, vectors~0i, i = 1, 2, . . . , s, consist of (Ni + 1)T zeros, vectors

~a⊤1 = (~a(1)⊤, . . . ,~a(M1 − 1)⊤),

~a⊤i = (~a(Mi−1 + Ni−1 + 1)⊤, . . . ,~a(Mi − 1)⊤), i = 2, . . . , s,

~a⊤s+1 = (~a(Ms + Ns + 1)⊤,~a(Ms + Ns + 2)⊤, . . .),

are constructed from the coefficients that determine the functional A~ξ.

Here B is a linear operator in the space ℓ2 which is defined by the matrix

B =















Bs,s Bs,s−1 . . . Bs,1 Bs,n

Bs−1,s Bs−1,s−1 . . . Bs−1,1 Bs−1,n
...

...
. . .

...
...

B1,s B1,s−1 . . . B1,1 B1,n

Bn,s Bn,s−1 . . . Bn,1 Bn,n















,

where elements in the last column and the last row are compound matrices constructed from

the block-matrices

Bl,n(k, j) = B(k, j), l = 1, 2, . . . , s, k = −Ml − Nl , . . . ,−Ml, j = 0, 1, 2, . . . ,

Bn,m(k, j) = B(k, j), m = 1, 2, . . . , s, k = 0, 1, 2, . . . , j = −Mm − Nm, . . . ,−Mm,

Bn,n(k, j) = B(k, j), k, j = 0, 1, 2, . . .
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and other elements of matrix B are the compound matrices with elements of the form

Bl,m(j, k) = B(k, j), l, m = 1, 2, . . . , s,

k = −Ml − Nl , . . . ,−Ml , j = −Mm − Nm, . . . ,−Mm.

The linear operator R in the space ℓ2 is defined by the corresponding matrix in the same

manner.

The unknown coefficients~c(k), k ∈ U, which are defined by the equations (3), can be calcu-

lated by the formula

~c(k) = (B−1R~a)(k),

where (B−1R~a)(k) is the k-th component of the vector B−1R~a. (see paper by Salehi [39] for

more details).

The formula for calculating the spectral characteristic h(eiλ) of the estimate Â~ξ is of the

form

(h(eiλ))⊤ = (A(eiλ))⊤F(λ)(F(λ) + G(λ))−1

−

(

∑
k∈U

(B−1R~a)(k)eikλ

)⊤

(F(λ) + G(λ))−1.
(4)

The mean square error of the estimate Â~ξ can be calculated by the formula

∆(F, G) = E
∣

∣

∣
A~ξ − Â~ξ

∣

∣

∣

2
=

1

2π

π
∫

−π

(rG(λ))
⊤F(λ)rG(λ)dλ

+
1

2π

π
∫

−π

(rF(λ))
⊤G(λ)rF(λ)dλ = 〈R~a, B−1R~a〉+ 〈Q~a,~a〉,

(5)

where

(rF(λ))
⊤ =



(A(eiλ))⊤F(λ)−

(

∑
k∈U

(B−1R~a)(k)eikλ

)⊤


 (F(λ) + G(λ))−1,

(rG(λ))
⊤ =



(A(eiλ))⊤G(λ) +

(

∑
k∈U

(B−1R~a)(k)eikλ

)⊤


 (F(λ) + G(λ))−1,

and Q is the linear operator in the space ℓ2 defined by matrix with coefficients Q(k, j), k, j ∈ U

in the same way as the operator B is defined.

Let us summarize the obtained results and present them in the form of a theorem.

Theorem 1. Let {~ξ(j)} and {~η(j)} be uncorrelated multidimensional stationary sequences

with spectral densities F(λ) and G(λ) which satisfy the minimality condition (1). The spectral

characteristic h(eiλ) and the mean square error ∆(F, G) of the optimal linear estimate of the

functional A~ξ which depends on the unknown values of the sequence ~ξ(j) based on obser-

vations of the sequence {~ξ(j) + ~η(j)} at points j ∈ Z−\S can be calculated by formulas (4),

(5).
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Consider the problem of the mean-square optimal linear estimation of the functional A~ξ,

which depends on the unknown values of the sequence {~ξ(j)} from observations of the se-

quence {~ξ(j) + ~η(j)} at points j ∈ Z−\S, S = {−(M + N), . . . ,−M}, ZS = {1, 2, . . .}\S+,

S+ = {M, . . . , M + N}.

From Theorem 1 the following corollary can be derived for this problem.

Corollary 1. Let {~ξ(j)} and {~η(j)} be uncorrelated multidimensional stationary sequences

with spectral densities F(λ) and G(λ) which satisfy the minimality condition (1). The spectral

characteristic h(eiλ) and the mean square error ∆(F, G) of the optimal linear estimate of the

functional A~ξ which depends on the unknown values of the sequence ~ξ(j) based on observa-

tions of the sequence {~ξ(j) +~η(j)} at points j ∈ Z−\S can be calculated by formulas (4), (5),

where B, R, Q are linear operators in the space ℓ2 defined by compound matrices constructed

of coefficients B(k, j), R(k, j), Q(k, j), k, j ∈ U, (U = S ∪ {0, 1, 2, . . .}). For example, the matrix

B is of the form

B =

(

Bs,s Bs,n

Bn,s Bn,n

)

,

where its components are matrices constructed from the block-matrices

Bs,n(k, j) = B(k, j), k = −M − N, . . . ,−M, j = 0, 1, 2, . . . ,

Bn,s(k, j) = B(k, j), k = 0, 1, 2, . . . , j = −M − N, . . . ,−M,

Bn,n(k, j) = B(k, j), k, j = 0, 1, 2, . . . ,

Bs,s(k, j) = B(k, j), k = −M − N, . . . ,−M, j = −M − N, . . . ,−M.

Consider the problem of the mean-square optimal linear estimation of the functional A~ξ

which depends on the unknown values of the sequence {~ξ(j)} from observations of the se-

quence {~ξ(j) +~η(j)} at points j ∈ Z−\{−s}, ZS = {1, 2, . . .}\{s}.

It follows from Theorem 1 that the following corollary holds true.

Corollary 2. Let ~ξ(j) and ~η(j) be uncorrelated multidimensional stationary sequences with

spectral densities F(λ) and G(λ) which satisfy the minimality condition (1). The spectral char-

acteristic h(eiλ) and the mean square error ∆(F, G) of the optimal linear estimate of the func-

tional A~ξ which depends on the unknown values of the sequence ~ξ(j) based on observations

of the sequence ~ξ(j) +~η(j), j ∈ Z−\{−s} can be calculated by formulas (4), (5), where B, R, Q

are linear operators in the space ℓ2 defined by compound matrices constructed of coefficients

B(k, j), R(k, j), Q(k, j), k, j ∈ U, (U = S ∪ {0, 1, 2, . . .}),

B =

(

B(−s,−s) B−s,n

Bn,−s Bn,n

)

,

where elements in the last column and the last row are the matrices with the elements

B−s,n(k, j) = B(k, j), k = −s, j = 0, 1, 2, . . . ,

Bn,−s(k, j) = B(k, j), k = 0, 1, 2, . . . , j = −s,

Bn,n(k, j) = B(k, j), k, j = 0, 1, 2, . . . .

Consider the problem of the mean-square optimal linear estimation of the functional

AN
~ξ = ∑

j∈ZS∩{0,...,N}

~a(j)⊤~ξ(−j),
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which depends on the unknown values of the sequence ~ξ(j) from observations of the sequence
~ξ(j) +~η(j) at points j ∈ Z−\S where S is defined in the introduction. The linear estimate of

the functional AN
~ξ has the representation

ÂN
~ξ =

π
∫

−π

(hN(e
iλ)⊤(Zξ(dλ) + Zη(dλ)).

Define the vector ~aN as follows: elements with indices from the set U ∩ (S ∪ {0, . . . , N})

coincide with the elements of the vector ~a with the same indices and elements with indices

from the set U\(S ∪ {0, . . . , N}) are zeros. B, R, Q are linear operators in the space ℓ2 defined

in the Theorem 1.

The spectral characteristic hN(e
iλ) and the mean square error ∆(hN ; F, G) of the optimal

linear estimate of the functional AN
~ξ can be calculated by formulas (6), (7)

(hN(e
iλ))⊤ = (AN(e

iλ))⊤F(λ)(F(λ) + G(λ))−1

−

(

∑
k∈U

(B−1R~aN)(k)e
ikλ

)⊤

(F(λ) + G(λ))−1,
(6)

∆(hN ; F, G) = 〈R~aN , B−1R~aN〉+ 〈Q~aN ,~aN〉, (7)

where AN(e
iλ) = ∑

j∈ZS∩{0,...,N}

~a(j)e−ijλ.

The following corollary holds true.

Corollary 3. Let ~ξ(j) and ~η(j) be multidimensional uncorrelated stationary sequences with

the spectral densities F(λ) and G(λ) which satisfy the minimality condition (1). The spectral

characteristic hN(e
iλ) and the mean square error ∆(hN ; F, G) of the optimal linear estimate of

the functional AN
~ξ which depends on the unknown values of the sequence ~ξ(j) from obser-

vation of the sequence {~ξ(j) +~η(j)} at points of time j ∈ Z−\S can be calculated by formulas

(6), (7).

2 MINIMAX-ROBUST METHOD OF FILTERING

Theorem 1 and its corollaries can be applied to filtering of the functional in the cases when

spectral densities of the sequences are exactly known. If complete information on the spectral

densities is impossible but the class of admissible densities is given, it is reasonable to apply

the minimax-robust method of filtering which consists in minimizing the value of the mean-

square error for all spectral densities from the given class. For description of minimax method

we propose the following definitions (see Moklyachuk and Masytka [29]).

Definition 1. For a given class of spectral densities D = DF × DG the spectral densities F0(λ) ∈

DF, G0(λ) ∈ DG are called least favorable in the class D for the optimal linear filtering of the

functional A~ξ if the following relation holds true

∆
(

F0, G0
)

= ∆
(

h
(

F0, G0
)

; F0, G0
)

= max
(F,G)∈DF×DG

∆ (h (F, G) ; F, G) .
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Definition 2. For a given class of spectral densities D = DF × DG the spectral characteristic

h0(eiλ) of the optimal linear estimate of the functional A~ξ is called minimax-robust if there are

satisfied conditions

h0(eiλ) ∈ HD =
⋂

(F,G)∈DF×DG

Ls
2(F + G),

min
h∈HD

max
(F,G)∈D

∆ (h; F, G) = max
(F,G)∈D

∆
(

h0; F, G
)

.

From the introduced definitions and formulas derived above we can obtain the following

statement.

Lemma 1. Spectral densities F0(λ) ∈ DF, G0(λ) ∈ DG satisfying the minimality condition (1)

are the least favorable in the class D = DF × DG for the optimal linear filtering of the functional

A~ξ if operators B0, R0, Q0 determined by the Fourier coefficients of the functions

(F0(λ) + G0(λ))−1, F0(λ)(F0(λ) + G0(λ))−1, F0(λ)(F0(λ) + G0(λ))−1G0(λ)

determine a solution to the constrain optimization problem

max
(F,G)∈DF×DG

〈R~a, B−1R~a〉+ 〈Q~a,~a〉 = 〈R0
~a, (B0)−1R0

~a〉+ 〈Q0
~a,~a〉. (8)

The minimax spectral characteristic h0 = h(F0, G0) is determined by the formula (4) if

h(F0, G0) ∈ HD.

The least favorable spectral densities F0(λ), G0(λ) and the minimax spectral characteristic

h0 = h(F0, G0) form a saddle point of the function ∆ (h; F, G) on the set HD × D. The saddle

point inequalities

∆
(

h; F0, G0
)

≥ ∆
(

h0; F0, G0
)

≥ ∆
(

h0; F, G
)

∀ h ∈ HD, ∀ F ∈ DF, ∀ G ∈ DG

hold true if h0 = h(F0, G0) and h(F0, G0) ∈ HD, where (F0, G0) is a solution to the constrained

optimization problem

sup
(F,G)∈DF×DG

∆
(

h(F0, G0); F, G
)

= ∆
(

h(F0, G0); F0, G0
)

, (9)

where the functional ∆
(

h(F0, G0); F, G
)

is calculated by the formula

∆
(

h(F0, G0); F, G
)

=
1

2π

π
∫

−π

(r0
G(λ))

⊤F(λ)r0
G(λ)dλ +

1

2π

π
∫

−π

(r0
F(λ))

⊤G(λ)r0
F(λ)dλ,

(r0
F(λ))

⊤ =



(A(eiλ))⊤F0(λ)−

(

∑
k∈U

((B0)−1R0
~a)(k)eikλ

)⊤


 (F0(λ) + G0(λ))−1,

(r0
G(λ))

⊤ =



(A(eiλ))⊤G0(λ) +

(

∑
k∈U

((B0)−1R0
~a)(k)eikλ

)⊤


 (F0(λ) + G0(λ))−1.
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The constrained optimization problem (9) is equivalent to the unconstrained optimization

problem (see, for example, Pshenichnyj [36]):

∆D(F, G) = −∆(h(F0 , G0); F, G) + δ((F, G) |DF × DG ) → inf, (10)

where δ((F, G) |DF × DG ) is the indicator function of the set D = DF × DG. Solution of the

problem (10) is characterized by the condition 0 ∈ ∂∆D(F0, G0), where ∂∆D(F0, G0) is the subd-

ifferential of the convex functional ∆D(F, G) at point (F0, G0). This condition makes it possible

to find the least favourable spectral densities in some special classes of spectral densities D (see

books by Ioffe and Tihomirov [13], Pshenichnyj [36], Rockafellar [37]).

Note, that the form of the functional ∆
(

h0; F, G
)

is convenient for application the Lagrange

method of indefinite multipliers for finding solution to the problem (10). Making use the

method of Lagrange multipliers and the form of subdifferentials of the indicator functions

we describe relations that determine least favourable spectral densities in some special classes

of spectral densities (see books by Moklyachuk [24, 25], Moklyachuk and Masyutka [29] for

additional details).

3 LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS D = D0 × D2δ

Consider the problem of filtering of the functional A~ξ in the case where spectral densities

F(λ), G(λ) belong to the set of admissible spectral densities D0 × D2δ, where

D1
0 =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
Tr F(λ)dλ = p

}

,

D1
2δ =

{

G(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
|Tr(G(λ) − G1(λ))|

2 dλ ≤ δ

}

;

D2
0 =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
fkk(λ)dλ = pk, k = 1, T

}

,

D2
2δ =

{

G(λ)

∣

∣

∣

∣

1

2π

∫ π

−π

∣

∣

∣
gkk(λ)− g1

kk(λ)
∣

∣

∣

2
dλ ≤ δk, k = 1, T

}

;

D3
0 =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
〈B1, F(λ)〉 dλ = p

}

,

D3
2δ =

{

G(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
|〈B2, G(λ)− G1(λ)〉|

2 dλ ≤ δ

}

;

D4
0 =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
F(λ)dλ = P

}

,

D4
2δ =

{

G(λ)

∣

∣

∣

∣

1

2π

∫ π

−π

∣

∣

∣
gij(λ)− g1

ij(λ)
∣

∣

∣

2
dλ ≤ δ

j
i , i, j = 1, T

}

.

Here the spectral density G1(λ)) is known and fixed, p, δ, pk, δk, k = 1, T, δ
j
i , i, j = 1, T, are fixed

numbers, P, B1, B2 are fixed positive definite Hermitian matrices.

The classes Dk
0, k = 1, 4 describe densities with the moment restrictions while the classes

Dk
2δ, k = 1, 4 describe the “δ-neighborhood” models in the space L2 of a fixed bounded spectral

density G1(λ).
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From the condition 0 ∈ ∂∆D(F0, G0) we find the following equations which determine the

least favourable spectral densities for these given sets of admissible spectral densities.

For the first pair D1
0 × D1

2δ we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = α2(F0(λ) + G0(λ))2, (11)

(r0
F(λ))

∗(r0
F(λ))

⊤ = β2Tr (G0(λ)− G1(λ))(F0(λ) + G0(λ))2, (12)

1

2π

∫ π

−π
|Tr (G(λ)− G1(λ))|

2 dλ = δ, (13)

where α2, β2 are Lagrange multipliers.

For the second pair D2
0 × D2

2δ we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = (F0(λ) + G0(λ))
{

α2
kδkl

}T

k,l=1
(F0(λ) + G0(λ)), (14)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (F0(λ) + G0(λ))
{

β2
k(g0

kk(λ)− g1
kk(λ))δkl

}T

k,l=1
(F0(λ) + G0(λ)), (15)

1

2π

∫ π

−π

∣

∣

∣
gkk(λ)− g1

kk(λ)
∣

∣

∣

2
dλ = δk, k = 1, T, (16)

where α2
k , β2

k are Lagrange multipliers.

For the third pair D3
0 × D3

2δ we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = α2(F0(λ) + G0(λ))B⊤
1 (F0(λ) + G0(λ)), (17)

(r0
F(λ))

∗(r0
F(λ))

⊤ = β2
〈

B2, G0(λ)− G1(λ)
〉

(F0(λ) + G0(λ))2, (18)

1

2π

∫ π

−π
|〈B2, G(λ)− G1(λ)〉|

2 dλ = δ, (19)

where α2, β2 are Lagrange multipliers.

For the fourth pair D4
0 × D4

2δ we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = (F0(λ) + G0(λ))~α ·~α∗(F0(λ) + G0(λ)), (20)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (F0(λ) + G0(λ))
{

βij(g0
ij(λ)− g1

ij(λ))
}T

i,j=1
(F0(λ) + G0(λ)), (21)

1

2π

∫ π

−π

∣

∣

∣
gij(λ)− g1

ij(λ)
∣

∣

∣

2
dλ = δ

j
i , i, j = 1, T, (22)

where~α, βij are Lagrange multipliers.

The following theorem and corollaries hold true.

Theorem 2. The least favorable spectral densities F0(λ), G0(λ) in the classes Dk
0 × Dk

2δ, k = 1, 4,

for the optimal linear filtering of the functional A~ξ are determined by relations (11) – (13) for

the first pair D1
0 × D1

2δ of sets of admissible spectral densities; (14) – (16) for the second pair

D2
0 × D2

2δ of sets of admissible spectral densities; (17) – (19) for the third pair D3
0 × D3

2δ of sets

of admissible spectral densities; (20) – (22) for the fourth pair D4
0 × D4

2δ of sets of admissible

spectral densities; the minimality condition (1), the constrained optimization problem (8) and

restrictions on densities from the corresponding classes D0 × D2δ. The minimax-robust spec-

tral characteristic of the optimal estimate of the functional A~ξ is determined by the formula

(4).
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Corollary 4. Assume that the spectral density G(λ) is known. Let the function F0(λ) + G(λ)

satisfies the minimality condition (1). The spectral density F0(λ) is the least favorable in the

classes Dk
0, k = 1, 4, for the optimal linear filtering of the functional A~ξ if it satisfies relations

(11), (14), (17), (20), respectively, and the pair (F0(λ), G(λ)) is a solution of the optimization

problem (8). The minimax-robust spectral characteristic of the optimal estimate of the func-

tional A~ξ is determined by formula (4).

Corollary 5. Assume that the spectral density F(λ) is known. Let the function F(λ) + G0(λ)

satisfies the minimality condition (1). The spectral density G0(λ) is the least favorable in the

classes Dk
2δ, k = 1, 4, for the optimal linear filtering of the functional A~ξ if it satisfies relations

(12) – (13), (15) – (16), (18) – (19), (21) – (22), respectively, and the pair (F(λ), G0(λ)) is a solution

of the optimization problem (8). The minimax-robust spectral characteristic of the optimal

estimate of the functional A~ξ is determined by formula (4).

4 LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS D = D1δ × DU
V

Consider the problem of filtering of the functional A~ξ in the case where spectral densities

F(λ), G(λ) belong to the set of admissible spectral densities D1δ × DU
V , where

D1
1δ =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
|Tr(F(λ)− F1(λ))| dλ ≤ δ

}

,

DU
V

1
=

{

G(λ)

∣

∣

∣

∣

Tr V(λ) ≤ Tr G(λ) ≤ Tr U(λ),
1

2π

∫ π

−π
Tr G(λ)dλ = q

}

,

D2
1δ =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π

∣

∣

∣
fkk(λ)− f 1

kk(λ)
∣

∣

∣
dλ ≤ δk, k = 1, T

}

,

DU
V

2
=

{

G(λ)

∣

∣

∣

∣

vkk(λ) ≤ gkk(λ) ≤ ukk(λ),
1

2π

∫ π

−π
gkk(λ)dλ = qk, k = 1, T

}

,

D3
1δ =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
|〈B1, F(λ)− F1(λ)〉| dλ ≤ δ

}

,

DU
V

3
=

{

G(λ)

∣

∣

∣

∣

〈B2, V(λ)〉 ≤ 〈B2, G(λ)〉 ≤ 〈B2, U(λ)〉 ,
1

2π

∫ π

−π
〈B2, G(λ)〉 dλ = q

}

,

D4
1δ =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π

∣

∣

∣
fij(λ)− f 1

ij(λ)
∣

∣

∣
dλ ≤ δ

j
i , i, j = 1, T

}

,

DU
V

4
=

{

G(λ)

∣

∣

∣

∣

V(λ) ≤ G(λ) ≤ U(λ),
1

2π

∫ π

−π
G(λ)dλ = Q

}

.

Here the spectral densities F1(λ), V(λ), U(λ) are known and fixed, δ, q, δk, qk, k = 1, T, δ
j
i , i, j =

1, T, are fixed numbers, Q, B1, B2 are fixed positive definite Hermitian matrices.

The classes DU
V

k
, k = 1, 4 describe the “strip” models of spectral densities while the classes

Dk
1δ, k = 1, 4 describe “δ-neighborhood” model in the space L1 of a fixed bounded spectral

density F1(λ).

From the condition 0 ∈ ∂∆D(F0, G0) we find the following equations which determine the

least favourable spectral densities for these sets of admissible spectral densities.
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For the first pair D1
1δ × DU

V
1

we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = α2γ(λ)(F0(λ) + G0(λ))2, (23)

1

2π

∫ π

−π

∣

∣

∣Tr (F0(λ)− F1(λ))
∣

∣

∣ dλ = δ, (24)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (β2 + γ1(λ) + γ2(λ))(F0(λ) + G0(λ))2, (25)

where α2, β2 are Lagrange multipliers, |γ(λ)| ≤ 1 and

γ(λ) = sign (Tr (F0(λ)− F1(λ))) : Tr (F0(λ)− F1(λ)) 6= 0,

γ1(λ) ≤ 0 and γ1(λ) = 0 if Tr G0(λ) > Tr V(λ), γ2(λ) ≥ 0 and γ2(λ) = 0 if Tr G0(λ) <

Tr U(λ).

For the second pair D2
1δ × DU

V
2

we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = (F0(λ) + G0(λ))
{

α2
kγk(λ)δkl

}T

k,l=1
(F0(λ) + G0(λ)), (26)

1

2π

∫ π

−π

∣

∣

∣
f 0
kk(λ)− f 1

kk(λ)
∣

∣

∣
dλ = δk, k = 1, T, (27)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (F0(λ) + G0(λ))
{

(β2
k + γ1k(λ) + γ2k(λ))δkl

}T

k,l=1
(F0(λ) + G0(λ)), (28)

where α2
k , β2

k are Lagrange multipliers, |γk(λ)| ≤ 1 and

γk(λ) = sign ( f 0
kk(λ)− f 1

kk(λ)) : f 0
kk(λ)− f 1

kk(λ) 6= 0, k = 1, T,

γ1k(λ) ≤ 0 and γ1k(λ) = 0 if g0
kk(λ) > vkk(λ), γ2k(λ) ≥ 0 and γ2k(λ) = 0 if g0

kk(λ) < ukk(λ).

For the third pair D3
1δ × DU

V
3

we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = α2γ′(λ)(F0(λ) + G0(λ))B⊤
1 (F0(λ) + G0(λ)), (29)

1

2π

∫ π

−π

∣

∣

∣

〈

B1, F0(λ)− F1(λ)
〉∣

∣

∣ dλ = δ, (30)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (β2 + γ′
1(λ) + γ′

2(λ))(F0(λ) + G0(λ))B⊤
2 (F0(λ) + G0(λ)), (31)

where α2, β2 are Lagrange multipliers, |γ′(λ)| ≤ 1 and

γ′(λ) = sign
〈

B1, F0(λ)− F1(λ)
〉

:
〈

B1, F0(λ)− F1(λ)
〉

6= 0,

γ′
1(λ) ≤ 0 and γ′

1(λ) = 0 if 〈B2, G0(λ〉 > 〈B2, V(λ)〉, γ′
2(λ) ≥ 0 and γ′

2(λ) = 0 if

〈B2, G0(λ〉 < 〈B2, U(λ)〉.

For the fourth pair D4
1δ × DU

V
4

we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = (F0(λ) + G0(λ))
{

αijγij(λ))
}T

i,j=1
(F0(λ) + G0(λ)), (32)

1

2π

∫ π

−π

∣

∣

∣
f 0
ij(λ)− f 1

ij(λ)
∣

∣

∣
dλ = δ

j
i , i, j = 1, T, (33)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (F0(λ) + G0(λ))(~β ·~β∗ + Γ1(λ) + Γ2(λ))(F0(λ) + G0(λ)) (34)

where ~β, αij are Lagrange multipliers,
∣

∣γij(λ)
∣

∣ ≤ 1 and

γij(λ) =
f 0
ij(λ)− f 1

ij(λ)
∣

∣

∣
f 0
ij(λ)− f 1

ij(λ)
∣

∣

∣

: f 0
ij(λ)− f 1

ij(λ) 6= 0, i, j = 1, T,

Γ1(λ) ≤ 0 and Γ1(λ) = 0 if G0(λ) > V(λ), Γ2(λ) ≥ 0 and Γ2(λ) = 0 if G0(λ) < U(λ).
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The following theorem and corollaries hold true.

Theorem 3. The least favorable spectral densities F0(λ), G0(λ) in the classes Dk
1δ × DU

V
k
, k =

1, 4, for the optimal linear filtering of the functional A~ξ are determined by relations (23) – (25)

for the first pair D4
1δ × DU

V
1

of sets of admissible spectral densities; (26) – (28) for the second pair

D4
1δ × DU

V
2

of sets of admissible spectral densities; (29) – (31) for the third pair D4
1δ × DU

V
3

of sets

of admissible spectral densities; (32) – (34) for the fourth pair D4
1δ × DU

V
4

of sets of admissible

spectral densities; the minimality condition (1), the constrained optimization problem (8) and

restrictions on densities from the corresponding classes D1δ × DU
V . The minimax-robust spec-

tral characteristic of the optimal estimate of the functional A~ξ is determined by the formula

(4).

Corollary 6. Assume that the spectral density G(λ) is known. Let the function F0(λ) + G(λ)

satisfies the minimality condition (1). The spectral density F0(λ) is the least favorable in the

classes Dk
1δ, k = 1, 4, for the optimal linear filtering of the functional A~ξ if it satisfies relations

(23) – (24), (26) – (27), (29) – (30), (32) – (33), respectively, and the pair (F0(λ), G(λ)) is a solution

of the optimization problem (8). The minimax-robust spectral characteristic of the optimal

estimate of the functional A~ξ is determined by formula (4).

Corollary 7. Assume that the spectral density F(λ) is known. Let the function F(λ) + G0(λ)

satisfies the minimality condition (1). The spectral density G0(λ) is the least favorable in the

classes DU
V

k
, k = 1, 4, for the optimal linear filtering of the functional A~ξ if it satisfies relations

(25), (28), (31), (34), respectively, and the pair (F(λ), G0(λ)) is a solution of the optimization

problem (8). The minimax-robust spectral characteristic of the optimal estimate of the func-

tional A~ξ is determined by formula (4).

5 CONCLUSIONS

In the article we propose methods of the mean-square optimal linear filtering of functionals

which depend on the unknown values of a multidimensional stationary stochastic sequence.

Estimates are based on observations of the sequence with an additive stationary noise se-

quence. We develop methods of finding the optimal estimates of the functionals in the case of

missing observations. The problem is investigated in the case of spectral certainty, where the

spectral densities of the sequences are exactly known. In this case we propose an approach

based on the Hilbert space projection method. We derive formulas for calculating the spec-

tral characteristic and the mean-square error of the optimal estimate of the functionals. In the

case of spectral uncertainty, where the spectral densities of the stationary sequences are not

exactly known while some special sets of admissible spectral densities are given, we apply the

minimax-robust estimation method of estimation. This method allows us to find estimates that

minimize the maximum values of the mean-square errors of the estimates for all spectral den-

sity matrices from a given class of admissible spectral density matrices. We derive formulas

that determine the least favorable spectral densities and the minimax spectral characteristics

for some special sets of admissible spectral densities.

These least favourable spectral density matrices are solutions of the optimization problem

∆D(F, G) = −∆(h(F0, G0); F, G) + δ((F, G) |DF × DG ) → inf, which is characterized by the

condition 0 ∈ ∂∆D(F0, G0), where ∂∆D(F0, G0) is the subdifferential of the convex functional
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∆D(F, G) at point (F0, G0). The form of the functional ∆(h(F0, G0); F, G) is convenient for

application of the Lagrange method of indefinite multipliers for finding solution to the opti-

mization problem. The complexity of solution of the problem is determined by the complexity

of calculating of subdifferentials of the indicator functions δ(( f , g)|D f × Dg) of sets D f × Dg.

Making use of the method of Lagrange multipliers and the form of subdifferentials of the in-

dicator functions we describe relations that determine the least favourable spectral densities

in some special classes of spectral densities. These are: classes D0 of densities with the mo-

ment restrictions, classes D1δ which describe the “δ-neighborhood” models in the space L1 of

a fixed bounded spectral density, classes D2δ which describe the “δ-neighborhood” models in

the space L2 of a fixed bounded spectral density, classes DU
V which describe the “strip” models

of spectral densities.
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[14] Karhunen K. Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn., Ser. A I, 1947, 37,

1–79.

[15] Kasahara Y., Pourahmadi M., Inoue A. Duals of random vectors and processes with applications to prediction

problems with missing values. Stat. Probab. Lett. 2009, 79 (14), 1637–1646. doi:10.1016/j.spl.2009.04.005

[16] Kassam S.A., Poor H.V. Robust techniques for signal processing: A survey. Proc. IEEE 1985, 73 (3), 433–481.

doi:10.1109/PROC.1985.13167

[17] Kolmogorov A.N. In: Shiryayev A. N. (Ed.) Selected works by A. N. Kolmogorov. Vol. II: Probability theory

and mathematical statistics, Kluwer, Dordrecht etc., 1992.



FILTERING OF STATIONARY SEQUENCES WITH MISSING OBSERVATIONS 377

[18] Luz M. M., Moklyachuk M.P. Minimax-robust filtering problem for stochastic sequences with stationary increments.

Theory Probab. Math. Statist. 2014, 89, 127–142. doi:10.1090/S0094-9000-2015-00940-6 (translation of Teor.

Imovir. ta Matem. Statist. 2013, 89, 115–129. (in English))

[19] Luz M. M., Moklyachuk M. P. Minimax-robust filtering problem for stochastic sequences with stationary increments

and cointegrated sequences. Stat., Optim. Inf. Comput. 2014, 2 (3), 176–199. doi:10.19139/soic.v2i3.56

[20] Luz M. M., Moklyachuk M. P. Minimax-robust filtering problem for stochastic sequences with stationary increments

and cointegrated sequences. Cogent Mathematics 2016, 3, 1–21. doi:10.1080/23311835.2016.1167811

[21] Luz M.M., Moklyachuk M.P. Filtering problem for functionals of stationary sequences. Stat., Optim. Inf. Comput.

2016, 4 (1), 68–83. doi:10.19139/soic.v4i1.172

[22] Luz M. M., Moklyachuk M. P. Estimates of functionals from processes with stationary increments and coin-

tegrated sequences. NVP "Interservis", Kyiv, 2016. (in Ukrainian)

[23] Moklyachuk M.P. On a filtering problem for vector-valued sequences. Theory Probab. Math. Statist. 1992, 47,

107–118. (translation of Teor. Imovir. ta Matem. Statist. 1992, 47, 104–117. (in Ukrainian))

[24] Moklyachuk M.P. Nonsmooth analysis and optimization. Kyiv University, Kyiv, 2008. (in Ukrainian)

[25] Moklyachuk M.P. Robust estimations of functionals of stochastic processes. Kyiv University, Kyiv, 2008. (in

Ukrainian)

[26] Moklyachuk M.P. Minimax-robust estimation problems for stationary stochastic sequences. Stat., Optim. Inf. Com-

put. 2015, 3 (4), 348–419. doi:10.19139/soic.v3i4.173

[27] Moklyachuk M.P., Golichenko I.I. Periodically correlated processes estimates. LAP Lambert Academic Pub-

lishing, Saarbrücken, 2016.

[28] Moklyachuk M.P., Masyutka O.Yu. Robust filtering of stochastic processes. Theory Stoch. Process. 2007, 13 (1-2),

166–181.

[29] Moklyachuk M.P., Masyutka O.Yu. Minimax-robust estimation technique for stationary stochastic processes.

LAP Lambert Academic Publishing, Saarbrücken, 2012.

[30] Moklyachuk M.P., Sidei M.I. Interpolation problem for stationary sequences with missing observations. Stat., Op-

tim. Inf. Comput. 2015, 3 (3), 259–275. doi:10.19139/soic.v3i3.149

[31] Moklyachuk M.P., Sidei M. Filtering problem for stationary sequences with missing observations. Stat., Optim. Inf.

Comput. 2016, 4 (4), 308–325. doi:10.19139/soic.v4i4.241

[32] Moklyachuk M.P., Sidei M.I. Filtering Problem for functionals of stationary processes with missing observations.

Commun. Optim. Theory 2016, Article ID 21, 1–18.

[33] Moklyachuk M.P., Sidei M.I. Extrapolation problem for stationary sequences with missing observations. Stat., Op-

tim. Inf. Comput. 2017, 5 (3), 212–233. doi:10.19139/soic.v5i3.284

[34] Pelagatti M.M. Time series modelling with unobserved components. CRC Press, New York, 2015.

[35] Pourahmadi M., Inoue A., Kasahara Y. A prediction problem in L2(w). Proc. Amer. Math. Soc. 2007, 135 (4),

1233–1239. doi:10.1090/S0002-9939-06-08575-3

[36] Pshenichnyj B. N. Necessary conditions of an extremum. Marcel Dekker, New York, 1971.

[37] Rockafellar R. T. Convex Analysis. Princeton University Press, Princeton, 1997.

[38] Rozanov Yu.A. Stationary stochastic processes. Holden-Day, San Francisco-Cambridge-London-Amster-

dam, 1967.

[39] Salehi H. Algorithms for linear interpolator and interpolation error for minimal stationary stochastic processes. Ann.

Probab. 1979, 7 (5), 840–846.

[40] Vastola S. K., Poor H. V. An analysis of the effects of spectral uncertainty on Wiener filtering. Automatica 1983, 19

(3), 289–293. doi:10.1016/0005-1098(83)90105-X



378 MASYUTKA O.YU., MOKLYACHUK M.P., SIDEI M.I.

[41] Wiener N. Extrapolation, interpolation and smoothing of stationary time series. With engineering applica-

tions. The M. I. T. Press, Cambridge, 1966.

[42] Yaglom A.M. Correlation theory of stationary and related random functions. Vol. 1: Basic results. Springer-

Verlag, New York etc., 1987.

[43] Yaglom A.M. Correlation theory of stationary and related random functions. Vol. 2: Supplementary notes

and references. Springer-Verlag, New York etc., 1987.

Received 24.01.2019

Масютка О. Ю., Моклячук М.П., Сiдей М. I. Фiльтрацiя багатовимiрних стацiонарних послiдов-

ностей iз пропусками спостережень // Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 361–378.

Дослiджується задача оптимального в середньоквадратичному сенсi оцiнювання лiнiйних

функцiоналiв, що залежать вiд невiдомих значень багатовимiрних стацiонарних послiдовно-

стей. Оцiнки базуються на спостереженнях послiдовностi з адитивним стацiонарним шумом iз

пропусками спостережень. Знайдено формули для обчислення середньоквадратичних похи-

бок та спектральних характеристик оптимальних оцiнок функцiоналiв у тому випадку, коли

спектральнi щiльностi послiдовностей точно вiдома. Мiнiмаксний (робасиний) метод оцiню-

вання застосовано у тому випадку коли спектральнi щiльностi послiдовностей точно невiдомi

а заданi множини допустимих спектральних щiльностей. Формули, що визначають найменш

сприятливi спектральнi щiльнiстi та мiнiмакснi спектральнi характеристики оптимальних оцi-

нок функцiоналiв, запропонованi для заданих множин допустимих спектральних щiльностей.

Ключовi слова i фрази: стацiонарнi послiдовностi, мiнiмiксна оцiнка, робастна оцiнка, се-

редньоквадратична похибка, найменш сприятлива спектральна щiльнiсть, мiнiмаксна спек-

тральна характеристика.


