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FILTERING OF MULTIDIMENSIONAL STATIONARY SEQUENCES WITH MISSING
OBSERVATIONS

The problem of mean-square optimal linear estimation of linear functionals which depend on
the unknown values of a multidimensional stationary stochastic sequence is considered. Estimates
are based on observations of the sequence with an additive stationary stochastic noise sequence
at points which do not belong to some finite intervals of a real line. Formulas for calculating the
mean-square errors and the spectral characteristics of the optimal linear estimates of the functionals
are proposed under the condition of spectral certainty, where spectral densities of the sequences are
exactly known. The minimax (robust) method of estimation is applied in the case where spectral
densities are not known exactly while some sets of admissible spectral densities are given. For-
mulas that determine the least favorable spectral densities and minimax spectral characteristics are
proposed for some special sets of admissible densities.
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favorable spectral density, minimax spectral characteristic.
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INTRODUCTION

The problem of estimation of the unknown values of stochastic processes is of constant in-
terest in the theory and applications of stochastic processes. The formulation of the estimation
problems (interpolation, extrapolation and filtering) for stationary stochastic sequences with
known spectral densities and reducing these problems to the corresponding problems of the
theory of functions belongs to Kolmogorov [17]. Effective methods of solution of the estimation
problems for stationary stochastic sequences and processes were developed by Wiener [41] and
Yaglom [42,43]. Further results are described in the books by Rozanov [38], Hannan [12], Box et
al. [3], Brockwell and Davis [4]. The crucial assumption of most of the methods developed for
estimating the unobserved values of stochastic processes is that the spectral densities of the in-
volved stochastic processes are exactly known. In practice, however, complete information on
the spectral densities is impossible in most cases. In this situation one finds parametric or non-
parametric estimates of the unknown spectral densities and then apply one of the traditional
estimation methods provided that the selected spectral densities are true. This procedure can
result in significant increasing of the value of the error of estimate as Vastola and Poor [40] have
demonstrated with the help of some examples. To avoid this effect one can search estimates
which are optimal for all densities from a certain given class of admissible spectral densities.
These estimates are called minimax since they minimize the maximum value of the error of

YAK 519.21
2010 Mathematics Subject Classification: 60G10, 60G25, 60G35, 62M20, 93E10, 93E11.

@ Masyutka O.Yu., Moklyachuk M.P,, Sidei M.I., 2019



362 MASYUTKA O.YU., MOKLYACHUK M.P., SIDEI M.I.

estimates. The paper by Grenander [11] was the first one where this approach to extrapola-
tion problem for stationary processes was proposed. Several models of spectral uncertainty
and minimax-robust methods of data processing can be found in the survey paper by Kas-
sam and Poor [16]. Franke [7,8], Franke and Poor [9] investigated the minimax extrapolation
and filtering problems for stationary sequences with the help of convex optimization methods.
This approach makes it possible to find equations that determine the least favorable spectral
densities for some classes of admissible densities.

In the papers by Moklyachuk [23, 25, 26] results of investigation of the extrapolation, in-
terpolation and filtering problems for functionals which depend on the unknown values of
stationary processes and sequences are described. The problem of estimation of functionals
which depend on the unknown values of multivariate stationary stochastic processes is the
aim of the papers by Moklyachuk and Masyutka [28,29]. In the book by Moklyachuk and
Golichenko [27] results of investigation of the interpolation, extrapolation and filtering prob-
lems for periodically correlated stochastic sequences are proposed. In their papers Luz and
Moklyachuk [18-22] deal with the problems of estimation of functionals which depend on
the unknown values of stochastic sequences with stationary increments. Prediction problem
for stationary sequences with missing observations is investigated in papers by Bondon [1,2],
Cheng, Miamee and Pourahmadi [5], Cheng and Pourahmadi [6], Kasahara, Pourahmadi and
Inoue [15], Pourahmadi, Inoue and Kasahara [35], Pelagatti [34]. In papers by Moklyachuk and
Sidei [30-33] an approach is developed to investigation of the interpolation, extrapolation and
filtering problems for stationary stochastic sequences with missing observations.

In this paper we investigate the problem of the mean-square optimal estimation of the func-
tional A = ¥, @(j)T&(—j) which depends on the unknown values of a multidimensional sta-
jezs
tionary sequence {&(j),j € Z} from the observations of the sequence {(j) + 7(j)} at points
j € Z_\S,where {7j(j),j € Z} is uncorrelated with {&(}),j € Z} multidimensional stationary
S

S
sequence, S = U{—-(M;+ N)),...,—M;}, 25 = {1,2,.. }\ST, St = U{M,,...,M; + N;},
=1 I=1

My = 0, Ng = 0. The problem is investigated in the case where both spectral densities of the
sequences {¢(j),j € Z} and {ij(j),j € Z} are known. In this case we derive formulas for
calculating the spectral characteristic and the mean-square error of the optimal estimate using
the method of projection in the Hilbert space of random variables with finite second moments
proposed by Kolmogorov (see, for example, selected works by Kolmogorov [17]). In the case of
spectral uncertainty, where the spectral densities of the sequences are not exactly known while
a set of admissible spectral densities is given, the minimax method is applied. Formulas that
determine the least favorable spectral densities and the minimax-robust spectral characteristics
of the optimal estimates of the functional are proposed for some specific classes of admissible
spectral densities.

1 HILBERT SPACE PROJECTION METHOD OF FILTERING

Consider multidimensional stationary stochastic sequences &(j) = {(j) },{:1 ,j € Z,and
() = {m(j )}1{:1 , ] € Z, with absolutely continuous spectral functions and correlation func-
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tions of the form

Rao) = BB+ m(EG) = 7 [ e,
Riy(i’l) 17(] +n) 17 ) 2 / mAG

where F(A) = {sz(M}z,z:l/ G(A) = {gu (A)}k,lzl are the spectral densities of the sequences

{&(j),j € Z} and {7](j),]j € Z} respectively. We will suppose that the spectral densities F(A)
and G(A) satisfy the minimality condition

7T

/ Tr (F(A) + G(A)) L dA < co. (1)
This condition is necessary and sufficient in order that the error-free filtering of unknown
values of the sequences is impossible (see for example, Rozanov [38]).

The stationary stochastic sequences {Z(j)} and {7(j)} admit the following spectral decompo-
sition (see, for example, Gikhman and Skorokhod [10]; Karhunen [14])

) = [ Pzg@n, G = [z @),

where Zz(d)\) and Z,(dA) are orthogonal stochastic measures defined on [—7, 7r) such that
the following relations hold true

EZe(0)(Ze(02))" = o | L FaA
EZ)(80)(Zy(82)" = 5= [ Gy

Suppose that we have observations of the sequence {&(j) +7(j)} at points j € Z_\S, where
S
S= U{-(M;+N),...,—M;}. The problem is to find the mean-square optimal linear esti-
=1

mate of the functional
AG =} () (=),
jeZs
which depends on the unknown values of the sequence {Z(j)}, Z5 = {1,2,...}\ST,

St = U{M,..., M + N},
=1

Suppose that coefficients {@(j),j = 0,1, ...} defining the functional A satisfy the condition

Z Z |Elk | < 0.
jeZS k=
This condition ensures that the functional A(f has a finite second moment, since

2
E|AZP < max E|2(0) (Z Y lax() )

jE€ZS k=
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It follows from the spectral decomposition of the sequence {&(j)} that the functional AZ
can be represented in the following form

AE = / VT Ze(dA), Ale™) = Y d(j)e
jEZS

Consider values ¢i(j),k = 1,...,T;j € Z and n(j),k = 1,...,T;j € Z as elements of
the Hilbert space H = Ly(Q), F, P) generated by random variables ¢ with zero mathematical
expectations, E¢ = 0, finite variations, E|¢|?> < oo, and the inner product (&, 7) = EZ7. Denote
by H*(Z + 1) the closed linear subspace generated by elements {(j) + #x(j) : j € Z-\S, k =
1, T} in the Hilbert space H.

Denote by Ly(F + G) the Hilbert space of vector-valued functions @(A) = {a(A) },?:1 such
that

7T -
/ G0 T (F(A) + G(A) ZA)dA < oo.
—7T
Denote by L5 (F + G) the subspace of L, (F + G) generated by functions of the form
ei")‘ék, (Sk = {5kl}lT:1/ k=1,...,T, n€ Z_\S,

where Jy; are Kronecker symbols.
The mean square optimal linear estimate AZ of the functional AZ from observations of the
sequence {Z(j) +7(j)} can be represented in the form

/ T(Ze(dA) + Z, (dA)),

where h(et) = {h(e') }k:1 € L5(F + G) is the spectral characteristic of the estimate.
The mean square error A(f; F, G) of the estimate AZ is given by the formula

A F,G) = E|AZ - Adl’ ;ﬂ/ﬁ(A(em)—h(eiA))TP(A)(A(eM)—h(em))m
+%/ﬂ<h(ei)‘))TG()\)(h(ei)*))dA.

-7t
The Hilbert space projection method proposed by Kolmogorov [17] makes it possible to
find the spectral characteristic (e**) and the mean square error A(h; F, G) of the optimal lin-
ear estimate of the functional AZ in the case where spectral densities F(A) and G(A) of the
sequences are exactly known and the minimality condition (1) is satisfied. According to this
method the optimal estimation of the functional AZ is a projection of the element AZ of the
space H on the space H’(¢ + 77). It can be found from the following conditions:

DAL € H (E+1),
2)AZ — AZLH(E +1).

It follows from the second condition that the spectral characteristic h(e*) forany j € Z_\S
satisfies the equation
T T
L L [ (e TG)e ar =5

o [ (Al =) F@)ear - .
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The last relation is equivalent to equations

o [ [ TFQ) — () (F3) + G| e ar =T, je z\s.

Hence the function [(A(e")) "F(A) — (h(e!)) T (F(A) + G(A))] is of the form
(A(e™))TF(A) = (h(e™)) "(F(A) + G(A)) = (C(e")) T,

where

C(e™ ) =Y ¢ ”)‘+Zc )elit,
j€eSs
Here ¢(j), j € U =5U{0,1,2,...} are unknown coefficients that we have to find.
From the last relation we deduce that the spectral characteristic of the optimal linear esti-
mate A(f is of the form

(™)™ = (A™)TEQ)(EA) + G(A) ! = (Ce) T (E(A) + G(A)) !

It follows from the first condition, AZ € H *(¢ + n7), which determine the optimal linear
estimate of the functional AZ, that the Fourier coefficients of the function (e'*) are equal to
zero for k € U, namely

% / <(A(e’“))TF(A>(F(A) +G(A) = (Ce™) T (F(A) + G(A))1>eik)‘d}\ _§ ke

—7T

We will use the last equality to find equations which determine the unknown coefficients
c(j),j € U. After disclosing the brackets we get the relation

I ik 17
Y () 5 [ FO)EQ) +6) et~ T )T [ (R
2 .
jeZ -7 j€s -7 @)
1 7T
1 —z(k A T —1p=ilk=))Ag)y — 0
LG A — };c 2n/ e A =0, k e U.

For the functions
(F(A)+G(A)™, FM(F(A) +G(A)~!, F(A)(F(A) +G(A)'G(A)

we introduce the Fourier coefficients

Bk j) = 5= [ (FO) +G() ey,

R(kj) = 5~ [ EO)(F(A) +G(1)) e <0,
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1
2

/ )+ G(A) TG )e kDA g,

Using the introduced notations we can verify that the equality (2) is equivalent to the fol-
lowing system of equations:

Y R(k,j)a(j) =Y _ B(k,j)c(j) + Z(kj)E(j), k e U.

jEZS j€S j=0

-

Let us introduce notations @(j) = 0, j € S, @(0) = 0 and @(j) = 0, j € S*. Thus, we can
write

Y Rk )() = Y Bk EG) + Y B DE(G), ke U,

jeu jes i=0
The last equations can be rewritten in the following form
Rd = B¢, (3)
where ¢ is a vector constructed from the unknown coefficients ¢(j),j € U, vector d has the
same with the vector ¢ dimension, it is of the form

3T ST 3T al, o7 ,a]
:(OOra1101/2102/" a; ,0; ..., 4,05 ,d5q),

where 0 is the vector which consists of (|S| 4 1)T zeros, where |S| = (N;< +1) is the amount
k=1
of missing values, vectors OZ-, i=1,2,...,s consist of (N; + 1)T zeros, vectors

i =@nT,...,dM —-1)"),
il = @M1+ N+, aM-1)T), i=2,...,5,

dl = (@(Ms+Ne+1)T,d@(Ms + Ne +2)7,..),

are constructed from the coefficients that determine the functional AZ.
Here B is a linear operator in the space ¢, which is defined by the matrix

Bs,s les,l oo Bs,l Bs,n
Bsfl,s Bsfl,sfl e Bsfl,l Bsfl,n
B=| S F
Bis Bys-1 .- Bix By
Bn,s Bn,S,1 oo Bn,l Bn,n

where elements in the last column and the last row are compound matrices constructed from
the block-matrices

Bln(k ]) = ( ) 121,2,...,5, k= —Ml—Nl,...,—Ml, j:0,1,2,...,

Bn,m(k,]) B( ), m:1,2,...,S, k:0,1,2,...,j:_Mm_Nm,...,_Mm,
Bun(k,j) = B(k,j), k,j =0,1,2,...
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and other elements of matrix B are the compound matrices with elements of the form

Biw(j, k) = B(k,j), Im=12,...5,
k:_Ml_NZI""_Ml/ ]':—Mm_Nm,.”’_Mm.

The linear operator R in the space /; is defined by the corresponding matrix in the same
manner.
The unknown coefficients ¢(k), k € U, which are defined by the equations (3), can be calcu-
lated by the formula
c(k) = (B~'Ra)(k),

where (B~!R3)(k) is the k-th component of the vector B~'Ra. (see paper by Salehi [39] for
more details).

The formula for calculating the spectral characteristic h(e"*) of the estimate AZ is of the
form

(h(e™))" = (A(e™))TF(A)(F(A) + G(A) !
.
— (Z(B_lRﬁ)(k)eikA> (F(A) +G(A) L. @

kel

The mean square error of the estimate A€ can be calculated by the formula

A(F,G) = E|AZ - AFl = % [ e TEW)re(hyin
o (5)
b [ re(0) TGN dA = (R4, BRa) + (Q4,3),

27T

where

kel

.
(re(A) " = ((A(e“))TF(A) - (Z(B”Ri)(k)em) ) (F(A) +G(A) ™,

.
(re(A)" = ((A(e“))TG(A) + (Z(B_lRi)(k)ei“) ) (F(A) +G(A) ™,

kel

and Q is the linear operator in the space ¢, defined by matrix with coefficients Q(k, j), k,j € U
in the same way as the operator B is defined.
Let us summarize the obtained results and present them in the form of a theorem.

Theorem 1. Let {&(j)} and {ij(j)} be uncorrelated multidimensional stationary sequences
with spectral densities F(A) and G(A) which satisfy the minimality condition (1). The spectral
characteristic h(e'!) and the mean square error A(F,G) of the optimal linear estimate of the
functional AZ which depends on the unknown values of the sequence &(j) based on obser-
vations of the sequence {(j) + 7(j)} at points j € Z_\S can be calculated by formulas (4),

(5)-
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Consider the problem of the mean-square optimal linear estimation of the functional AZ,
which depends on the unknown values of the sequence {&(j)} from observations of the se-
quence {&(j) +7(j)} at points j € Z_\S, S = {—(M+N),...,—M}, Z5 = {1,2,...}\S,
St ={M,..., M+ N}.

From Theorem 1 the following corollary can be derived for this problem.

Corollary 1. Let {Z(j)} and {ij(j)} be uncorrelated multidimensional stationary sequences
with spectral densities F(A) and G(A) which satisfy the minimality condition (1). The spectral
characteristic h(e'!) and the mean square error A(F,G) of the optimal linear estimate of the
functional AZ which depends on the unknown values of the sequence g (j) based on observa-
tions of the sequence {&(j) + 7(j)} at points j € Z_\S can be calculated by formulas (4), (5),
where B, R, Q are linear operators in the space {, defined by compound matrices constructed
of coefficients B(k, j), R(k, ), Q(k,j), k,j € U, (U= SU{0,1,2,...}). For example, the matrix

B is of the form
BS S BS n )
B = ’ ’ ,
< Bn,s Bn,n

where its components are matrices constructed from the block-matrices

Bin(k,j) = B(k,j), k=-M-N,...,—M, j=0,1,2,...,
Bus(k,j) = B(k,j), k=0,1,2,..., j=—-M-N,...,—M,
Bun(k,j) = B(k,j), kj=0,1,2,...,

Bss(k,j) = B(k,j), k=-M-N,...,-M, j=-M-—N,...,—M.

Consider the problem of the mean-square optimal linear estimation of the functional AZ
which depends on the unknown values of the sequence {(j)} from observations of the se-

quence {&(j) +7(j)} at points j € Z_\{—s}, Z% = {1,2,...}\{s}.
It follows from Theorem 1 that the following corollary holds true.

Corollary 2. Let &(j) and 7(j) be uncorrelated multidimensional stationary sequences with
spectral densities F(A) and G(A) which satisfy the minimality condition (1). The spectral char-
acteristic h(e**) and the mean square error A(F, G) of the optimal linear estimate of the func-
tional A which depends on the unknown values of the sequence Z (j) based on observations
of the sequence &(j) +7j(j), j € Z_\{—s} can be calculated by formulas (4), (5), where B, R, Q
are linear operators in the space {, defined by compound matrices constructed of coetficients
B(k,j), R(k,j), Q(k,j), k,je U, (U=SU{0,1,2,...}),

B_ < B(—s,—s) B_sn )
By, —s Buun )’
where elements in the last column and the last row are the matrices with the elements
B_su(k,j) =B(k,j), k=-s, j=0,12,...,
By, —s(k,j) = B(k,j), k=0,1,2,..., j=—s,
Bun(k,j) = B(k,j), kj=0,12,....
Consider the problem of the mean-square optimal linear estimation of the functional

A= Y () E(=)),

j€ez5n{o,..,.N}
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which depends on the unknown values of the sequence &( j) from observations of the sequence
&(j) +1(j) at points j € Z_\S where S is defined in the introduction. The linear estimate of
the functional An¢ has the representation

ANE = / T(Zz(dA) + Zy (dA)).

Define the vector ay as follows: elements with indices from the set UN (SU{0,...,N})
coincide with the elements of the vector a@ with the same indices and elements with indices
from the set U\(SU{0,...,N}) are zeros. B, R, Q are linear operators in the space ¢, defined
in the Theorem 1.

The spectral characteristic /iy (e**) and the mean square error A(hy; F, G) of the optimal
linear estimate of the functional A NE can be calculated by formulas (6), (7)

(v (€M) " = (An(e™) TF(A)(F(A) + G(A)) 7

N\ 6)
- <Z<B—1Ram<k>el’“> (F(A) +G(A) !
kel

(hN/F G) <RaN/B71R_a’N> + <Q5N/ aN>/ (7)
where Ay (e) = )3 a(j)e it
j€z5n{o,..,N}
The following corollary holds true.

Corollary 3. Let &(j) and 7(j) be multidimensional uncorrelated stationary sequences with
the spectral densities F(A) and G(A) which satisfy the minimality condition (1). The spectral
characteristic hy (e'!) and the mean square error A(hy; F, G) of the optimal linear estimate of
the functional Ax¢ which depends on the unknown values of the sequence g (j) from obser-
vation of the sequence {&(j) +7(j)} at points of time j € Z_\$S can be calculated by formulas
(6), (7).

2  MINIMAX-ROBUST METHOD OF FILTERING

Theorem 1 and its corollaries can be applied to filtering of the functional in the cases when
spectral densities of the sequences are exactly known. If complete information on the spectral
densities is impossible but the class of admissible densities is given, it is reasonable to apply
the minimax-robust method of filtering which consists in minimizing the value of the mean-
square error for all spectral densities from the given class. For description of minimax method
we propose the following definitions (see Moklyachuk and Masytka [29]).

Definition 1. Fora given class of spectral densities D = D x D the spectral densities FO(\) €
Dr, G%(A) € Dg are called least favorable in the class D for the optimal linear filtering of the
functional AZ if the following relation holds true

A <P0, GO) —A (h <p0, GO) :FY GO) _ (p,cgg;(chA (h(F,G);F,G).
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Definition 2. For a given class of spectral densities D = Dr x D¢ the spectral characteristic
h0(e'!) of the optimal linear estimate of the functional AZ is called minimax-robust if there are
satisfied conditions
H(e™) € Hp = N LyF+G),
(F,G) €DpxDg
min max A(I;F,G) = max A (hO;F, G) .
heHp (F,G)eD (F,G)eD
From the introduced definitions and formulas derived above we can obtain the following

statement.

Lemma 1. Spectral densities FO(\) € Df, G°(A) € Dg satisfying the minimality condition (1)
are the least favorable in the class D = Dr x D for the optimal linear filtering of the functional
A if operators B% R% QU determined by the Fourier coefficients of the functions

(F(A) + GO(A)) L, FO)(EY(A) + GO(A)) L, FO(A)(E(A) + GO(A)) GO (A)

determine a solution to the constrain optimization problem

max _ (Ra B 'Ra) + (Qd,d) = (R, (B°)'R%E) + (Q"3, &).
o )+ (Qd,3) = (R%, (BY)'R") + (Q"a, ) ®
The minimax spectral characteristic i° = h(F°,G°) is determined by the formula (4) if

h(F°,G°) € Hp.

The least favorable spectral densities F’(1), G°(A) and the minimax spectral characteristic
W = h(F° G%) form a saddle point of the function A (i; F,G) on the set Hp x D. The saddle
point inequalities
A (mF,c°) = 8 (W5 F,6%) > A (KF,G)
VYV he Hp,VY FeDgV GEeDg

hold true if h° = h(F°, G°) and h(F°, G°) € Hp, where (F°, G°) is a solution to the constrained
optimization problem

sup A (W(F’,G");F,G) = A (n(F°,G%);F°,G), 9)
(F,G)EDFXDG

where the functional A (h(F°, G%); F, G) is calculated by the formula

27
—7T

A (h(PO, G%);F, G) = % /(r%(A))TF(A)r%(A)d)\—i— L /(r%(A))TG(A)rg(A)dA,
keu

.
(rF(A) " = ((A(e“))TFO(A) - (Z((BO)_lROE)(k)eiM) ) (F(A) +G°(A)

.
(re()" = ((A(em))TGO(A) + (Z((Bo)lROE)(k)ei“> ) (F'(A) +G2(A) .

kel
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The constrained optimization problem (9) is equivalent to the unconstrained optimization
problem (see, for example, Pshenichnyj [36]):

Ap(F,G) = —A(h(F°,G°);F,G) +6((F,G) |DF x Dg) — inf, (10)

where §((F,G) |Dr x Dg) is the indicator function of the set D = Df x Dg. Solution of the
problem (10) is characterized by the condition 0 € dAp (F°, GY), where dAp (F°, G¥) is the subd-
ifferential of the convex functional Ap (F, G) at point (F?, G%). This condition makes it possible
to find the least favourable spectral densities in some special classes of spectral densities D (see
books by Ioffe and Tihomirov [13], Pshenichnyj [36], Rockafellar [37]).

Note, that the form of the functional A (h°; F, G) is convenient for application the Lagrange
method of indefinite multipliers for finding solution to the problem (10). Making use the
method of Lagrange multipliers and the form of subdifferentials of the indicator functions
we describe relations that determine least favourable spectral densities in some special classes
of spectral densities (see books by Moklyachuk [24, 25], Moklyachuk and Masyutka [29] for
additional details).

3 LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS D = Dy X Dys

Consider the problem of filtering of the functional AZ in the case where spectral densities
F(A), G(A) belong to the set of admissible spectral densities Dy x D,s, where

D= {F )5 [ ML= |,

D}, = {63 [ m(G) - G Par < 6}

)

1 7T 2
D3, = {G(A)‘E - ‘gkk()Q —811k(}\)‘ dr < 6, k = 1,T};

D2 = {F(A) '% /kak(}\)d}\ — k=TT

DS’:{ ‘— (B1, F(A)) dA = P}

D3, = { ‘— (B, G (A)—Gl(A)>|2dA§5};

2171 /_ZF(A)dA _p }

2 . _

D = {F(A)

3 cl= ["
o = {c| 5 [
Here the spectral density G;(A)) is known and fixed, p, 6, py, 6, k = 1, T, 5{ ,i,j = 1,T, are fixed
numbers, P, By, B are fixed positive definite Hermitian matrices.
The classes D’O‘, k = 1,4 describe densities with the moment restrictions while the classes
DX;, k = 1,4 describe the “-neighborhood” models in the space L; of a fixed bounded spectral
density Gy (A).
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From the condition 0 € 9Ap (F°, G°) we find the following equations which determine the

least favourable spectral densities for these given sets of admissible spectral densities.
For the first pair D} x DJ; we have equations

(re())*(rg(A) " = a(F'(A) + G°(1))?,

(RO (2T = BT (CA) = G (F(1) + G°(1))?
o [ TG ~ G Pdr =g,

where a2, g% are Lagrange multipliers.
For the second pair D3 x D3; we have equations

(L) (L) = (F) +G°()) { addu

"0+ ),

kl=1

() (FO0)T = (F(3) + G(4) { BHeh() — ghA) }, | (F°(0) +G°(),

1 7 . 2 o
oy /_7T ‘8kk()\) _gkk()‘)‘ A =6, k=1,T,

where a2, B2 are Lagrange multipliers.
For the third pair D x D3; we have equations

(200)" (AT = 2(F(A) + GUA)B] (F°(A) + GO(1)),
() ()T = B (B2, G(N) — Gi(W) ) (F(A) + GO(A))2,

o= [ B2 GO — A Pan =,

where a2, B2 are Lagrange multipliers.
For the fourth pair D§ x D3; we have equations

(re() (rg(A) " = (F(A) + G (A))a - &* (F'(A) + G°(A),

(F)) ()T = () + GO () { BN — sh(M) ) () + G (),

i,j=1
1 T
5/

where @, B;; are Lagrange multipliers.
The following theorem and corollaries hold true.

2 _— _
8ij(A) —g}j()\)‘ dr =46, i,j=1,T,

(11)
(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

Theorem 2. The least favorable spectral densities F’(1), G°(A) in the classes D’é X D’z‘ s k= 1,4,
for the optimal linear filtering of the functional Ag’,? are determined by relations (11) — (13) for
the first pair Dé X D% s of sets of admissible spectral densities; (14) — (16) for the second pair
D% X D% 5 of sets of admissible spectral densities; (17) — (19) for the third pair DS X Dg 5 Of sets
of admissible spectral densities; (20) — (22) for the fourth pair Dé X DEL& of sets of admissible
spectral densities; the minimality condition (1), the constrained optimization problem (8) and
restrictions on densities from the corresponding classes Dy x Djs. The minimax-robust spec-
tral characteristic of the optimal estimate of the functional AZ is determined by the formula

(4).
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Corollary 4. Assume that the spectral density G(A) is known. Let the function FO(1) + G(A)
satisfies the minimality condition (1). The spectral density F°(A) is the least favorable in the
classes Dé, k = 1,4, for the optimal linear filtering of the functional Ag’,? if it satisfies relations
(11), (14), (17), (20), respectively, and the pair (F°(1),G(A)) is a solution of the optimization
problem (8). The minimax-robust spectral characteristic of the optimal estimate of the func-
tional A(f is determined by formula (4).

Corollary 5. Assume that the spectral density F(A) is known. Let the function F(A) + G°(A)
satisfies the minimality condition (1). The spectral density G°(\) is the least favorable in the
classes D’Z‘ s k= 1,4, for the optimal linear filtering of the functional A(f if it satisfies relations
(12) - (13), (15) - (16), (18) — (19), (21) — (22), respectively, and the pair (F(1), G°())) is a solution
of the optimization problem (8). The minimax-robust spectral characteristic of the optimal
estimate of the functional Af is determined by formula (4).

4 LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS D = Dq5 X D‘L}

Consider the problem of filtering of the functional AZ in the case where spectral densities
F(A), G(A) belong to the set of admissible spectral densities D15 x DY, where

ply = {F) 5 [ m(F) - A an < 6},

pU' = {G(A)

Tt V(A) < Tr G(A) < TrU(A), % /” Tr G(A)dA = q},

DY = {F(A) %/_7; ‘fkk(/\) _fklk(A)’ dA < O, k= ﬁ} ,

DY* = {G(A)

1 7T
Ure(A) < gike(A) < uge(A), Y- /_ngkk()\)d)\ =g, k=1, T},

D3 = {F |5 [ 1B FO) - )l ar <o,

pu’ {cm' (B2, VM) < (B, GA)) < (BoUN) 5= [ (B, G(A)) dA = q},

D4 — F(A) i/n—
10 27T o
1

pu* — {G(A)'V(A) <G < U(A),E/ZG()\)LM — Q}.

£(A) = F0)] dr < 5£,i,f=L_T}f

Here the spectral densities F;(A), V(A), U(A) are known and fixed, 6,4, &, qi, k = 1, T, (55, i,j=
1, T, are fixed numbers, Q, By, B, are fixed positive definite Hermitian matrices.

The classes D‘L}k, k = 1,4 describe the “strip” models of spectral densities while the classes
DX, k = 1,4 describe “d-neighborhood” model in the space L; of a fixed bounded spectral
density Fj(A).

From the condition 0 € dAp (F%, GY) we find the following equations which determine the
least favourable spectral densities for these sets of admissible spectral densities.
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For the first pair D}; x DY " we have equations

(re(A)*(rE(A) T = &y (M) (FO(A) + G°(A))?, (23)
% /" T (F() — F(A)|dr =5, (24)
(rp(A)* (2 (A) T = (B> +11(A) + 12(AM) (F(A) + G°(A))?, (25)

where a2, B2 are Lagrange multipliers, |y(A)| < 1 and
7(A) = sign (Tr (F'(A) — Fi(A))) : Te(FO(A) — Fi()) #0,

11(A) < 0and y1(A) = 0if TrG%(A) > TrV(A), 12(A) > 0and 12(A) = 0if TrGO(A) <
TrU(A).
For the second pair D?; x Du we have equations

(B G = (F) + ) {dniea},  (FR)+E0), @9

o / )fkk — fx(A dA = o, k=1,T, (27)

() (RN = (F4) + GO0 {8+ 7eh) + vaWNd ), (FO) +6°(1)), @9
where a2, B2 are Lagrange multipliers, |y,(A)| < 1and

|
T(A) = sign (fe(A) = fae(V)) = feA) = fie(A) #0, k=1,T,

T1k(A) < 0and y1,(A) = 0if gkk( ) > vk (A), Y2(A) > 0and 7ok (A) = 0iif gy (A) < ugre(A).
For the third pair D3; x Du we have equations

(re(A)*(r&(A) T = a9 (A)(F*(A) + GO(A))B{ (F(A) + G°(1)), (29)
%/ZKBLFO(A) ~EW)|dr =3, (30)
(rp(A) (13 (A) T = (B + 11 (A) + 12(A) (FO(A) + G'(A))By (FO(A) +G°(A)),  (31)
where a2, B2 are Lagrange multipliers, |7/(A)| < 1 and
7'(A) =sign (B, F'(A) —Fi(A)) : (B, F'(A) = Bi(A)) #0,

Yi(A) < 0 and 74(A) = 0 if (B, GO'(A) > (B, V(A)), 75(A) > 0 and 74(A) = 0 if
(By, GO(A) < (Bp, U(A)).
For the fourth pair D}; x D‘L}4 we have equations

(rg())*(rg(M) " = (F°(A) + G (A)) {“z‘j')”ij()‘»}l] L(F' ) +G°(1)), (32)

— " | - o ar =g, =TT, (3
(PR (rR ()T = (FO(A) + GY () (B B +T1(A) + L2(M)(F'(A) +GO(A))  (34)
where B, u;j are Lagrange multipliers, |y;j(A)| < 1and

BO-AY o
RN = FYN) £0, 1 =TT,
pa-pm T ]

I1(A) <0and T1(A) = 0if GO(A) > V(A), To(A) > 0and Tp(A) = 0if GO(A) < U(A).

Vij(A) =
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The following theorem and corollaries hold true.

Theorem 3. The least favorable spectral densities F'(A), G°(A) in the classes D¥; x ng, k =
1,4, for the optimal linear filtering of the functional AE are determined by relations (23) — (25)

for the first pair D‘l1 5 X D‘L} ! of sets of admissible spectral densities; (26) — (28) for the second pair
D5 X D‘L/I2 of sets of admissible spectral densities; (29) - (31) for the third pair Dj; X D‘L/I3 of sets

of admissible spectral densities; (32) — (34) for the fourth pair D}; X D‘L/I4 of sets of admissible
spectral densities; the minimality condition (1), the constrained optimization problem (8) and
restrictions on densities from the corresponding classes D15 x D{}. The minimax-robust spec-
tral characteristic of the optimal estimate of the functional A€ is determined by the formula

(4)-

Corollary 6. Assume that the spectral density G(A) is known. Let the function FO(1) + G(A)
satisfies the minimality condition (1). The spectral density F°(A) is the least favorable in the
classes D’l‘ s k= 1,4, for the optimal linear filtering of the functional Ag’,? if it satisfies relations
(23) - (24), (26) - (27), (29) - (30), (32) - (33), respectively, and the pair (F°(A), G(A)) is a solution
of the optimization problem (8). The minimax-robust spectral characteristic of the optimal
estimate of the functional AE is determined by formula (4).

Corollary 7. Assume that the spectral density F(A) is known. Let the function F(A) + G°(A)
satisfies the minimality condition (1). The spectral density G°(\) is the least favorable in the
classes D%,Ik, k = 1,4, for the optimal linear filtering of the functional Ag if it satisfies relations
(25), (28), (31), (34), respectively, and the pair (F(1), G°())) is a solution of the optimization
problem (8). The minimax-robust spectral characteristic of the optimal estimate of the func-
tional Ag’,? is determined by formula (4).

5 CONCLUSIONS

In the article we propose methods of the mean-square optimal linear filtering of functionals
which depend on the unknown values of a multidimensional stationary stochastic sequence.
Estimates are based on observations of the sequence with an additive stationary noise se-
quence. We develop methods of finding the optimal estimates of the functionals in the case of
missing observations. The problem is investigated in the case of spectral certainty, where the
spectral densities of the sequences are exactly known. In this case we propose an approach
based on the Hilbert space projection method. We derive formulas for calculating the spec-
tral characteristic and the mean-square error of the optimal estimate of the functionals. In the
case of spectral uncertainty, where the spectral densities of the stationary sequences are not
exactly known while some special sets of admissible spectral densities are given, we apply the
minimax-robust estimation method of estimation. This method allows us to find estimates that
minimize the maximum values of the mean-square errors of the estimates for all spectral den-
sity matrices from a given class of admissible spectral density matrices. We derive formulas
that determine the least favorable spectral densities and the minimax spectral characteristics
for some special sets of admissible spectral densities.

These least favourable spectral density matrices are solutions of the optimization problem
Ap(F,G) = —A(h(F°,G°);F,G) + 8((F,G) |DF x Dg) — inf, which is characterized by the
condition 0 € dAp(F°, GY), where dAp (F?, G?) is the subdifferential of the convex functional
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Ap(F,G) at point (F°,G%). The form of the functional A(h(F°,G%); F,G) is convenient for
application of the Lagrange method of indefinite multipliers for finding solution to the opti-
mization problem. The complexity of solution of the problem is determined by the complexity
of calculating of subdifferentials of the indicator functions §((f,g)|Ds x Dy) of sets D¢ x Ds.
Making use of the method of Lagrange multipliers and the form of subdifferentials of the in-
dicator functions we describe relations that determine the least favourable spectral densities
in some special classes of spectral densities. These are: classes Dy of densities with the mo-
ment restrictions, classes D1; which describe the “6-neighborhood” models in the space L; of
a fixed bounded spectral density, classes D,; which describe the “é-neighborhood” models in
the space L, of a fixed bounded spectral density, classes Dif which describe the “strip” models
of spectral densities.
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AOCAIAXY€EThCS 3apa4a ONTUMAABHOTO B CepeAHbOKBAAPAaTMUYHOMY CeHCi OLIHIOBaHHS AiHIVHIMX
dyHKIIOHAAIB, IITO 3aA€XAaTh BiA HEBIAOMMX 3HAaUeHb 6araTOBMMIpHMX CTalliOHapHMX MOCAIAOBHO-
crett. OmiHKY 6a3yI0ThCSI Ha CIIOCTEPeXXKEHHSIX IIOCAIAOBHOCTI 3 aAUTMBHIM CTaliOHAPHNMM IIYMOM i3
IIPOIYCKaMI CIIOCTepeXeHb. 3HAACHO (POPMYAM AASI OOUMCAEHHSI CepeAHbOKBAAPATIIHMX ITOXV-
60K Ta CHEeKTpaABHMX XapaKTEPUCTHUK ONTHMMAABHUX OLIHOK (PYHKITIOHAAIB Y TOMY BUITAAKY, KOAM
CIIeKTPaABHI ITIABHOCTI IIOCAIAOBHOCTEN TOYHO BiaroMa. MiHiMakcHIN (pobacuHmit) METOA OIiHIO-
BaHHSI 3aCTOCOBAHO y TOMY BUMIIAAKY KOAM CIIEKTPaAbHI IIIABHOCTI ITOCAIAOBHOCTEN TOYHO HeBiAOMi
a 3apaHi MHOXVHM AOITYyCTMMMX CIIEKTPaAbHMX IIiAbHOCTeN. DopMyAM, IO BU3HAYAIOTh HaliMeHII
CHPUSITAMBI CIIEKTpaAbHi IIIABHICTI Ta MiHIMaKCHI CIIeKTpaAbHI XapaKTepUCTUKI ONTUMAABHMX OLIi-
HOK (PYHKIIiOHAAiB, 3aIIpOIIOHOBAHI AAST 3aAaHMX MHOXVH AOITY CTMMMX CTIEKTPaABHMX LIIABHOCTEIA.

Kontouosi cnosa i ¢ppasu: cramioHapHi IOCAIAOBHOCTI, MiHiMiKCHa OliHKa, pobacTHa OILiHKa, ce-

PEAHPOKBaApaTHUYIHaA n0x1/161<a, HalMEeHIII CIIPUSITAVIBA CIIEKTPaAbHA H_IiAI)HiCTb, MiHIMaKCHa CITeK-
TpaAbHa XapaKTePHMCTMKA.



