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ON SINGLE-LAYER POTENTIALS FOR A CLASS OF PSEUDO-DIFFERENTIAL
EQUATIONS RELATED TO LINEAR TRANSFORMATIONS OF A SYMMETRIC
«x-STABLE STOCHASTIC PROCESS

In this article an arbitrary invertible linear transformations of a symmetric a-stable stochastic
process in d-dimensional Euclidean space R? are investigated. The result of such transformation
is a Markov process in RY whose generator is the pseudo-differential operator defined by its sym-
bol (—(QE,&)*/?) zerd With some symmetric positive definite d x d-matrix Q and fixed exponent
a € (1,2). The transition probability density of this process is the fundamental solution of some
parabolic pseudo-differential equation. The notion of a single-layer potential for that equation is
introduced and its properties are investigated. In particular, an operator is constructed whose role
in our consideration is analogous to that the gradient in the classical theory. An analogy to the
classical theorem on the jump of the co-normal derivative of the single-layer potential is proved.
This result can be applied for solving some boundary-value problems for the parabolic pseudo-
differential equations under consideration. For & = 2, the process under consideration is a linear
transformation of Brownian motion, and all the investigated properties of the single-layer potential
are well known.
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process, jump theorem.
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INTRODUCTION

Let us consider a symmetric a-stable process (xo(t));>o in the d-dimensional Euclidean
space IR? (we denote by (-, -) the inner product in this space), that is, a Markov process with its
transition probability density given by the equality

go(t,x,y) = (23T>d /Rd dC-tilgz, >0, xeRY, yeRY,

where the exponent « € (1,2) is fixed. The class of all symmetric a-stable processes can be ob-
tained from the process (xo(t))s>0 by multiplying it on some positive constants. More complex
processes can be obtained in the following way.
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Let P be some invertible d x d-matrix and x(t) = Pxy(t), t > 0. This process is obviously
Markov process and its transition probability density is given by the equality

gt x,y) = ﬁ /IRd ei(g'x’y)’t(Qg'g)a/de, t>0, xeRY yE RY, (1)

where Q = PPT. It is clear that the process (x(t));>0 is stochastically equivalent to the Markov
process (Lxo(t))t>0, where L is some lower triangular matrix which satisfies the equality Q =
LLT.

The function g is the fundamental solution of the pseudo-differential equation

ou(t, x)

P = Au(t,-)(x), t>0, xR, 2)

where operator A is a pseudo-differential operator whose symbol is given by the function
(—(Q&,&)*/?) zerd- The operator A is the generator of Markov process (x(t)):>0-

For a given surface S, which separates IR into two open sets D_ and D (R = D_USU
D) and a given continuous function (¢(, x))¢>0,xcs, we consider a function

t
v(t,x) = /0 dT/Sg(t —7,%Y)P(t,y)doy, t>0,x¢€ RY,

where the inner integral is a surface one. The function v is called a single-layer potential on
the surface S with the density ¢ for equation (2).

In this article, we determine the existence conditions of the single-layer potential and inves-
tigate its properties. The case of Q = ¢?/*I (c > 0 and I is a unit d x d-matrix) was considered
in article [3]. We will use several methods from [3]. In the case of & = 2, the theory of single-
layer potentials is well-known (see, for example, [2]).

1 SOME AUXILIARY RESULTS

1.1 The function g

The function ¢ defined above by formula (1) is continuous on the domain ¢ > 0, x € R,
y € R%, and is uniformly continuous on each set of the type (¢, x,y) € [T, +00) x RY x R? with
T > 0. The following estimations of ¢ and its derivatives are known (see [1, Ch.4]):

t
k d d.
D g(t,-,y)(x)]SNk(tl/a [y — 2]k t>0, xeR yeRY (3)

1
(7 Ty = )7

ID*g(t,-,y)(x)] < N, t>0, xeRY, y e R

Here D* means a differential operator of the order k (k = 0,1,2,...), D* means a pseudo-
differential operator with a homogeneous symbol (p({))zcgre of the order > which has all

derivatives of the orders I < M with some M > 2d + s+ a + 1 and ]pg) (&)] < Cml¢) ! with
some constant Cyy > 0 for all & # 0, and Ny and N, are some positive constants.



352 MAMALYHA KH.V., OSYPCHUK M.M.

1.2 The operator A

An action of the operator A defined in Introduction on a smooth (with at least Lipschitz
continuous gradient) and bounded together with its derivatives function ¢(x), g« is given by
the expression

Ap(x) = W /Rd(qv(x +y) = 9(x) = (Vo(x),»)(Q 'y y) "9 2y, 4

where
aT((3—a)/2)T((d +a)/2)
o = m(d+1)/21(2 — i)
The value of the constant g, can be obtained by applying the operator A to the function ¢¢(x) =
e'€*) x € R? with some fixed ¢ € R%.

1.3 An operator B

Let us introduce the operator B using its symbol (i(Q¢, &)*/271¢) ferd- Some simple cal-
culations lead us to the relation A = (V,QB). The action of the operator B on a bounded
Lipschitz continuous function (¢(x)) e is defined by the following formula

_ Ja / ~1 —(d—a)/2 -1
B — T /1 . ~\1/0 - 4 d 4
¢(x) (et Q)12 Rd(qo(xw) ¢(x))(Q "y, y) Q 'ydy
where g, has the above meaning.
Let v be some fixed ort in RY. Consider the operator B, = 2(Qv, B). We denote the re-
sult of its action on the function g with respect to the second argument by g, (¢, x,y). Using
representation (1) of the function g and the integration by parts, it is easy to obtain the relation

vt x,y) = %Mg(t, x,y), t>0x¢€ ]Rd, AS RY. (5)

1.4 A surface of the class H! 7

Let some surface S in R? (a manifold of dimension d — 1) divide the set R into two open
sets: outer D and inner D_ (i.e, Ry = D_USUD,). Suppose that this surface has a tangent
hyperplane at each point x € S. We will denote v(x) the unit vector of the outer normal to
the surface S at the point x € S. Choose the point x € S and consider a local orthogonal
coordinate system with the origin at this point, such that v(x) is the ort of its last axis. Assume
the surface S is such that for some 6 > 0 each part Ss(x) = SN Bs(x), x € S, of the surface
S (here Bs(x) is a ball with the radius § > 0 and the center at the point x) can be described
in the mentioned above local coordinate system by the equation y; = Fy(y1, ..., ¥4_1) with a
single-valued function Fy.

The bounded closed surface S belongs to the class H'*7 if the function F; has all partial
derivatives g—;’j, k=1,2,..,d—1, satisfy Holder’s condition with a power v € (0;1) and the
constant does not dependent on x.

Among the properties of the surface S which belongs to the class H™7 we will use the
following one (see [2, Ch.5]): there are some positive numbers Jy and ry, and a finite set of
points x1, Xx2,..., X;; on the surface S, such that S\ S, /2(x) C Uker,Sy,/2(xx) for each x € S, and
minge;, infyesro/z(xk) ly — x| > &y, where I, is some subset of the indices {1,2, ..., m}.
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2 A SINGLE-LAYER POTENTIAL

2.1 Existence conditions

Let S be a bounded closed surface of the class H'*7 with some v € (0;1). Consider some
continuous function ((t, x));>0,xcs and define the function (v(t, x));>q e by the following
equality

t
v(t,x) = /0 dr/sg(t —7,%y)¢(t,y)doy, t>0, x¢ R, y € RY, (6)

where an inner integral is a surface one. This function is called a single-layer potential on the
surface S with the density ¢. The following statement contains the conditions under which a
single-layer potential is well defined.

Lemma 1. Let S be a bounded closed surface of the class H'™7 with some v € (0;1) and
((t, x))s>0,xcs be a continuous function, which satisfies the inequality | (t,x)| < Crt=F in
each set of (t;x) € (0; T] x S with some constants p < 1 and Cy > 0 (the last one can depend
on T > 0). Then, the single-layer potential (6) is finite for allt > 0 and x € R?.

Proof. Estimation (3) with k = 0 and the fact that (see [3])

do,
Y —1-1/a d
/s(tl/aﬂy_x’)mgw t>0,xcR

with some constant K > 0 imply to the inequality

t at 5
[o(t, )] < KNoCr | 7~ KNoCTB(1 =B, 1 =1/t P

forallt € (0;T], x € R? and each T > 0. O

2.2 Properties of the single-layer potential

Classically (when a = 2), a single-layer potential satisfies the appropriate parabolic differ-
ential equation in the domain (0; +c0) x (R?\ S) (see [2, Ch.5] ). Let us prove an analogous
statement in our case (1 < a < 2).

Theorem 1. Let S be a bounded closed surface of the class H'*" with some v € (0;1), and
((t, x))s>0,xes be a continuous function satisfying the inequality | (t, x)| < Crt~F in each set
of (t;x) € (0; T] x S with some constants p < 1 and Cy > 0 (the last one can depend on T > 0).
Then the single-layer potential (3) satisfies the equation

9vu(t, x)

ST Av(t,-)(x), t>0,xcR?

in the domain (t; x) € (0;00) x (R%\ S).

Proof. It has already been mentioned that the function g is the fundamental solution of equa-
tion (2), and therefore, for all t > 0, x € R?, y € R the equality w = Ag(t,-,y)(x) holds
true. So, we only have to prove that the operator A with respect to the variable x can be moved
under the integral symbol in the right-hand part of (6) and the equality
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lim /Sg(e,x,y)tp(t,y)day =0,

e—0+
holds true for t > 0, x € R?\ S. The last is due to estimation (3) with k = 0 and the inequality
5]
(p(x,S))+e
where |S]| is the area of the surface S, and p(x, S) is the distance from the point x to the surface
S.

Next, we will take presentation (4) of the operator A and prove the possibility to change
the order of integrating in the integral

g gt—t,x+zy) —gt—7,xy) - (Vg(t—7,,y)(x),2)
/0 dT/SIP(Try)de /]Rd (Q—1z,z)(@d+a)/2 dz.

Take into account that the following inequalities 1;|z|?> < (Q7'z,z) < M|z|? hold true with
some constant M > 0 for all x € R¥. Divide the last integral into the sum of two integrals
and I, taken from the same function: the first of them is by (0;t) € S x B, and another is by
(0;t) € S x (R*\ B), where B is a ball of some small enough radius ¢ > 0 centered at the
origin.

Since for0 < T < t, x € RY, y € S, z € Bg the following equality

CTt_ﬁ,

[, 8tex )t y)doy | < Noe

1 & gt —1,x 4 62,y)

gt—tx+zy) -8t -t xy) - (Vg(t—7,y)(x),2) = 3 i]Z_ll 9x0x, 22

is true, where 6 = 0(7;y) € (0;1), the absolute value of the integrand in I; is estimated by the
expression

1 t—1
C 7’B—dZN ZM(d+D()/2 7d704,
tT 2 2((t_T)1/a+|y_x_gz|)d+a+zyz‘ 2|
where estimation (3) for k = 2 is used. Take a sufficiently small ¢ > 0 such that the inequality
inf,cs2ep.0e(0,1) [¥ — % — 02| = po > 0 holds true. Therefore, I is absolutely convergent.
The absolute value of the integrand in I, is estimated by the expression (estimation (3) is
also taken into account)

_ i No(t—1) No(t — 1)
C /3M(d+zx)/2 d—ua < 0
i S (e T M (Gt CeEa v i

Ni(t—1)
+ ((t— T)l/a1+ Y — x|)dratl M)
_ o No(f — No(f — Ny (f —
< Crr PMUH)/2|5)~d <((t_T)1/a(j£|y _T)x_z|)d+rx (p((;c(,S))Q“ (p(xi(s))dfz+1‘zf>~

Observe that the second and the third terms in this expression are integrable. Consider
the integral of the first term and change the variable z into u using the equality y —x —z =
(t — 7)Y/ *u. We have got

NoC;M(d+0)/2 / Lttt

d /d / —x—(t— 1/a,,|—d—u 1 7d*0¢d ,
(T e Loy = = 0 )

where D(7,y) = {u € R?: |y — x — (t — 7)1/%u| > &}. Surely, this integral converges, and for
completing the proof of the theorem, we have to use the Fubini’s theorem. O
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2.3 The jump theorem

In a classical theory (with &« = 2) of a single-layer potential the jump theorem takes an
essential place. It is the theorem on the jump of the co-normal derivative of a single-layer
potential. This section is devoted to an analogue of that theorem in our situation (1 < a < 2).

Lemma 2. Let the surface S and the function ((t,x))t>0xes satisfy the conditions of Theo-
rem 1. Then for eacht > 0 and x € S the following integral

t
| 4t [ Bustt =) (0w (T ey 7)
is finite.

Proof. By equality (5), we can rewrite integral (7) in the following form

2 [t d
E/o T / —x,v(x))g(t — 7, x,y)¢(T,y)doy.

t—71
Taking into account estimation (3) and the properties of the surface S (see Section 1.1), we can
obtain for T < t, x € §, the inequality

/S(y —x,v(0)g(t = T, x,y) (T, y)doy | <Cr PK((t =) 2+((t = 1)+ 60) "t - 1))

< constyt P((t— 1) 2 4+ (t — 1)),
where K > 0 is some constant and const; is some positive constant, which probably depends
on t. Hence the statement of the lemma is proved. O
Remark 1. Integral (7) is called a direct value of the action result of the operator B, (,), x € S
on single-layer potential (6) at the point x € S. We will denote it by B%Z;v(t, ) (x).
The next statement is the jump theorem mentioned above.
Theorem 2. Let S be a bounded closed surface of the class H'*7 with some v € (0;1) in
RY, and ((t, x));>0,xcs be a continuous function satisfying the inequality |ip(t, x)| < Crt~F,

0 <t <T,x € S with some constants B < 1 and Ct > 0 (the last one can depend on T) for
eachT > 0. Then for eacht > 0, x € S the following equality

lim B,(yo(t,)(y) = FP(t,x) + B o(t, ) (x),

holds true, where y — x4 means that y approaches x staying in some closed bounded cone
K C RY with the vertex at the point x and K C D4 U {x}.

Proof. Similar to the classic case it is sufficient to consider only the case of y = x + dv(x) and
6 — 0+. Therefore, taking into account formula (5) we will obtain

B2t )0) = 2 [ [ 2= xv)ge — vy 2)p(n 2o

t—T

2 [todrt
_5§/0 t—r/g —7,y,2)¥(t, z)doy,

_ B s . o _ _ _
=B, »yo(t )(x)+oc/() t—r/z x,v(x))(g(t —T,y,2z) — gt — 7, x,2))P(t,z)do,

t
_(%/ dv /g —7,9,2)¥(t,z)do.

ot—T1T
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Denote the integrals on the right-hand side of this equality by I and I; accordingly.
First, let us prove that lim;_,o I; = 0. In order to get this proof, rewrite I; in the form of the
sum of the following expressions

1o = E/O*“’ at /S(z—x,v(x))(g(t — T, x+0v(x),2) = g(t = 7,%,2))p(1, 2)doz,

o t—t

& —‘/t;frf (z = x,v(x))(g(t — 7, x +0v(x),2) — g(t — T, %,2) (7, 2)do,

u 570/2 (X)

(1)—2/t dr/ z—Xx,V(x t—1,x
= - X, —T,x+0v(x),z) —g(t—1,%x,z T,z)do,
R A AL (x),2) = glt = ,%,2)9(x, 2)do
where 0 < p < tis some constant (t is fixed), which should be chosen. We estimate each of
these expressions. Taking into account the properties of the surface S, we can obtain |(z —
x,v(x))| < |z—x|"*7forz € Sy ,(x). As aresult, we have

— x|+
<1><C%/td_f |z — x| p
S G s Sy GO R x = buGa e
2 todt |z — x|+
C—/ o do.
- t“ t—p P Sro/z(x) ((t_T)l/a+|Z_x|)d+lx 7z

Let Z be the orthogonal projection of the pointz € Sy , (x) on the tangent hyperplane to S at the
point x. Hence, taking into account the inequalities |z — x| > |Z — x|, |z — x — dv(x)| > |2 — x|,
|z — x| > const|Z — x|, where const is some positive constant that does not depend on the point
x (see [2, Ch.5]), we will obtain to the inequalities

e[ X I T
X Jt

- T St (= DV 2T = (= Pt

where C;, C; are positive constants that probably depend on t, and A, A (x) C R?-1 is some
bounded set. It means that A, ,(x) is the orthogonal projection of Sy, ,(x) on the tangent
hyperplane to S at the point x € S in the coordinate system of this hyperplane.

Next, we will estimate ]fgl):

(1) <C/t dt |z — | d
BT C 8 Jsvs, o0 =DV T e = x —du(m) e

e /t d—T/ |2 = x| do.
t t—p P S\Sro/z(x) ((t_T)l/a+|Z_x|)d+a -

Taking into account that for z € S\ S ,(x) the inequalities |z — x| > dy, [z — x — dv(x)| >
|z — x| — || > g — |4] are true (choose § to be the one that |§| < &), we will have

A tdr
<1><c5—5*d*“/ a
O < o) [

Thus, the sum ]2(1) + ]351) can be made as small as we want by choosing p > 0.
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Now, consider | 1(1). Since the function g(t — 7, x, z) is uniformly continuous in the sets of the
type (7, x,z) € [0;t — p] x K7 x Ky, where Kj and K; are some compacta in R?, and taking into
account the integrability of the function ¢ on [0;t — p] x S and the boundary of the function
(z —x,v(x)) as the function of z on S, we will obtain that lim;_, ]1(1)
6 — 0.

Now, consider the behavior of I; as 6 — 0. Put I in the form of the sum of the following

expressions

= 0. Therefore, I; — 0 as

2 b od
1= oyt [ 2

t—1,x+6v(x),z)doy,
8 (x),2)

2 d
]2(2) _ E(S/t T /E( )g(t —1,x+6v(x),z)(¢(T,z) — ¥(t,x))do,

pt—T

2 _ 2 t=p drt B
= 5/0 /()g(t T, x + 6v(x), 2)¢(t, 2)do,

I t—7

t
]f) i A tLiTT /s\sg gt —1,x+ov(x),z)P(T,z)do,

where p > 0, ¢ > 0 are rather small constants.

Let us estimate each of these terms. We start with the last one. Taking into account the
properties of the surface S, there are numbers Iy (natural) and py > 0, such that we can find
points x; € S\ Se(x), k=1,2...,Ipthat S\ S¢(x) C uﬁles,o/z(xk) and
infiz <5 infzesro/2 (x) 12 = x = ¢v(x)| = po. Then estimation (3) implies

t
12 < ECtNO\S\lo\cS\ / TPt =)V po) 4 %dT — 0, & — 0.
0

Similarly, using inequality (3) we will get

(2) <%5CN/th_T 4o
1= G010 Jo 55 s (G =07 + e — x—svim
2 t—p dt
< Z _ .
= a"S’CtNO‘S‘/O tﬁ(t—T)Hd/"‘ =0, 020

Here |S| means the area of the surface S like mentioned above.
Now, prove the existence of a limit of | 1(2) as 6 — 0. By the way, it means that by choosing
p > 0and e > 0 the term ]2(2) can be made as small as you like. It is sufficiently to note that the

function ¢ is uniformly continuous on the set [t — p; t] X S¢(x). Denote the tangent hyperplane
to the surface S at the point x € S by I, and consider

t
R=2s[ AT / ot — 7, x + 0u(x), 2)do.

o Ji—pt—1

To prove that lim(gﬁo(]l(z) —(t,x)R) = 0, consider

5/0{3617T </g(x) —/x>g(r,x+(5v(x),z)dtfz
= 5/090171' </g(x) —/X> g(t,x +dv(x),z)do,

Pdrt
_5/0 ?/Hx\ng(x)g(r,x+5v(x),z)daz
— ]/+]//’
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where I'l;(x) is the orthogonal projection S¢(x) on IT,. Taking into account the properties of
the surface S, it is easy to see that there is a constant 6 > 0 such that for all z € IT, \ I'l;(x) the
inequality |z| > 0 is true. Therefore the following estimation

d 24y _c ) rd—Z ﬂ
52+72) (d+a)/2 P 8/6| (1+r2)(ﬂl+rx)/2|(5|zx

< clole [

holds true with some constant C > 0. As a result, taking L'Hopital’s rule, we will obtain that
J"— 0asé — 0.

In order to estimate ]’ let us transfer it to the local coordinate system with its origin at the
point x and the vector v(x) as the ort of its last axis. We have

Se(x) = {u e R?: u? = F(u=%),u~% € Dg(x) c R 1},

Ie(x) = {u e R : u? = 0,u~%" € D¢(x) c R},

where D;(x) is some bounded closed set depended only on properties of the surface S, u<%>
is the vector (uj,uy, ..., uz_1), and Fy is some single-valued function with Holder continuous
gradient (see Section 1.1) with power v € (0;1). Talking into account inequality (3), it is not
difficult to state that

dt Tlu|"(1 4+ |u|")du
L e e
(TV& + k/|u|? + 52)d+a

. p d 2+7d1,
K|é / T/ ,
- ‘ ‘ 0 0 (Tl/lx + Je/ 12 + 52)d+0¢

where K > 0,K > 0,k > 0, g9 > 0 are some constants. Changing the order of integration in the

last integral and taking into account the equality fooo (Tl/;i% = «B(d,a)a"" that is correct

for all 2 > 0, we will obtain the estimation

€ d—2+4y oo pd—2+4+7
|]’|§K|5|/0¥§K/ ﬁwé
0 (Vr2452)d 0 (Vr241)d

with some constant K > 0. Therefore ]’ — 0 as § — 0 and lim(HoUl(z) —(t,x)R) = 0. Thus,

we have to prove the existence of lims_,o1 R and to find it. In order to prove this we will take
the equality proved in [3] (¥ is a fixed ort in IR¥)

/ hg(x + AV)doy = l/ e~ cos Ardr, (8)
II 7T Jo
where A € RY, IT = {x € R? : (x,0) = 0} and hy(x) = (271) ™% [ e'®&)~<llqg, x € R

Therefore, after simple transformations related with the changing of the variables in the sur-
face integral, we will obtain the equality

I:/ g(t,x +ov(x),y)doy =t~ 1/"‘/ hi(z — 6t~ V%0)do,,
I,

where IT = {z € R?: (z,0) = 0}, ¥ is some ort in RY. Equality (8) implies



ON SINGLE-LAYER POTENTIALS FOR A CLASS OF PSEUDO-DIFFERENTIAL EQUATIONS ... 359

1 [ « 1 [ «
I = t_l/”‘;/ e~ cosrot Y edr = ;/ e " cosrédr.
0 0

Thus,
t
R=2; aT
&t Ji—pt—T

/ e <=1 cos Srdr.
0

By changing the order of integration in this integral, we obtain the equality

2 [ «siné
R = signé — —/ e—cpr ST g,
7t Jo r
and, therefore, we have that lims_,o- R = +1. Hence, lims_,o+ ]1(2) = +y(tx),t>0,x€S
and the theorem has been proved. O

2.4 The single-layer potential with a hyperplane as a carrier

Let S be a hyperplane defined by the equation (x,v) = r, where v € R? is some unit
vector, and r € R is a fixed real number. Let the function (¢ (¢, x))¢>0,xes be continuous as
mentioned above, and the inequality |¢(t,x)| < Crt P be true forall 0 < t < T, x € S and
each T > 0. Here the constant Cy > 0 probably depends on T and 8 < 1. Taking into account
inequality (3), we obtain the estimation |, s8(t,x,y)doy < Kt~V t > 0, x € R? and for the
fixed x € R4 \ S we have f P g(t,x, y)day < Mt, t > 0, where K > 0 is some constant, and
M > 0 is the constant depending on x. This, is analogous to the previous, one can state that
the statements of Lemma 1 and Theorem 1 are true in this case (S is a hyperplane) as well.

Furthermore, formula (5) shows that g, (t,x,y) = 0forallt > 0, x € RY, yE RY. Therefore,

1(/‘:20(15, )(x) =0, t>0, x € Sholds true. Thus, an analogue of Theorem 2 is

the equality B
valid.

Theorem 3. Let S be a hyperplane with a unit normal vector v € R? and ((t, x));>0,xcs be a
continuous function satisfying the following inequality |i(t, x)| < CrtP,0<t<T xeS
with some constants B < 1 and Ct > 0 (the last one can depend on T) for each T > 0. Then
forallt > 0, x € S the following relations

Jlim, Buo(t, ) (y) = Fy(t,x)

hold true, where y — x+, (ory — x—) means thaty — z in the way that (y — x,v) > 0 (or
(y—x,v) <0).

Proof. The proof of this theorem repeats the proof of Theorem 2 with some simplification. [I
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CrarTs npucBsTIeHa AOCAIAXEHHIO HEBMPOAKEHOI'O AiHITHOTO ITlepeTBOPEHHST CMMeTPUYIHOTO K-
CTIfIKOTO BUTIAAKOBOTO TIPOIIECy B eBKAiAOBOMy mpocTopi RY. PesyAbTaT IbOTO TepeTBOpeHHs €
npouecom Mapxosa B RY, umit TBipHmit omepatop 3anaeThcst cumBorom (—(QE, &)*/?) ceRrd 3 Ae-
SIKOIO CMMETPUYHOIO AOAATHO Bu3HaueHOwo d X d-marpuueto Q Ta dixkcosarmm a € (1,2). Mliap-
HicTh JIMOBIpHOCTi IIepexoAy IIbOro Ipoliecy € (pyHAaMEeHTaAbHMM PO3B’SI3KOM AESIKOTO Hapaboai-
YHOTO TICeBAOAMepeHIIIaAbHOTO PiBHSHHS. BBOAMTHCS MOHSTTS MOTeHIiaAy IPOCTOTO IIapy Ta
AOCAIAXYIOTBCS JI0TO BAACTUBOCTI. 30KpeMa BCTaHOBAEHO OIlepaTop, SIKMI BiAirpae poAb IpaAieHTa
B KAACIUHI Teopii. AOBEAEHO aHAAOT KAACHMYHOI TeOpeMM PO CTpMOOK KOHOPMAABHOI IIOXiAHOI
IIOTeHIiaAy IIPOCTOro mapy. Lls BaacTuBicTh IOTeHITIaAY IPOCTOrO IMIaAy MOXe OYTH BUKOPMCTaHa
AASI TOOYAOBM PO3B’SI3KiB AESKMX KPaliOBMX 3aAad AAS PO3TASIHYTHMX ITapaboAiuHyX IceBaoAMde-
PpeHLiaAbHMX PiBHSHD. SIKIIO & = 2, PO3TASHYTMII IIPOLIeC € AiHIITHMM IepeTBOPeHHSM IIpollecy
OpOYHIBCBKOTO PYyXY i BCi AOCAIAXKEHI BAACTMBOCTI IOTEHIIiaAy IIPOCTOTO MIapy AO6pe BiAOMi.

Kntouosi cioea i ppasu: 1iceBAOAMpepeHIliaAbHe PiBHSIHHSI, TOTEHIIiaA IPOCTOrO IIapy, X-CTiKmi
BIITaAKOBMIA IIPOLIEC, TeOpeMa IIPO CTPUBOK.



