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ON SINGLE-LAYER POTENTIALS FOR A CLASS OF PSEUDO-DIFFERENTIAL

EQUATIONS RELATED TO LINEAR TRANSFORMATIONS OF A SYMMETRIC

α-STABLE STOCHASTIC PROCESS

In this article an arbitrary invertible linear transformations of a symmetric α-stable stochastic

process in d-dimensional Euclidean space R
d are investigated. The result of such transformation

is a Markov process in R
d whose generator is the pseudo-differential operator defined by its sym-

bol (−(Qξ, ξ)α/2)ξ∈Rd with some symmetric positive definite d × d-matrix Q and fixed exponent

α ∈ (1, 2). The transition probability density of this process is the fundamental solution of some

parabolic pseudo-differential equation. The notion of a single-layer potential for that equation is

introduced and its properties are investigated. In particular, an operator is constructed whose role

in our consideration is analogous to that the gradient in the classical theory. An analogy to the

classical theorem on the jump of the co-normal derivative of the single-layer potential is proved.

This result can be applied for solving some boundary-value problems for the parabolic pseudo-

differential equations under consideration. For α = 2, the process under consideration is a linear

transformation of Brownian motion, and all the investigated properties of the single-layer potential

are well known.
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INTRODUCTION

Let us consider a symmetric α-stable process (x0(t))t≥0 in the d-dimensional Euclidean

space R
d (we denote by (·, ·) the inner product in this space), that is, a Markov process with its

transition probability density given by the equality

g0(t, x, y) =
1

(2π)d

∫

Rd
ei(ξ,x−y)−t|ξ|α dξ, t > 0, x ∈ R

d, y ∈ R
d,

where the exponent α ∈ (1, 2) is fixed. The class of all symmetric α-stable processes can be ob-

tained from the process (x0(t))t≥0 by multiplying it on some positive constants. More complex

processes can be obtained in the following way.
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Let P be some invertible d × d-matrix and x(t) = Px0(t), t ≥ 0. This process is obviously

Markov process and its transition probability density is given by the equality

g(t, x, y) =
1

(2π)d

∫

Rd
ei(ξ,x−y)−t(Qξ,ξ)α/2

dξ, t > 0, x ∈ R
d, y ∈ R

d, (1)

where Q = PPT. It is clear that the process (x(t))t≥0 is stochastically equivalent to the Markov

process (Lx0(t))t≥0, where L is some lower triangular matrix which satisfies the equality Q =

LLT.

The function g is the fundamental solution of the pseudo-differential equation

∂u(t, x)

∂t
= Au(t, ·)(x), t > 0, x ∈ R

d, (2)

where operator A is a pseudo-differential operator whose symbol is given by the function

(−(Qξ, ξ)α/2)ξ∈Rd . The operator A is the generator of Markov process (x(t))t≥0.

For a given surface S, which separates R
d into two open sets D− and D+ (Rd = D− ∪ S ∪

D+) and a given continuous function (ψ(t, x))t≥0,x∈S, we consider a function

v(t, x) =
∫ t

0
dτ

∫

S
g(t − τ, x, y)ψ(τ, y)dσy , t > 0, x ∈ R

d,

where the inner integral is a surface one. The function v is called a single-layer potential on

the surface S with the density ψ for equation (2).

In this article, we determine the existence conditions of the single-layer potential and inves-

tigate its properties. The case of Q = c2/α I (c > 0 and I is a unit d × d-matrix) was considered

in article [3]. We will use several methods from [3]. In the case of α = 2, the theory of single-

layer potentials is well-known (see, for example, [2]).

1 SOME AUXILIARY RESULTS

1.1 The function g

The function g defined above by formula (1) is continuous on the domain t > 0, x ∈ R
d,

y ∈ R
d, and is uniformly continuous on each set of the type (t, x, y) ∈ [τ,+∞)× R

d × R
d with

τ > 0. The following estimations of g and its derivatives are known (see [1, Ch.4]):

|Dkg(t, ·, y)(x)| ≤ Nk
t

(t1/α + |y − x|)d+α+k
, t > 0, x ∈ R

d, y ∈ R
d; (3)

|Dκg(t, ·, y)(x)| ≤ Ñκ

1

(t1/α + |y − x|)d+κ

, t > 0, x ∈ R
d, y ∈ R

d.

Here Dk means a differential operator of the order k (k = 0, 1, 2, ...), Dκ means a pseudo-

differential operator with a homogeneous symbol (pκ(ξ))ξ∈Rd of the order κ which has all

derivatives of the orders l < M with some M ≥ 2d +κ + α + 1 and |p(l)κ (ξ)| ≤ CM|ξ|κ−1 with

some constant CM ≥ 0 for all ξ 6= 0, and Nk and Ñκ are some positive constants.
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1.2 The operator A

An action of the operator A defined in Introduction on a smooth (with at least Lipschitz

continuous gradient) and bounded together with its derivatives function ϕ(x)x∈Rd is given by

the expression

Aϕ(x) =
qα

(det Q)1/2

∫

Rd
(ϕ(x + y)− ϕ(x)− (∇ϕ(x), y))(Q−1y, y)−(d+α)/2dy, (4)

where

qα =
αΓ((3 − α)/2)Γ((d + α)/2)

π(d+1)/2Γ(2 − α)
.

The value of the constant qα can be obtained by applying the operator A to the function ϕξ(x) =

ei(ξ,x), x ∈ R
d with some fixed ξ ∈ R

d.

1.3 An operator B

Let us introduce the operator B using its symbol (i(Qξ, ξ)α/2−1ξ)ξ∈Rd . Some simple cal-

culations lead us to the relation A = (∇, QB). The action of the operator B on a bounded

Lipschitz continuous function (ϕ(x))x∈Rd is defined by the following formula

Bϕ(x) =
qα

α(det Q)1/2

∫

Rd
(ϕ(x + y)− ϕ(x))(Q−1y, y)−(d−α)/2Q−1ydy,

where qα has the above meaning.

Let ν be some fixed ort in R
d. Consider the operator Bν = 2(Qν, B). We denote the re-

sult of its action on the function g with respect to the second argument by gν(t, x, y). Using

representation (1) of the function g and the integration by parts, it is easy to obtain the relation

gν(t, x, y) =
2

α

(y − x, ν)

t
g(t, x, y), t > 0, x ∈ R

d, y ∈ R
d. (5)

1.4 A surface of the class H1+γ

Let some surface S in R
d (a manifold of dimension d − 1) divide the set R

d into two open

sets: outer D+ and inner D− (i.e., R
d = D− ∪ S ∪ D+). Suppose that this surface has a tangent

hyperplane at each point x ∈ S. We will denote ν(x) the unit vector of the outer normal to

the surface S at the point x ∈ S. Choose the point x ∈ S and consider a local orthogonal

coordinate system with the origin at this point, such that ν(x) is the ort of its last axis. Assume

the surface S is such that for some δ > 0 each part Sδ(x) = S ∩ Bδ(x), x ∈ S, of the surface

S (here Bδ(x) is a ball with the radius δ > 0 and the center at the point x) can be described

in the mentioned above local coordinate system by the equation yd = Fx(y1, ..., yd−1) with a

single-valued function Fx.

The bounded closed surface S belongs to the class H1+γ if the function Fx has all partial

derivatives ∂Fx
∂yk

, k = 1, 2, ..., d − 1, satisfy Hölder’s condition with a power γ ∈ (0; 1) and the

constant does not dependent on x.

Among the properties of the surface S which belongs to the class H1+γ we will use the

following one (see [2, Ch.5]): there are some positive numbers δ0 and r0, and a finite set of

points x1, x2,..., xm on the surface S, such that S \ Sr0/2(x) ⊂ ∪k∈Ix
Sr0/2(xk) for each x ∈ S, and

mink∈Ix
infy∈Sr0/2(xk)

|y − x| ≥ δ0, where Ix is some subset of the indices {1, 2, ..., m}.
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2 A SINGLE-LAYER POTENTIAL

2.1 Existence conditions

Let S be a bounded closed surface of the class H1+γ with some γ ∈ (0; 1). Consider some

continuous function (ψ(t, x))t≥0,x∈S and define the function (v(t, x))t≥0,x∈Rd by the following

equality

v(t, x) =
∫ t

0
dτ

∫

S
g(t − τ, x, y)ψ(τ, y)dσy , t > 0, x ∈ R

d, y ∈ R
d, (6)

where an inner integral is a surface one. This function is called a single-layer potential on the

surface S with the density ψ. The following statement contains the conditions under which a

single-layer potential is well defined.

Lemma 1. Let S be a bounded closed surface of the class H1+γ with some γ ∈ (0; 1) and

(ψ(t, x))t≥0,x∈S be a continuous function, which satisfies the inequality |ψ(t, x)| ≤ CTt−β in

each set of (t; x) ∈ (0; T]× S with some constants β < 1 and CT > 0 (the last one can depend

on T > 0). Then, the single-layer potential (6) is finite for all t > 0 and x ∈ R
d.

Proof. Estimation (3) with k = 0 and the fact that (see [3])

∫

S

dσy

(t1/α + |y − x|)d+α
≤ Kt−1−1/α, t > 0, x ∈ R

d

with some constant K > 0 imply to the inequality

|v(t, x)| ≤ KN0CT

∫ t

0

dτ

τβ(t − τ)1/α
= KN0CTB(1 − β, 1 − 1/α)t1−β−1/α

for all t ∈ (0; T], x ∈ R
d and each T > 0.

2.2 Properties of the single-layer potential

Classically (when α = 2), a single-layer potential satisfies the appropriate parabolic differ-

ential equation in the domain (0;+∞) × (Rd \ S) (see [2, Ch.5] ). Let us prove an analogous

statement in our case (1 < α < 2).

Theorem 1. Let S be a bounded closed surface of the class H1+γ with some γ ∈ (0; 1), and

(ψ(t, x))t≥0,x∈S be a continuous function satisfying the inequality |ψ(t, x)| ≤ CTt−β in each set

of (t; x) ∈ (0; T]× S with some constants β < 1 and CT > 0 (the last one can depend on T > 0).

Then the single-layer potential (3) satisfies the equation

∂v(t, x)

∂t
= Av(t, ·)(x), t > 0, x ∈ R

d

in the domain (t; x) ∈ (0; ∞)× (Rd \ S).

Proof. It has already been mentioned that the function g is the fundamental solution of equa-

tion (2), and therefore, for all t > 0, x ∈ R
d, y ∈ R

d the equality
∂g(t,x,y)

∂t = Ag(t, ·, y)(x) holds

true. So, we only have to prove that the operator A with respect to the variable x can be moved

under the integral symbol in the right-hand part of (6) and the equality
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lim
ε→0+

∫

S
g(ε, x, y)ψ(t, y)dσy = 0,

holds true for t > 0, x ∈ R
d \ S. The last is due to estimation (3) with k = 0 and the inequality

∣

∣

∣

∣

∫

S
g(ε, x, y)ψ(t, y)dσy

∣

∣

∣

∣

≤ N0ε
|S|

(ρ(x, S))d+α
CTt−β,

where |S| is the area of the surface S, and ρ(x, S) is the distance from the point x to the surface

S.

Next, we will take presentation (4) of the operator A and prove the possibility to change

the order of integrating in the integral
∫ t

0
dτ

∫

S
ψ(τ, y)dσy

∫

Rd

g(t − τ, x + z, y)− g(t − τ, x, y)− (∇g(t − τ, ·, y)(x), z)

(Q−1z, z)(d+α)/2
dz.

Take into account that the following inequalities 1
M |z|2 ≤ (Q−1z, z) ≤ M|z|2 hold true with

some constant M > 0 for all x ∈ R
d. Divide the last integral into the sum of two integrals I1

and I2 taken from the same function: the first of them is by (0; t) ∈ S × Bε, and another is by

(0; t) ∈ S × (Rd \ Bε), where Bε is a ball of some small enough radius ε > 0 centered at the

origin.

Since for 0 < τ < t, x ∈ R
d, y ∈ S, z ∈ Bε the following equality

g(t − τ, x + z, y)− g(t − τ, x, y)− (∇g(t − τ, ·, y)(x), z) =
1

2

d

∑
i,j=1

∂2g(t − τ, x + θz, y)

∂xi∂xj
zizj

is true, where θ = θ(τ; y) ∈ (0; 1), the absolute value of the integrand in I1 is estimated by the

expression

Ctτ
−β 1

2
d2N2

t − τ

((t − τ)1/α + |y − x − θz|)d+α+2
|z|2 M(d+α)/2|z|−d−α,

where estimation (3) for k = 2 is used. Take a sufficiently small ε > 0 such that the inequality

infy∈S,z∈Bε,θ∈(0,1) |y − x − θz| = ρ0 > 0 holds true. Therefore, I1 is absolutely convergent.

The absolute value of the integrand in I2 is estimated by the expression (estimation (3) is

also taken into account)

Ctτ
−βM(d+α)/2|z|−d−α

(

N0(t − τ)

((t − τ)1/α + |y − x − z|)d+α
+

N0(t − τ)

((t − τ)1/α + |y − x|)d+α

+
N1(t − τ)

((t − τ)1/α + |y − x|)d+α+1
|z|

)

≤ Ctτ
−βM(d+α)/2|z|−d−α

(

N0(t − τ)

((t − τ)1/α + |y − x − z|)d+α
+

N0(t − τ)

(ρ(x, S))d+α
+

N1(t − τ)

(ρ(x, S))d+α+1
|z|
)

.

Observe that the second and the third terms in this expression are integrable. Consider

the integral of the first term and change the variable z into u using the equality y − x − z =

(t − τ)1/αu. We have got

N0CtM
(d+α)/2

∫ t

0

(t − τ)1+d/α

τβ
dτ

∫

S
dσy

∫

D(τ,y)
|y − x − (t − τ)1/αu|−d−α(1 + |u|)−d−αdu,

where D(τ, y) = {u ∈ R
d : |y − x − (t − τ)1/αu| > ε}. Surely, this integral converges, and for

completing the proof of the theorem, we have to use the Fubini’s theorem.
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2.3 The jump theorem

In a classical theory (with α = 2) of a single-layer potential the jump theorem takes an

essential place. It is the theorem on the jump of the co-normal derivative of a single-layer

potential. This section is devoted to an analogue of that theorem in our situation (1 < α < 2).

Lemma 2. Let the surface S and the function (ψ(t, x))t≥0,x∈S satisfy the conditions of Theo-

rem 1. Then for each t > 0 and x ∈ S the following integral
∫ t

0
dτ

∫

S
Bν(x)g(t − τ, ·, y)(x)ψ(τ, y)dσy (7)

is finite.

Proof. By equality (5), we can rewrite integral (7) in the following form

2

α

∫ t

0

dτ

t − τ

∫

S
(y − x, ν(x))g(t − τ, x, y)ψ(τ, y)dσy .

Taking into account estimation (3) and the properties of the surface S (see Section 1.1), we can

obtain for τ < t, x ∈ S, the inequality
∣

∣

∣

∣

∫

S
(y − x, ν(x))g(t − τ, x, y)ψ(τ, y)dσy

∣

∣

∣

∣

≤Ctτ
−βK((t − τ)γ/2+((t − τ)1/2+ δ0)

−d−α+1(t − τ))

≤ consttτ
−β((t − τ)γ/2 + (t − τ)),

where K > 0 is some constant and constt is some positive constant, which probably depends

on t. Hence the statement of the lemma is proved.

Remark 1. Integral (7) is called a direct value of the action result of the operator Bν(x), x ∈ S

on single-layer potential (6) at the point x ∈ S. We will denote it by B
(dv)
ν(x)

v(t, ·)(x).

The next statement is the jump theorem mentioned above.

Theorem 2. Let S be a bounded closed surface of the class H1+γ with some γ ∈ (0; 1) in

R
d, and (ψ(t, x))t≥0,x∈S be a continuous function satisfying the inequality |ψ(t, x)| ≤ CTt−β,

0 < t ≤ T, x ∈ S with some constants β < 1 and CT > 0 (the last one can depend on T) for

each T > 0. Then for each t ≥ 0, x ∈ S the following equality

lim
y→x±

Bν(x)v(t, ·)(y) = ∓ψ(t, x) + B
(dv)
ν(x)

v(t, ·)(x),

holds true, where y → x± means that y approaches x staying in some closed bounded cone

K ⊂ R
d with the vertex at the point x and K ⊂ D± ∪ {x}.

Proof. Similar to the classic case it is sufficient to consider only the case of y = x + δν(x) and

δ → 0±. Therefore, taking into account formula (5) we will obtain

Bν(x)v(t, ·)(y) =
2

α

∫ t

0

dτ

t − τ

∫

S
(z − x, ν(x))g(t − τ, y, z)ψ(τ, z)dσz

− δ
2

α

∫ t

0

dτ

t − τ

∫

S
g(t − τ, y, z)ψ(τ, z)dσz

= B
(dv)
ν(x)

v(t, ·)(x) +
2

α

∫ t

0

dτ

t − τ

∫

S
(z − x, ν(x))(g(t − τ, y, z)− g(t − τ, x, z))ψ(τ, z)dσz

− δ
2

α

∫ t

0

dτ

t − τ

∫

S
g(t − τ, y, z)ψ(τ, z)dσz .
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Denote the integrals on the right-hand side of this equality by I1 and I2 accordingly.

First, let us prove that limδ→0 I1 = 0. In order to get this proof, rewrite I1 in the form of the

sum of the following expressions

J
(1)
1 =

2

α

∫ t−ρ

0

dτ

t − τ

∫

S
(z − x, ν(x))(g(t − τ, x + δν(x), z)− g(t − τ, x, z))ψ(τ, z)dσz ,

J
(1)
2 =

2

α

∫ t

t−ρ

dτ

t − τ

∫

Sr0/2
(x)

(z − x, ν(x))(g(t − τ, x + δν(x), z)− g(t − τ, x, z))ψ(τ, z)dσz ,

J
(1)
3 =

2

α

∫ t

t−ρ

dτ

t − τ

∫

S\Sr0/2
(x)

(z − x, ν(x))(g(t − τ, x + δν(x), z)− g(t − τ, x, z))ψ(τ, z)dσz ,

where 0 < ρ < t is some constant (t is fixed), which should be chosen. We estimate each of

these expressions. Taking into account the properties of the surface S, we can obtain |(z −
x, ν(x))| ≤ |z − x|1+γ for z ∈ Sr0/2

(x). As a result, we have

|J(1)2 | ≤ Ct
2

α

∫ t

t−ρ

dτ

τβ

∫

Sr0/2
(x)

|z − x|1+γ

((t − τ)1/α + |z − x − δν(x)|)d+α
dσz

+Ct
2

α

∫ t

t−ρ

dτ

τβ

∫

Sr0/2
(x)

|z − x|1+γ

((t − τ)1/α + |z − x|)d+α
dσz.

Let z̃ be the orthogonal projection of the point z ∈ Sr0/2
(x) on the tangent hyperplane to S at the

point x. Hence, taking into account the inequalities |z − x| ≥ |z̃ − x|, |z − x − δν(x)| ≥ |z̃ − x|,
|z − x| ≥ const|z̃ − x|, where const is some positive constant that does not depend on the point

x (see [2, Ch.5]), we will obtain to the inequalities

|J(1)2 | ≤ Ĉt
2

α

∫ t

t−ρ

dτ

τβ

∫

△Kr0/2
(x)

|z̃|dz̃

((t − τ)1/α + |z̃|)d+α
dσz ≤

C̃t

(t − ρ)β
ργ/2,

where Ĉt, C̃t are positive constants that probably depend on t, and △r0/2
(x) ⊂ R

d−1 is some

bounded set. It means that △r0/2
(x) is the orthogonal projection of Sr0/2

(x) on the tangent

hyperplane to S at the point x ∈ S in the coordinate system of this hyperplane.

Next, we will estimate J
(1)
3 :

|J(1)3 | ≤ Ct

∫ t

t−ρ

dτ

τβ

∫

S\Sr0/2
(x)

|z − x|
((t − τ)1/α + |z − x − δν(x)|)d+α

dσz

+ Ct

∫ t

t−ρ

dτ

τβ

∫

S\Sr0/2
(x)

|z − x|
((t − τ)1/α + |z − x|)d+α

dσz.

Taking into account that for z ∈ S \ Sr0/2
(x) the inequalities |z − x| ≥ δ0, |z − x − δν(x)| ≥

|z − x| − |δ| ≥ δ0 − |δ| are true (choose δ to be the one that |δ| < δ0), we will have

|J3
(1)| ≤ Ĉt(δ0 − |δ|)−d−α

∫ t

t−ρ

dτ

τβ
.

Thus, the sum J
(1)
2 + J

(1)
3 can be made as small as we want by choosing ρ > 0.
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Now, consider J
(1)
1 . Since the function g(t− τ, x, z) is uniformly continuous in the sets of the

type (τ, x, z) ∈ [0; t − ρ]× K1 × K2, where K1 and K2 are some compacta in R
d, and taking into

account the integrability of the function ψ on [0; t − ρ]× S and the boundary of the function

(z − x, ν(x)) as the function of z on S, we will obtain that limδ→0 J
(1)
1 = 0. Therefore, I1 → 0 as

δ → 0.

Now, consider the behavior of I2 as δ → 0. Put I2 in the form of the sum of the following

expressions

J
(2)
1 =

2

α
δψ(t, x)

∫ t

t−ρ

dτ

t − τ

∫

Sε(x)
g(t − τ, x + δν(x), z)dσz ,

J
(2)
2 =

2

α
δ
∫ t

t−ρ

dτ

t − τ

∫

Sε(x)
g(t − τ, x + δν(x), z)(ψ(τ, z) − ψ(t, x))dσz ,

J
(2)
3 =

2

α
δ
∫ t−ρ

0

dτ

t − τ

∫

Sε(x)
g(t − τ, x + δν(x), z)ψ(τ, z)dσz ,

J
(2)
4 =

2

α
δ
∫ t

0

dτ

t − τ

∫

S\Sε(x)
g(t − τ, x + δν(x), z)ψ(τ, z)dσz ,

where ρ > 0, ε > 0 are rather small constants.

Let us estimate each of these terms. We start with the last one. Taking into account the

properties of the surface S, there are numbers l0 (natural) and p0 > 0, such that we can find

points xk ∈ S \ Sε(x), k = 1, 2 . . . , l0 that S \ Sε(x) ⊂ ∪l0
k=1Sr0/2

(xk) and

inf|ξ|≤|δ| infz∈Sr0/2
(xk)

|z − x − ζν(x)| ≥ p0. Then estimation (3) implies

|J(2)4 | ≤ 2

α
CtN0|S|l0|δ|

∫ t

0
τ−β((t − τ)1/α + p0)

−d−αdτ → 0, δ → 0.

Similarly, using inequality (3) we will get

|J(2)3 | ≤ 2

α
|δ|Ct N0

∫ t−ρ

0

dτ

tβ

∫

Sε(x)

dσz

((t − τ)1/α + |z − x − δν(x)|)d+α

≤ 2

α
|δ|Ct N0|S|

∫ t−ρ

0

dτ

tβ(t − τ)1+d/α
→ 0, δ → 0.

Here |S| means the area of the surface S like mentioned above.

Now, prove the existence of a limit of J
(2)
1 as δ → 0. By the way, it means that by choosing

ρ > 0 and ε > 0 the term J
(2)
2 can be made as small as you like. It is sufficiently to note that the

function ψ is uniformly continuous on the set [t − ρ; t]× Sε(x). Denote the tangent hyperplane

to the surface S at the point x ∈ S by Πx, and consider

R =
2

α
δ
∫ t

t−ρ

dτ

t − τ

∫

Πx

g(t − τ, x + δν(x), z)dσz .

To prove that limδ→0(J
(2)
1 − ψ(t, x)R) = 0, consider

δ
∫ ρ

0

dτ

τ

(

∫

Sε(x)
−

∫

Πx

)

g(τ, x + δν(x), z)dσz

= δ
∫ ρ

0

dτ

τ

(

∫

Sε(x)
−

∫

Πx

)

g(τ, x + δν(x), z)dσz

− δ
∫ ρ

0

dτ

τ

∫

Πx\Πε(x)
g(τ, x + δν(x), z)dσz

= J ′ + J ′′,
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where Πε(x) is the orthogonal projection Sε(x) on Πx. Taking into account the properties of

the surface S, it is easy to see that there is a constant θ > 0 such that for all z ∈ Πx \ Πε(x) the

inequality |z| ≥ θ is true. Therefore the following estimation

|J ′′| ≤ C|δ|ρ
∫ ∞

θ

rd−2dr

(δ2 + r2)(d+α)/2
= Cρ

∫ ∞

θ/|δ|

rd−2

(1 + r2)(d+α)/2

dr

|δ|α

holds true with some constant C > 0. As a result, taking L’Hôpital’s rule, we will obtain that

J ′′ → 0 as δ → 0.

In order to estimate J ′ let us transfer it to the local coordinate system with its origin at the

point x and the vector ν(x) as the ort of its last axis. We have

Sε(x) = {u ∈ R
d : ud = Fx(u

<d>), u<d> ∈ Dε(x) ⊂ R
d−1},

Πε(x) = {u ∈ R
d : ud = 0, u<d> ∈ Dε(x) ⊂ R

d−1},

where Dε(x) is some bounded closed set depended only on properties of the surface S, u<d>

is the vector (u1, u2, ..., ud−1), and Fx is some single-valued function with Hölder continuous

gradient (see Section 1.1) with power γ ∈ (0; 1). Talking into account inequality (3), it is not

difficult to state that

|J ′| ≤ K|δ|
∫ ρ

0

dτ

τ

∫

Dε(x)

τ|u|γ(1 + |u|γ)du

(τ1/α + k
√

|u|2 + δ2)d+α

≤ K̂|δ|
∫ ρ

0
dτ

∫ ε0

0

rd−2+γdr

(τ1/α + k
√

r2 + δ2)d+α
,

where K > 0, K̂ > 0, k > 0, ε0 > 0 are some constants. Changing the order of integration in the

last integral and taking into account the equality
∫ ∞

0
dτ

(τ1/α+a)d+α = αB(d, α)a−d that is correct

for all a > 0, we will obtain the estimation

|J ′| ≤ K̃|δ|
∫ ε0

0

rd−2+γdr

(
√

r2 + δ2)d
≤ K̃

∫ ∞

0

rd−2+γdr

(
√

r2 + 1)d
|δ|δ

with some constant K̃ > 0. Therefore J ′ → 0 as δ → 0 and limδ→0(J
(2)
1 − ψ(t, x)R) = 0. Thus,

we have to prove the existence of limδ→0± R and to find it. In order to prove this we will take

the equality proved in [3] (ν̂ is a fixed ort in R
d)

∫

Π
hd(x + λν̂)dσx =

1

π

∫ ∞

0
e−crα

cos λrdr, (8)

where λ ∈ R
d, Π = {x ∈ R

d : (x, ν̂) = 0} and hd(x) = (2π)−d
∫

Rd ei(x;ξ)−c|ξ|αdξ, x ∈ R
d.

Therefore, after simple transformations related with the changing of the variables in the sur-

face integral, we will obtain the equality

I =
∫

Πx

g(t, x + δν(x), y)dσy = t−1/α
∫

Π
hd(z − δt−1/αν̂)dσz,

where Π = {z ∈ R
d : (z, ν̂) = 0}, ν̂ is some ort in R

d. Equality (8) implies
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I = t−1/α 1

π

∫ ∞

0
e−crα

cos rδt−1/αdr =
1

π

∫ ∞

0
e−ctrα

cos rδdr.

Thus,

R =
2

απ
δ
∫ t

t−ρ

dτ

t − τ

∫ ∞

0
e−c(t−τ)rα

cos δrdr.

By changing the order of integration in this integral, we obtain the equality

R = signδ − 2

π

∫ ∞

0
e−cρrα sin δr

r
dr

and, therefore, we have that limδ→0± R = ±1. Hence, limδ→0± J
(2)
1 = ±ψ(t, x), t > 0, x ∈ S

and the theorem has been proved.

2.4 The single-layer potential with a hyperplane as a carrier

Let S be a hyperplane defined by the equation (x, ν) = r, where ν ∈ R
d is some unit

vector, and r ∈ R is a fixed real number. Let the function (ψ(t, x))t≥0,x∈S be continuous as

mentioned above, and the inequality |ψ(t, x)| ≤ CTt−β be true for all 0 < t ≤ T, x ∈ S and

each T > 0. Here the constant CT > 0 probably depends on T and β < 1. Taking into account

inequality (3), we obtain the estimation
∫

S g(t, x, y)dσy ≤ Kt−1/α, t > 0, x ∈ R
d and for the

fixed x ∈ R
d \ S we have

∫

S g(t, x, y)dσy ≤ Mt, t > 0, where K > 0 is some constant, and

M > 0 is the constant depending on x. This, is analogous to the previous, one can state that

the statements of Lemma 1 and Theorem 1 are true in this case (S is a hyperplane) as well.

Furthermore, formula (5) shows that gν(t, x, y) = 0 for all t > 0, x ∈ R
d, y ∈ R

d. Therefore,

the equality B
(dv)
ν(x)

v(t, ·)(x) = 0, t > 0, x ∈ S holds true. Thus, an analogue of Theorem 2 is

valid.

Theorem 3. Let S be a hyperplane with a unit normal vector ν ∈ R
d and (ψ(t, x))t≥0,x∈S be a

continuous function satisfying the following inequality |ψ(t, x)| ≤ CTt−β, 0 < t ≤ T, x ∈ S

with some constants β < 1 and CT > 0 (the last one can depend on T) for each T > 0. Then

for all t > 0, x ∈ S the following relations

lim
y→x±

Bνv(t, ·)(y) = ∓ψ(t, x)

hold true, where y → x+, (or y → x−) means that y → z in the way that (y − x, ν) > 0 (or

(y − x, ν) < 0).

Proof. The proof of this theorem repeats the proof of Theorem 2 with some simplification.
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Мамалига Х.В., Осипчук М.М. Потенцiали простого шару для одного класу псевдодиференцiальних

рiвнянь пов’язаних з лiнiйними перетвореннями симетричного α-стiйкого випадкового процесу //

Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 350–360.

Стаття присвячена дослiдженню невиродженого лiнiйного перетворення симетричного α-

стiйкого випадкового процесу в евклiдовому просторi R
d. Результат цього перетворення є

процесом Маркова в R
d, чий твiрний оператор задається символом (−(Qξ, ξ)α/2)ξ∈Rd з де-

якою симетричною додатно визначеною d × d-матрицею Q та фiксованим α ∈ (1, 2). Щiль-

нiсть ймовiрностi переходу цього процесу є фундаментальним розв’язком деякого параболi-

чного псевдодиференцiального рiвняння. Вводиться поняття потенцiалу простого шару та

дослiджуються його властивостi. Зокрема встановлено оператор, який вiдiграє роль градiєнта

в класичнiй теорiї. Доведено аналог класичної теореми про стрибок конормальної похiдної

потенцiалу простого шару. Ця властивiсть потенцiалу простого шалу може бути використана

для побудови розв’язкiв деяких крайових задач для розглянутих параболiчних псевдодифе-

ренцiальних рiвнянь. Якщо α = 2, розглянутий процес є лiнiйним перетворенням процесу

броунiвського руху i всi дослiдженi властивостi потенцiалу простого шару добре вiдомi.

Ключовi слова i фрази: псевдодиференцiальне рiвняння, потенцiал простого шару, α-стiйкий

випадковий процес, теорема про стрибок.


