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ESTIMATES OF APPROXIMATIVE CHARACTERISTICS OF THE CLASSES B’% OF
PERIODIC FUNCTIONS OF SEVERAL VARIABLES WITH GIVEN MAJORANT OF
MIXED MODULI OF CONTINUITY IN THE SPACE L,

In this paper, we continue the study of approximative characteristics of the classes 339 of peri-
odic functions of several variables whose majorant of the mixed moduli of continuity contains both
exponential and logarithmic multipliers. We obtain the exact-order estimates of the orthoprojec-
tive widths of the classes B?ﬁ in the space Ly, 1 < p < g < oo, and also establish the exact-order
estimates of approximation for these classes of functions in the space L, by using linear operators
satisfying certain conditions.
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INTRODUCTION

Let R?,d > 1 denote d-dimensional space with elements

x=(x1,...,x3), (x,y) =x1y1+ ...+ X3y
and let Ly(7y), 1 < p < oo, be the space of functions f(x) = f(x1,...,x4), which are 27-
d
periodic in each variable and summable in degree p on the cube 7t; = [T [0; 27t] for which the

j=1
norm is defined as follows:

ALy () = [1fllp = ((27T>d/|f(x)|pdx) :

Respectively, Lo (777) is the space of essentially bounded functions f(x) = f(x1,...,xy),
which are 271- periodic in each variable, with the norm

1AL (mg) = [Iflleo = esssup | f(x)].

XETT,
Further, we assume that, for functions f € L,(7,), the following additional condition holds:

27 S
A f(x)dx; =0 j=1,d.
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For f € Ly(my),1 < p < oco,and t = (t1,...,ta), t; > 0,j = 1,d, we consider the mixed
modulus of continuity of the order I
Qy(f,t)p = sup HAilf()Hp,
hj|<t;
j=14
where € N, Al f(x) = A;ll e A;ldf(x) = A;ld(. . (Aillf(x))) is a mixed difference of the order

I with a vector step h = (hy,...,hy), and the difference of the Ith order with a step hj in the
variable X is defined as follows:

1

A;l]f(x) = Z (—1)1_”C?f(x1, ey x]-,l, X]' + nh]-, xj+1, . ,Xd).
n=0

Let Q(t) = Q(#y, ..., tz) be a given function of the type of a mixed modulus of continuity
of the order /, which satisfies the following conditions:

_ d
1) Q) >0,t>0,j=1dQ(t) =0, [Tt =0;
j=1

2) Q(t) is nondecreasing in each variable;

d 1
3) Q(mltl,...,mdtd) < < H m]> Q(t), m] - N,j = 1,d;
j=1

4) Q(t) is continuous for ti>0,j=1,d.

We assume that )(t) satisfies also the conditions (S) and (S;), which are called the Bari-
Stechkin conditions [1]. This means the following.

A function of one variable ¢(7) > 0 satisfies the condition (S) if ¢(7)/7* almost increases
for some & > 0, i.e., there exists a constant C; > 0 independent of 71 and 7> and such that

M<C1¢(Tz) 0<n<n<l

® x 7
’l’l T2

A function ¢(7) > 0 satisfies the condition (S;) if ¢(7)/T" almost decreases for some
0 < v <, ie., there exists a constant C, > 0 independent of 71 and 7, and such that

&?ECQ&?, 0<ug<n<l
T T
1 2

We say that Q)(t) satisfies the conditions (S) and (S;) if Q)(¢) satisfies these conditions in
each variable ¢t; for fixed t;, i # j.

Thus, let 1 < p < oo, 1 < 6 < o0, and let Q)(¢) be a given function of the type of a mixed
modulus of continuity of the order /. Then the classes ng are defined in the following way [21]:

B = {f € Ly(ma) : [flgo, <1},

0 4 ) %
||fHB§19:{/<%> Hdt—?} , 1<60<oo,

Uuvi ]:1

where
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N(f,t)p
1fllgo, =sup —= <~
By =0 Q)
(the expression t > 0 for t = (t1,...,t;) is equivalent to ti>0,j= 1,4).
We note that, for 6 = oo, the classes B?Q coincide with the classes HS, which were consid-
ered by N.N. Pustovoitov in [13].
In the subsequent, it will be convenient to use the equivalent (to within absolute constants)

definition of the classes B?Q. For this purpose, we need the corresponding notations.

To every vector s = (s1,...,54), sieEN, j= 1,d, we put the set

s)={k=(ky,... . kg): 251 < |kj| <2%,k; € Z,j=1,d}

in correspondence, and, for f € L,(74),1 < p < oo, we denote

-~

where .
= (2m)~ / F(E)e kb gt
Ty

are the Fourier coefficients of the function f.

Letl < p < oo, 1 <6 < ooand let ()(t) be a given function of the type of a mixed modulus
of continuity of the order I that satisfies the conditions 1 -4, (S) and (S;). Then, to within
absolute constants, the classes ng can be defined as follows [21]:

1
g
By = {/ € Lyl g, = (ZO ). <f>||z) <1f )
forl1 <60 < oo and
145 (A
B = {1 € Lyl Iflgp, = sup o202 <1}, ®
Here and below, Q(27°) = Q(271,...,27%),5; € N, j = 1,d.
The given definitions of the classes B?e can be extended also to the extreme values p = 1

and p = oo, by modifying the "blocks" Js (f) in (1) and (2). Let V, () stand for a Vallée-Poussin
kernel of the order 2n — 1, i.e.,

2n—1 k—mn
V()—l—l—ZZcoskt—i-Z ) (1—T>coskt.

k=1 k=n+1

To every vector s = (s1,...,84),5; € N,j = 1,d, we put the polynomial

4.0 =TT (Vi ) = Vy )
[

in correspondence. For f € L,(74),1 < p < o0, by As(f) we denote the convolution

As(f) i= As(f,x) = (f * As) ().
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Then, to within absolute constants, the classes B, 1 < p < oo, can be defined as follows:

p.6”

1

%e—{fGLAW)HﬂW>—<ZK) H%(Hﬂ) Sl} 3)

forl1 <0 < ocoand

Bl = {1 € L) [ lsp, —sup 20 <1}, n

We note that relations (3) and (4) were obtained in works [18] and [13], respectively.
d .

We note also that, for Q(t) = [] t]r.’ ,0<r < 1, the classes B?Q are analogs of the well-
:1 7

known Besov B;/e, 1 < 6 < o0, and Nikol’skii B;/OO = H; classes (see, e.g., [8]).
In what follows, we study the classes ng that are defined by the function Q():

d £
——LT,ﬁg>Qj:L¢
_ — (logt)
Q) =Qt, ... ta) = ] (5)
0, if T[t;=0.
j=1

Here and below, we consider the logarithms with base 2, and

<logtl]_> = max {1,logtlj} .
+

In addition, we assume that b]- €eR,j= 1,d,and 0 < r < 1. Hence, properties 14 and the
conditions (S) and (S;) are satisfied for the function Q)(t) of the form (5).

In the present paper we obtain the exact-order estimates of orthoprojective widths of the
classes ng in the space L;,1 < p < g < co. We recall that the notion of orthoprojective width
was introduced by V. N. Temlyakov [23].

Let {u;}M, be an orthonormalized system of functions u; € Leo(7y), f € Lg(ma),
1 < g < 0. We set

(Fu) = @) [ flx)m ()

where 1; is the function complex conjugate to the function u;.

To every function f € Ly(74), 1 < g < 00, we put an approximation of the form Z (f, ui)u;
i=1
in correspondence, i.e., the orthogonal projection of the function f onto the subspace generated

by the system of functions {u;},. Then, for the functional class F C Ly(74), the quantity

f= qu

is called the orthoprojective width (the Fourier-width) of this class in the space L, (7t4).
In addition to orthoprojective widths, we study the quantities d%;(F, L,) introduced by V.N.
Temlyakov [22]). They are defined as follows:

dyi(F,Lg) = inf sup (6)

{uidtly feF

q
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d8(F,L,) = inf su —Gfl.. 7
m(F Lg) GeLM(B)quFNI;’(G)Hf fllg ()

Here, Lj1(B), stands for a set of linear operators satisfying the conditions:

a) the domain of definition D(G) of these operators contains all trigonometric polynomials,
and their domain of values is contained in a subspace with dimension M of the space

Lq(”d)}

b) there exists a number B > 1 such that, for all vectors k = (ky, ..., k), k; € Z,j = 1,d, the
inequality HGei(k”) Hz < B holds.

We note that Ly;(1)2 contains the operators of orthogonal projection onto the spaces with
dimension M and the operators that are set on an orthonormalized system of functions with
the help of the multiplier defined by a sequence {A,, } such that |A,,| < 1 for all m.

From (6) and (7), it is easy to see that the quantities dy;(F, Ly) and dB (F, L;) are connected
with each other by the inequality

d5i(F,Ly) < dy(F, Ly). (8)

At present, a lot of works are known, in which the quantities dy;(F, L) and d%,(F, L;) were
studied for various classes of functions. We mention works [14,16,17,22,24], where the quan-
tities (6) and (7) were considered for the classes of functions of many variables Wy« Hp, B;IQ,
and H? (see also numerous references therein). The quantities dI%A(B;%, Ly) and d]%[(B?,e, L)
for the classes of functions of many variables with a given function () of the form (5) under

the condition bj <r,j =1,d, were considered in works [4-7].

1 AUXILIARY ASSERTIONS

We now give several known assertions, which are used in the subsequent considerations.
As was noted above, ()(t) is a function of the form (5). For a natural N, we set

) _ 1
x(N) = {s = (s1,...,84) : sieN, j=1,4d, Q2% > N},

QN) = U ols)-
sEX(N)

We note that the approximation of certain classes of periodic functions of many variables
with mixed generalized smoothness by trigonometric polynomials with "numbers" of harmon-
ics from the sets that are analogs of Q(N) was started in work [15]. Later, the approximations
by trigonometric polynomials with "numbers" of harmonics from the sets Q(N) were studied
in works [4], [19], [20] and other ones.

The following proposition is true.

Lemma 1 ([14]). For the number of elements of the set Q(N), the following ordinal equalities
hold:

b b
T+v-1

IQ(N)| = N7 (logN) 7"~ ,
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ifblS...Sby<7’<bv+1§...§bd,'

b

b
[Q(N)| < N7 (logN) ™7,
I'fTSblS...de, b2>1’.

Here and below, the notation y1 < pyp for positive functions y1(N) and pp(N) means that
there exists a constant C > 0 such that, VN € IN, the inequality y#1(N) < Cuy(N) holds.

The relation p; =< pp holds if py; < pp and pg > up. We note also that all constants C;,i =
1,2,..., which are used in what follows, can depend only on parameters that are contained in
the definitions of a class and a dimension d of the space R".

To formulate the following assertions, we note that, according to (5), the definition of a set
X (N) takes the form

Therefore,

Let

. 1 _ 1
O(N) = {s = (s1080): 5 €N j=T1d, S0 <0(27) < N}'

In work [11], it was established that the number of elements of the set @(N) satisfies the
ordinal equality

©(N)| = (log )™

Lemma 2 ([14]). For the function Q)(t) defined by equality (5) for0 < B < r,0 < p < oo the

relation
2 (Q( 2H Hlﬁ < Z 2H H1!3)
s€x+(N) s€Q( )

holds, where ||s||; = s1 + ...+ 354, 5; € N.

Lemma3 ((14]). If y1 <... <7 <1<9,11 <...< 7y then

) Hs T = (log N) el
s€O(N) j=
If 1<y <...<794 72>1, then
) Hs "< (logN) ™"

s€®(N)j=

Lemma 4 ([22]). Let1 < p < g < oo and f € L,(7). Then

1.1 q
|!f|\q<<2<|\5s Hlly sl (3 q)) _
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Lemma 5 ([24]). Let A be the linear operator given by the equality
‘ M
A = N (),
m=1

where {i,(x) }Zzl is the set of functions for which
lom()2 <1, m=1,..., M.
Then, for any trigonometric polynomial t, the following inequality holds:
1
M 2
min Re At(x —y) < (M Yo ) ]a]fn?(k)F) :
y=x m=1 k

Theorem 1 ([10]). Let Ty, be a trigonometric polynomial of the order n = (ny,...,1y), i.e.,

Tu(x)= ) ... ) Cy, g0

lki|<ny  |kgql<ng

where nj, j = 1,d are natural numbers, and Ck,,...k, are any coefficients. Then, for1 < p < g <
oo the inequality

'mb—‘
Q\)—‘

d
ITully < zd(nn]-) ITull, ©)

j=1

holds.

Inequality (9) was established by S. M. Nikol’skii and is called the "inequality of different
metrics". In the one-dimensional case for p = oo, the corresponding inequality was proved by
D. Jackson [3].

Theorem 2 (Littlewood-Paley theorem; see, e.g., [9], p. 65). Let p € (1,00). Then there exist
positive numbers C3(p) and C4(p) such that, for every function f € L,(m;), the following

relations are true:
l

(o)

2 MAIN RESULTS

Ca(p)IIfllp < < CIfllp -

p

Passing to the statement of the propositions and their proof, we assume that M = |Q(N)|.
First, we consider case by < ... < b, <r < b,y < ... < b;. Then, according to Lemma 1, we

have

b v
M = N%(logN)_Tl_'"_ijLV_1

logM = logN, N = M’ (logM)" 0= 1r,

The following theorem is true.
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Theorem 3. Let1 < p < g < 0,9 < 0 < oo, and let Q)(t) be a function of the form (5). Then,

for%—%<r<l,b1§...§bv<ﬁ<b,/+1S...de,therelations
g

—bhy—. — _ 142 1
A (B, Lg) = dy (B, Ly) = M7 (log M) 0" D(=3+3-1) (10)

hold.

Proof. First, we establish the upper bounds in (10). According to (8), it is sufficient to obtain
the upper bound for the orthoprojective width d3; (B;%, Ly).

For this purpose, we consider an approximation of the functions f € BSG by trigonometric
polynomials 4y of the form

tony () = ), &s(f, %)

sex(N)

Let go be any number that satisfies the condition p < g0 < g.
Then, using Lemma 4, and the relation

16s(F ) llg0 = N1 As(F)llgo, T < go < oo,

for f € ng we have

Y. &(f)

sex*(N)

If — tom g = Hf— x o)

x(N) q

q

<=

<<( Y 5s<f>202“<;°”q) x( L As<f>|202“(mq) -n

sex+(N) sex(N)

Then, applying to As(f) the Nikol’skii inequality of different metrics, we continue the esti-

mate as follows:
1

L < ( Z As(f)|zzsl(il"110)q251(’710$>q) = ( Z |As(f)|t’77251(;;>q)

sex+(N) x*+(N)

( )3 0q<25>|As<f>zm<zs>z“<%W)q12.

sext(N)
Using first the Holder inequality with index g and then Lemma 2, we get
1 0—q

L<| T oafeoanl] | T (mzsp'sh(é—é))”
N) sexL(N)

g
sex(
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< ( Z (Q(25)251<;}1)>m)9q <N1( Z 251(;1,”9%)

s€O(N) s€O(N)

£
|
&

|
=

Is.

Taking into account that, for s € ®(N),

b:

d
1 _
olslh = N7 | Is]. ,
j=1

~|S

and using Lemma 3, we have

Thus, in view of the definition of orthoprojective width, the above reasoning gives the upper
bound for dﬁ(Bi}/e, L;), and, respectively, for the quantity dfd (B;%, Ly).

Let us find the lower bounds in (10). Since inequality (8) holds, it is sufficient to obtain the
lower bound for the quantity d%, (B;%, Ly).

With the help of the reasoning analogous to that in [12], we can prove the existence of a set
©1(N) C O(N) such that, fors = (s1,...,54) € O1(N), the following relations are satisfied:

si<logN, j=1,d and |@;(N)| = (logN)dfl.
Also we can assert that there exists a set
@g’/)(N) ={s€O(N):sjxlogN, j=1,...,v,5;=1,j=v+1,...,d}

such that
@ (N)| < (logN)"™"

Consider the set Q(N) = U p(s). By T(Q(N)) we denote the set of trigonometric
se@l(N)
polynomials with the "numbers" of harmonics from @(N ).
Let K, be the Fejér kernel of the order 1, i.e.,

Ku(t) =) (1_ n@l) oikr

k| <n
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We set .
a@= Y kM@ I ¢
se@l"(N) j=v+l

where
v

}CS(’V) (x) = 111 eikj]xi[<25r2 (x].),
]:

Py { 251‘—1_'_25]‘—2, Z 2’

S‘
K = j =
] 1, si=1j=1v.

Suppose that the operator G belongs to Lys(B);,1 < g < co. Consider the operator A =
S o N)G, where S A(N) is the operator of taking partial Fourier sum corresponding to the set

Q(N). Then A € L M(B); and the domain of values of the operator A is a subspace Ay of
the space T(Q(N)), whose dimension dim Ay; = M < M. It follows from Theorem 2 that for

f € T(Q(N)), the following relation is satisfied:

If = Afllg < IIf = Gfllg-

Consider the quantity
I'=sup|[gi(x —y) — Agi(x — )l
y

Obviously,

I'2 §1(0) — min ReAg; (x —y).

Using Lemma 5, we obtain

1

2 ~
min Redg1(x —) < MB( LIgi0) < MBI )
- k
Further, taking into account the relation
-1
O} (N)] = (logN)" ™,
as well as , .
lo(s)| = 2/kslh < N (logN) 7 T se @gv)(N),
we can write
1 S R |
|IQ(N)| < N7 (logN) 7 ’ (12)
On the other hand,
1 Sh gy«
g1(0) < N7 (logN) "7 771 < |Q(N)]. (13)

Using (11) and (12), we can chose a number N so that |Q(N)| =< M and the right-hand side
of (13) will be at least twice as large as the right-hand side of (11).
For some y* = (vj,...,y}), for this N we have

g1(x —y*) — Ag1(x =y ) [lo > M. (14)
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Consider the function

by by

1
g (x) = CsN 1 (N%(longT*'"*T) " (logN) 7 g1(x), Cs5 > 0.

We now show that, at the corresponding choice of the constant Cs, this function belongs to the
class B?(). Indeed, since

for the Fejér kernel, we have

Thus, we can write

D=

ngHng = <Zﬂ_9(2_s)|\As(gz)Hfa>

%
1

< N_1<Nr(logN)b71 hr”)”_l(logN) 7 Y. o)Al

T s\s/llp (15)

s€0; (N
1 1
b by L1 1 6
< <Nr(logN)7717 7’>p (logN) 7 (Z): olisli (1-3)e =1
sE@lv (N)

B (16)

N —rd
< (N7 (logN) 7 ) @[ (N)[F < (logN) "7 (1ogN) T = 1.

By comparing (15) and (16), we may conclude that g, € ng with the corresponding constant

Cs > 0.
It was established in work [14] that for t € T(Q(N)), the following estimate is satisfied:

b by L _ 1
[|H]] 0 < Ht”q<N%(10gN)7717“'77>q(logN)(V 1)(1 }1)
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Taking into account the last relation and using estimate (14), we get

182(x —y*) — Gga(x —y7) I,
-1 1 S —1 %7 —v5l * *
> N (Nr(logN) ’ ’) (logN) 7 [lgi(x —y") = Ggi(x —y")ll,

byy -1 vl
) (l0gN) T i (x— ) — Agi(x =y,

_ M77+%*% ( log M) 71717...7171/4’(1/*1) (7‘7%%»%7%) ‘
The lower bounds in (10) are established. Theorem 3 is proved. O

In the following proposition, we consider other relations for the numbers r, by, ..., b;. Let
r <by <...<by by > r.Inthis case, by Lemma 1, we obtain

b

1 _h
M = Nr(logN) 7,
logM =< logN, NxMr(logM)b1

Assume that
blz...:bv<bv+1§...§bd.

Then, for v = 1, the inequality r < b; < by holds. But v > 2, then by > r.

Theorem 4. Letl <p < q < 00,4 < 6 < oo, and let Q)(t) be a function of the form (5). Then,

for - — = < r<l, by >+ the order estimates
F’

111 b
dir(BSY, Ly) =< dRy(BYy, Lg) < M™""777 (log M) (17)

hold.

Proof. For g < 6 < oo, the embedding BQ C HQ is valid. Therefore, the upper bounds in (17)
follow from the corresponding estimate 1:lL (ng), L;), proved in [14].

To get the lower bounds in (17), it is sufficient to get the corresponding lower bound for the
quantity d% (B¢} norLa)-
We choose a vector § = (51,...,5;) € O(N) so that

§1X10gN, 52:...:§d:1,

and set
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where k¥ = (2571 +2%72,1,...,1).
Suppose that the operator G belongs to Ly(B);,1 < g < co. Consider the operator A =
S,(s)G, where S, s) is the operator of taking partial Fourier sum corresponding to the set p(3).

Taking into account that
b

2l = N7 (log N) 7,

and using lemma 5, we get

1

2 TN _bh
min ReAgs (x — y) < M%B<Z |§3(k)|2> < ME(2I1)2 < MENT(logN) 7. (18)
y=x p
On the other hand,
z 1 _h
23(0) < 25 < N7 (logN) ™7 (19)

Therefore, we can chose a number N so that |Q(N)| < M and the right-hand side of (19)
will be at least twice as large as the right-hand side of (18). For some y* = (v;,...,y}), for this
N we have

lg3(x —y*) — Agz(x =y )[lo > M. (20)
Consider the function

ga(x) = CeN 1219 G gy (1), G > 0.

We now show that, at the corresponding choice of the constant Cg, the function g4 belongs to
the class Bli)g.
Indeed, in view of the properties of the Fejér kernel, we have

D=

Isl150, = <20-9<2-5>||As<g4>||2) < N2 G (009 As(ss)11)

< 2\|§\|1(%*1) 1As(g3)l, = 2H§|\1(%*1)2H§|\1(1*%) -1

Hence, g4 € BSQ with the corresponding constant Cg > 0.
It was established in work [14] that for a trigonometric polynomial ¢ with "numbers" of
harmonics from the set p(3), the following relation is satisfied:

l15]11

[[Elleo < 1[E[g2 7

Taking into account the last relation and using estimate (20), we get
5, (1
Iga(x —y*) = Ggalx — ), > N2 G jga (x — ) — Gaa(x =),

N—12\|§\|1(%*1) Y~ A r
> 1g3(x —y*) — Ags(x —y7)l|,

K

\
7 |lga(x —y") — Ag(x — ¥ )|l
- 1MzMiH%f%(logM)*bl.

> N1l (G-1),

1_
q

> M~ (logM) "M?
The lower bounds in (17) are established. Theorem 4 is proved. O
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Remark 1. Results, corresponding to Theorems 3 and 4, but for the classes ng in the space
L, are obtained in [2].

Remark 2. The analogues of Theorems 3 and 4 for the classes H? are obtained by N.N. Pus-
tovoitov in [14]. Moreover, if the conditions of Theorem 4 are satisfied, the ordinal relations

dyi(Bylg, Lg) = dig(Bylg, Lg) = dig(Hy, Lg) = dyg(H}, Lg)

hold. In other words, the orders of the quantities d]{/l(ng, Ly) and df/l(ng, L,) are indepen-
dent on the parameter 0.
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Deayruk-Spemuyk O.B., Tembapcbka C.b. Oyinku anpoxcumMamusHux XapaKkmepucmux Kaacie Bgo ne-
pioduuHux pyHKYill 6a2ameox 3SMIHHUX i3 300AHOI0 MANHCOPAHMON MIUAHUX MOOY.1i8 HenepepsHOCHI I npo-
cmopi Ly // Kapnarchbki maTeM. my6a. — 2019. — T.11, Ne2. — C. 281-295.

B poboTi MPOAOBXKYETHCSI BUBUEHHST allPOKCUMATUBHMX XapaKTEPUCTHUK KAacis B;),e nepioau-
yHMX (PYHKIIi baraTbox 3MiHHMX, Ma>kKOpaHTa MilllaHMX MOAYAIB HellepepBHOCTI SIKMX MICTUTb SIK
CTeneHeBi, Tax i Aorapudpmiuni MHOXHMKY. OAep>KaHO TOUHI 3a IOPSIAKOM OLiHKM OPTONPOEeKLIili-
HMX TMOMIePeYHMKIB KAaciB Bge y mpoctopi Ly, 1 < p < g < 00, a TAaKOX BCTAHOBAEHO TOUHI 32
TIOPSIAKOM OLLHKM HabAVDKEHHS X KAACiB YHKIIiA y mpocTopi Ly 3a AOOMOTOIO AiHilHMX OrTe-
paTopiB, sIKi MATOPSIAKOBaHi IeBHMM yMOBaM.

Kntouosi crosa i ¢ppasu: OpTONPOEKILHII IONepeYHMK, MilllaHMiI MOAYADb HellepepBHOCTI, Ai-
HiViEVI oneparop, 1apo Baane-Ilyccena, ssapo @eriepa.



