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ESTIMATES OF APPROXIMATIVE CHARACTERISTICS OF THE CLASSES BΩ
p,θ OF

PERIODIC FUNCTIONS OF SEVERAL VARIABLES WITH GIVEN MAJORANT OF

MIXED MODULI OF CONTINUITY IN THE SPACE Lq

In this paper, we continue the study of approximative characteristics of the classes BΩ
p,θ of peri-

odic functions of several variables whose majorant of the mixed moduli of continuity contains both

exponential and logarithmic multipliers. We obtain the exact-order estimates of the orthoprojec-

tive widths of the classes BΩ
p,θ in the space Lq, 1 ≤ p < q < ∞, and also establish the exact-order

estimates of approximation for these classes of functions in the space Lq by using linear operators

satisfying certain conditions.
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INTRODUCTION

Let R
d, d ≥ 1 denote d-dimensional space with elements

x = (x1, . . . , xd), (x, y) = x1y1 + . . . + xdyd

and let Lp(πd), 1 ≤ p < ∞, be the space of functions f (x) = f (x1, . . . , xd), which are 2π-

periodic in each variable and summable in degree p on the cube πd =
d

∏
j=1

[0; 2π] for which the

norm is defined as follows:

‖ f‖Lp(πd)
= ‖ f‖p =

(
(2π)−d

∫

πd

| f (x)|p dx

) 1
p

.

Respectively, L∞(πd) is the space of essentially bounded functions f (x) = f (x1, . . . , xd),

which are 2π- periodic in each variable, with the norm

‖ f‖L∞ (πd)
= ‖ f‖∞ = ess sup

x∈πd

| f (x)|.

Further, we assume that, for functions f ∈ Lp(πd), the following additional condition holds:

∫ 2π

0
f (x)dxj = 0 j = 1, d.
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For f ∈ Lp(πd), 1 ≤ p ≤ ∞, and t = (t1, . . . , td), tj ≥ 0, j = 1, d, we consider the mixed

modulus of continuity of the order l

Ωl( f , t)p = sup
|hj|≤tj

j=1,d

‖∆l
h f (·)‖p ,

where l ∈ N, ∆l
h f (x) = ∆l

h1
. . . ∆l

hd
f (x) = ∆l

hd
(. . . (∆l

h1
f (x))) is a mixed difference of the order

l with a vector step h = (h1, . . . , hd), and the difference of the lth order with a step hj in the

variable xj is defined as follows:

∆l
hj

f (x) =
l

∑
n=0

(−1)l−nCn
l f (x1, . . . , xj−1, xj + nhj, xj+1, . . . , xd).

Let Ω(t) = Ω(t1, . . . , td) be a given function of the type of a mixed modulus of continuity

of the order l, which satisfies the following conditions:

1) Ω(t) > 0, tj > 0, j = 1, d; Ω(t) = 0,
d

∏
j=1

tj = 0;

2) Ω(t) is nondecreasing in each variable;

3) Ω(m1t1, . . . , mdtd) ≤

(
d

∏
j=1

mj

)l

Ω(t), mj ∈ N, j = 1, d;

4) Ω(t) is continuous for tj ≥ 0, j = 1, d.

We assume that Ω(t) satisfies also the conditions (S) and (Sl), which are called the Bari-

Stechkin conditions [1]. This means the following.

A function of one variable ϕ(τ) ≥ 0 satisfies the condition (S) if ϕ(τ)/τα almost increases

for some α > 0, i.e., there exists a constant C1 > 0 independent of τ1 and τ2 and such that

ϕ(τ1)

τα
1

≤ C1
ϕ(τ2)

τα
2

, 0 < τ1 ≤ τ2 ≤ 1.

A function ϕ(τ) ≥ 0 satisfies the condition (Sl) if ϕ(τ)/τγ almost decreases for some

0 < γ < l, i.e., there exists a constant C2 > 0 independent of τ1 and τ2 and such that

ϕ(τ1)

τ
γ
1

≥ C2
ϕ(τ2)

τ
γ
2

, 0 < τ1 ≤ τ2 ≤ 1.

We say that Ω(t) satisfies the conditions (S) and (Sl) if Ω(t) satisfies these conditions in

each variable tj for fixed ti, i 6= j.

Thus, let 1 ≤ p ≤ ∞, 1 ≤ θ ≤ ∞, and let Ω(t) be a given function of the type of a mixed

modulus of continuity of the order l. Then the classes BΩ
p,θ are defined in the following way [21]:

BΩ
p,θ =

{
f ∈ Lp(πd) : ‖ f‖BΩ

p,θ
≤ 1

}
,

where

‖ f‖BΩ
p,θ

=

{ ∫

πd

(
Ωl( f , t)p

Ω(t)

)θ d

∏
j=1

dtj

tj

} 1
θ

, 1 ≤ θ < ∞,
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‖ f‖BΩ
p,∞

= sup
t>0

Ωl( f , t)p

Ω(t)
,

(the expression t > 0 for t = (t1, . . . , td) is equivalent to tj > 0, j = 1, d).

We note that, for θ = ∞, the classes BΩ
p,θ coincide with the classes HΩ

p , which were consid-

ered by N.N. Pustovoitov in [13].

In the subsequent, it will be convenient to use the equivalent (to within absolute constants)

definition of the classes BΩ
p,θ. For this purpose, we need the corresponding notations.

To every vector s = (s1, . . . , sd), sj ∈ N, j = 1, d, we put the set

ρ(s) =
{

k = (k1, . . . , kd) : 2sj−1 ≤ |kj| < 2sj , kj ∈ Z, j = 1, d
}

in correspondence, and, for f ∈ Lp(πd), 1 < p < ∞, we denote

δs( f ) := δs( f , x) = ∑
k∈ρ(s)

f̂ (k)ei(k,x),

where

f̂ (k) = (2π)−d
∫

πd

f (t)e−i(k,t)dt

are the Fourier coefficients of the function f .

Let 1 < p < ∞, 1 ≤ θ ≤ ∞ and let Ω(t) be a given function of the type of a mixed modulus

of continuity of the order l that satisfies the conditions 1 – 4, (S) and (Sl). Then, to within

absolute constants, the classes BΩ
p,θ can be defined as follows [21]:

BΩ
p,θ =

{
f ∈ Lp(πd) : ‖ f‖BΩ

p,θ
=

(

∑
s

Ω−θ(2−s)‖δs( f )‖θ
p

) 1
θ

≤ 1

}
(1)

for 1 ≤ θ < ∞ and

BΩ
p,∞ =

{
f ∈ Lp(πd) : ‖ f‖BΩ

p,∞
= sup

s

‖δs( f )‖p

Ω(2−s)
≤ 1

}
. (2)

Here and below, Ω(2−s) = Ω(2−s1 , . . . , 2−sd), sj ∈ N, j = 1, d.

The given definitions of the classes BΩ
p,θ can be extended also to the extreme values p = 1

and p = ∞, by modifying the "blocks" δs( f ) in (1) and (2). Let Vn(t) stand for a Vallée-Poussin

kernel of the order 2n − 1, i.e.,

Vn(t) = 1 + 2
n

∑
k=1

cos kt + 2
2n−1

∑
k=n+1

(
1 −

k − n

n

)
cos kt.

To every vector s = (s1, . . . , sd), sj ∈ N, j = 1, d, we put the polynomial

As(x) =
d

∏
j=1

(
V

2
sj (xj)− V

2
sj−1(xj)

)

in correspondence. For f ∈ Lp(πd), 1 ≤ p ≤ ∞, by As( f ) we denote the convolution

As( f ) := As( f , x) = ( f ∗ As)(x).
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Then, to within absolute constants, the classes BΩ
p,θ, 1 ≤ p ≤ ∞, can be defined as follows:

BΩ
p,θ =

{
f ∈ Lp(πd) : ‖ f‖BΩ

p,θ
=

(

∑
s

Ω−θ(2−s)‖As( f )‖θ
p

) 1
θ

≤ 1

}
(3)

for 1 ≤ θ < ∞ and

BΩ
p,∞ =

{
f ∈ Lp(πd) : ‖ f‖BΩ

p,∞
= sup

s

‖As( f )‖p

Ω(2−s)
≤ 1

}
. (4)

We note that relations (3) and (4) were obtained in works [18] and [13], respectively.

We note also that, for Ω(t) =
d

∏
j=1

t
rj

j , 0 < rj < l, the classes BΩ
p,θ are analogs of the well-

known Besov Br
p,θ, 1 ≤ θ < ∞, and Nikol’skii Br

p,∞ = Hr
p classes (see, e.g., [8]).

In what follows, we study the classes BΩ
p,θ that are defined by the function Ω(t):

Ω(t) = Ω(t1, . . . , td) =





d

∏
j=1

tr
j

(
log 1

tj

)bj

+

, if tj > 0, j = 1, d;

0, if
d

∏
j=1

tj = 0.

(5)

Here and below, we consider the logarithms with base 2, and

(
log

1

tj

)

+

= max

{
1, log

1

tj

}
.

In addition, we assume that bj ∈ R, j = 1, d, and 0 < r < l. Hence, properties 1–4 and the

conditions (S) and (Sl) are satisfied for the function Ω(t) of the form (5).

In the present paper we obtain the exact-order estimates of orthoprojective widths of the

classes BΩ
p,θ in the space Lq, 1 ≤ p < q < ∞. We recall that the notion of orthoprojective width

was introduced by V. N. Temlyakov [23].

Let {ui}
M
i=1 be an orthonormalized system of functions ui ∈ L∞(πd), f ∈ Lq(πd),

1 ≤ q ≤ ∞. We set

( f , ui) = (2π)−d
∫

πd

f (x)ui(x)dx,

where ui is the function complex conjugate to the function ui.

To every function f ∈ Lq(πd), 1 ≤ q ≤ ∞, we put an approximation of the form
M

∑
i=1

( f , ui)ui

in correspondence, i.e., the orthogonal projection of the function f onto the subspace generated

by the system of functions {ui}
M
i=1. Then, for the functional class F ⊂ Lq(πd), the quantity

d⊥M(F, Lq) = inf
{ui}

M
i=1

sup
f∈F

∥∥∥∥ f −
M

∑
i=1

( f , ui)ui

∥∥∥∥
q

(6)

is called the orthoprojective width (the Fourier-width) of this class in the space Lq(πd).

In addition to orthoprojective widths, we study the quantities dB
M(F, Lq) introduced by V.N.

Temlyakov [22]). They are defined as follows:
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dB
M(F, Lq) = inf

G∈LM(B)q

sup
f∈F∩D(G)

‖ f − G f‖q . (7)

Here, LM(B)q stands for a set of linear operators satisfying the conditions:

a) the domain of definition D(G) of these operators contains all trigonometric polynomials,

and their domain of values is contained in a subspace with dimension M of the space

Lq(πd);

b) there exists a number B ≥ 1 such that, for all vectors k = (k1, . . . , kd), kj ∈ Z, j = 1, d, the

inequality
∥∥∥Gei(k,·)

∥∥∥
2
≤ B holds.

We note that LM(1)2 contains the operators of orthogonal projection onto the spaces with

dimension M and the operators that are set on an orthonormalized system of functions with

the help of the multiplier defined by a sequence {λm} such that |λm| ≤ 1 for all m.

From (6) and (7), it is easy to see that the quantities d⊥M(F, Lq) and dB
M(F, Lq) are connected

with each other by the inequality

dB
M(F, Lq) ≤ d⊥M(F, Lq). (8)

At present, a lot of works are known, in which the quantities d⊥M(F, Lq) and dB
M(F, Lq) were

studied for various classes of functions. We mention works [14, 16, 17, 22, 24], where the quan-

tities (6) and (7) were considered for the classes of functions of many variables Wr
p,α, Hr

p, Br
p,θ,

and HΩ
p (see also numerous references therein). The quantities d⊥M(BΩ

p,θ, Lq) and dB
M(BΩ

p,θ, Lq)

for the classes of functions of many variables with a given function Ω(t) of the form (5) under

the condition bj < r, j = 1, d, were considered in works [4–7].

1 AUXILIARY ASSERTIONS

We now give several known assertions, which are used in the subsequent considerations.

As was noted above, Ω(t) is a function of the form (5). For a natural N, we set

χ(N) =
{

s = (s1, . . . , sd) : sj ∈ N, j = 1, d, Ω(2−s) ≥
1

N

}
,

Q(N) =
⋃

s∈χ(N)

ρ(s).

We note that the approximation of certain classes of periodic functions of many variables

with mixed generalized smoothness by trigonometric polynomials with "numbers" of harmon-

ics from the sets that are analogs of Q(N) was started in work [15]. Later, the approximations

by trigonometric polynomials with "numbers" of harmonics from the sets Q(N) were studied

in works [4], [19], [20] and other ones.

The following proposition is true.

Lemma 1 ([14]). For the number of elements of the set Q(N), the following ordinal equalities

hold:

|Q(N)| ≍ N
1
r
(

log N
)− b1

r −...− bν
r +ν−1

,
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if b1 ≤ . . . ≤ bν < r < bν+1 ≤ . . . ≤ bd;

|Q(N)| ≍ N
1
r
(

log N
)− b1

r ,

if r ≤ b1 ≤ . . . ≤ bd, b2 > r.

Here and below, the notation µ1 ≪ µ2 for positive functions µ1(N) and µ2(N) means that

there exists a constant C > 0 such that, ∀N ∈ N, the inequality µ1(N) ≤ Cµ2(N) holds.

The relation µ1 ≍ µ2 holds if µ1 ≪ µ2 and µ1 ≫ µ2. We note also that all constants Ci, i =

1, 2, . . . , which are used in what follows, can depend only on parameters that are contained in

the definitions of a class and a dimension d of the space R
d.

To formulate the following assertions, we note that, according to (5), the definition of a set

χ(N) takes the form

χ(N) =
{

s = (s1, . . . , sd) : sj ∈ N, j = 1, d,
d

∏
j=1

2rsjs
bj

j ≤ N
}

.

Therefore,

χ⊥(N) = N
d \ χ(N).

Let

Θ(N) =
{

s = (s1, . . . , sd) : sj ∈ N, j = 1, d,
1

2l N
≤ Ω(2−s) <

1

N

}
.

In work [11], it was established that the number of elements of the set Θ(N) satisfies the

ordinal equality

|Θ(N)| ≍ (log N)d−1.

Lemma 2 ([14]). For the function Ω(t) defined by equality (5) for 0 < β < r, 0 < p < ∞ the

relation

∑
s∈χ⊥(N)

(
Ω(2−s)2‖s‖1β

)p
≪ ∑

s∈Θ(N)

(
Ω(2−s)2‖s‖1β

)p

holds, where ‖s‖1 = s1 + . . . + sd, sj ∈ N.

Lemma 3 ([14]). If γ1 ≤ . . . ≤ γν < 1 < γν+1 ≤ . . . ≤ γd, then

∑
s∈Θ(N)

d

∏
j=1

s
−γj

j ≍
(

log N
)−γ1−...−γν+ν−1

.

If 1 ≤ γ1 ≤ . . . ≤ γd, γ2 > 1, then

∑
s∈Θ(N)

d

∏
j=1

s
−γj

j ≍
(

log N
)−γ1.

Lemma 4 ([22]). Let 1 ≤ p < q < ∞ and f ∈ Lp(πd). Then

‖ f‖
q
q ≪ ∑

s

(
‖δs( f )‖p 2

‖s‖1

(
1
p−

1
q

))q

.
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Lemma 5 ([24]). Let A be the linear operator given by the equality

Aei(k,x) =
M

∑
m=1

ak
mψm(x),

where
{

ψm(x)
}M

m=1
is the set of functions for which

‖ψm(·)‖2 ≤ 1, m = 1, . . . , M.

Then, for any trigonometric polynomial t, the following inequality holds:

min
y=x

Re At(x − y) ≤

(
M

M

∑
m=1

∑
k

|ak
m t̂(k)|2

) 1
2

.

Theorem 1 ([10]). Let Tn be a trigonometric polynomial of the order n = (n1, . . . , nd), i.e.,

Tn(x) = ∑
|k1|≤n1

. . . ∑
|kd|≤nd

ck1,...,kd
ei(k,x),

where nj, j = 1, d are natural numbers, and ck1,...,kd
are any coefficients. Then, for 1 ≤ p < q ≤

∞ the inequality

‖Tn‖q ≤ 2d

( d

∏
j=1

nj

) 1
p−

1
q

‖Tn‖p (9)

holds.

Inequality (9) was established by S. M. Nikol’skii and is called the "inequality of different

metrics". In the one-dimensional case for p = ∞, the corresponding inequality was proved by

D. Jackson [3].

Theorem 2 (Littlewood-Paley theorem; see, e.g., [9], p. 65). Let p ∈ (1, ∞). Then there exist

positive numbers C3(p) and C4(p) such that, for every function f ∈ Lp(πd), the following

relations are true:

C3(p)|| f ||p ≤

∥∥∥∥∥

(
∑

s

|δs( f )|2
) 1

2

∥∥∥∥∥
p

≤ C4(p)‖ f‖p .

2 MAIN RESULTS

Passing to the statement of the propositions and their proof, we assume that M = |Q(N)|.

First, we consider case b1 ≤ . . . ≤ bν < r < bν+1 ≤ . . . ≤ bd. Then, according to Lemma 1, we

have

M ≍ N
1
r
(

log N
)− b1

r −...− bν
r +ν−1

,

log M ≍ log N, N ≍ Mr
(

log M
)b1+...+bν−(ν−1)r

.

The following theorem is true.
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Theorem 3. Let 1 ≤ p < q < ∞, q < θ < ∞, and let Ω(t) be a function of the form (5). Then,

for 1
p −

1
q < r < l, b1 ≤ . . . ≤ bν <

r
q
p−1

< bν+1 ≤ . . . ≤ bd, the relations

d⊥M(BΩ
p,θ, Lq) ≍ dB

M(BΩ
p,θ , Lq) ≍ M

−r+ 1
p−

1
q
(

log M
)−b1−...−bν+(ν−1)

(
r− 1

p+
2
q−

1
θ

)

(10)

hold.

Proof. First, we establish the upper bounds in (10). According to (8), it is sufficient to obtain

the upper bound for the orthoprojective width d⊥M(BΩ
p,θ , Lq).

For this purpose, we consider an approximation of the functions f ∈ BΩ
p,θ by trigonometric

polynomials tQ(N) of the form

tQ(N)(x) = ∑
s∈χ(N)

δs( f , x).

Let q0 be any number that satisfies the condition p < q0 < q.

Then, using Lemma 4, and the relation

‖δs( f )‖q0 ≍ ‖As( f )‖q0 , 1 < q0 < ∞,

for f ∈ BΩ
p,θ we have

‖ f − tQ(N)‖q =

∥∥∥∥ f − ∑
s∈χ(N)

δs( f )

∥∥∥∥
q

=

∥∥∥∥ ∑
s∈χ⊥(N)

δs( f )

∥∥∥∥
q

≪


 ∑

s∈χ⊥(N)

‖δs( f )‖
q
q0

2
‖s‖1

(
1

q0
− 1

q

)
q




1
q

≍


 ∑

s∈χ⊥(N)

‖As( f )‖
q
q0

2
‖s‖1

(
1

q0
− 1

q

)
q




1
q

= I1.

Then, applying to As( f ) the Nikol’skii inequality of different metrics, we continue the esti-

mate as follows:

I1 ≪


 ∑

s∈χ⊥(N)

‖As( f )‖
q
p2

‖s‖1(
1
p−

1
q0
)q

2
‖s‖1

(
1

q0
− 1

q

)
q




1
q

=


 ∑

s∈χ⊥(N)

‖As( f )‖
q
p2

‖s‖1

(
1
p−

1
q

)
q




1
q

=


 ∑

s∈χ⊥(N)

Ω−q(2−s)‖As( f )‖
q
pΩq(2−s)2

‖s‖1

(
1
p−

1
q

)
q




1
q

= I2.

Using first the Hölder inequality with index θ
q and then Lemma 2, we get

I2 ≤


 ∑

s∈χ⊥(N)

Ω−θ(2−s)‖As( f )‖θ
p




1
θ

·


 ∑

s∈χ⊥(N)

(
Ω(2−s)2

‖s‖1

(
1
p−

1
q

)) θq
θ−q




θ−q
θq

≪ ‖ f‖BΩ
p,θ


 ∑

s∈χ⊥(N)

(
Ω(2−s)2

‖s‖1

(
1
p−

1
q

)) θq
θ−q




θ−q
θq
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≪


 ∑

s∈Θ(N)

(
Ω(2−s)2

‖s‖1

(
1
p−

1
q

)) θq
θ−q




θ−q
θq

≤ N−1


 ∑

s∈Θ(N)

2
‖s‖1

(
1
p−

1
q

)
θq

θ−q




θ−q
θq

= I3.

Taking into account that, for s ∈ Θ(N),

2‖s‖1 ≍ N
1
r

d

∏
j=1

s
−

bj
r

j ,

and using Lemma 3, we have

I3 ≍ N−1


 ∑

s∈Θ(N)

N
1
r (

1
p−

1
q )

θq
θ−q

d

∏
j=1

s
−

bj
r

(
1
p−

1
q

)
θq

θ−q

j




θ−q
θq

= N
−1+ 1

r

(
1
p−

1
q

)

 ∑

s∈Θ(N)

d

∏
j=1

s
−

bj
r

(
1
p−

1
q

)
θq

θ−q

j




θ−q
θq

≍ N
−1+ 1

r

(
1
p−

1
q

)(
log N

)(− b1
r −...− bν

r

)(
1
p−

1
q

)
+(ν−1)

(
1
q−

1
θ

)

≍

(
Mr
(

log M
)b1+...+bν−(ν−1)r

)−1+ 1
r

(
1
p−

1
q

)
(

log M
)(− b1

r −...− bν
r )
(

1
p−

1
q

)
+(ν−1)

(
1
q−

1
θ

)

= M
−r+ 1

p−
1
q
(

log M
)−b1−...−bν+(ν−1)

(
r− 1

p+
2
q−

1
θ

)

.

Thus, in view of the definition of orthoprojective width, the above reasoning gives the upper

bound for d⊥M(BΩ
p,θ , Lq), and, respectively, for the quantity dB

M(BΩ
p,θ , Lq).

Let us find the lower bounds in (10). Since inequality (8) holds, it is sufficient to obtain the

lower bound for the quantity dB
M(BΩ

p,θ , Lq).

With the help of the reasoning analogous to that in [12], we can prove the existence of a set

Θ1(N) ⊂ Θ(N) such that, for s = (s1, . . . , sd) ∈ Θ1(N), the following relations are satisfied:

sj ≍ log N, j = 1, d and |Θ1(N)| ≍
(

log N
)d−1

.

Also we can assert that there exists a set

Θ
(ν)
1 (N) = {s ∈ Θ(N) : sj ≍ log N, j = 1, . . . , ν, sj = 1, j = ν + 1, . . . , d}

such that

|Θ
(ν)
1 (N)| ≍

(
log N

)ν−1
.

Consider the set Q̃(N) =
⋃

s∈Θ
(ν)
1 (N)

ρ(s). By T(Q̃(N)) we denote the set of trigonometric

polynomials with the "numbers" of harmonics from Q̃(N).

Let Kn be the Fejér kernel of the order n, i.e.,

Kn(t) = ∑
|k|≤n

(
1 −

|k|

n + 1

)
eikx.
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We set

g1(x) = ∑
s∈Θ

(ν)
1 (N)

K
(ν)
s (x)

d

∏
j=ν+1

eixj ,

where

K
(ν)
s (x) =

ν

∏
j=1

e
ik

sj
j xj K

2
sj−2(xj),

k
sj

j =

{
2sj−1 + 2sj−2, sj ≥ 2;

1, sj = 1, j = 1, ν.

Suppose that the operator G belongs to LM(B)q, 1 < q < ∞. Consider the operator A =

SQ̃(N)G, where SQ̃(N) is the operator of taking partial Fourier sum corresponding to the set

Q̃(N). Then A ∈ LM(B)q and the domain of values of the operator A is a subspace AM of

the space T(Q̃(N)), whose dimension dim AM = M ≤ M. It follows from Theorem 2 that for

f ∈ T(Q̃(N)), the following relation is satisfied:

‖ f − A f‖q ≪ ‖ f − G f‖q .

Consider the quantity

I = sup
y

‖g1(x − y)− Ag1(x − y)‖∞.

Obviously,

I ≥ g1(0)− min
y=x

ReAg1(x − y).

Using Lemma 5, we obtain

min
y=x

ReAg1(x − y) ≤ M
1
2 B

(
∑
k

|ĝ1(k)|
2

) 1
2

≪ M
1
2 B|Q̃(N)|

1
2 . (11)

Further, taking into account the relation

|Θ
(ν)
1 (N)| ≍

(
log N

)ν−1
,

as well as

|ρ(s)| = 2||s||1 ≍ N
1
r
(

log N
)− b1

r −...− bν
r , s ∈ Θ

(ν)
1 (N),

we can write

|Q̃(N)| ≍ N
1
r
(

log N
)− b1

r −...− bν
r +ν−1

. (12)

On the other hand,

g1(0) ≍ N
1
r
(

log N
)− b1

r −...− bν
r +ν−1

≍ |Q̃(N)|. (13)

Using (11) and (12), we can chose a number N so that |Q̃(N)| ≍ M and the right-hand side

of (13) will be at least twice as large as the right-hand side of (11).

For some y∗ = (y∗1 , . . . , y∗d), for this N we have

‖g1(x − y∗)− Ag1(x − y∗)‖∞ ≫ M. (14)
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Consider the function

g2(x) = C5N−1
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ g1(x), C5 > 0.

We now show that, at the corresponding choice of the constant C5, this function belongs to the

class BΩ
p,θ. Indeed, since

||Kn||p ≍ n
1− 1

p 1 ≤ p ≤ ∞,

for the Fejér kernel, we have

∥∥∥K(ν)
s

∥∥∥
p
≍ 2

‖s‖1

(
1− 1

p

)
1 ≤ p ≤ ∞.

Thus, we can write

‖g2‖BΩ
p,θ

=

(

∑
s

Ω−θ(2−s)‖As(g2)‖
θ
p

) 1
θ

≪ N−1
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ ·


 ∑

s∈Θ
(ν)
1 (N)

Ω−θ(2−s)‖As(g1)‖
θ
p




1
θ

≪
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ ·


 ∑

s∈Θ
(ν)
1 (N)

2
‖s‖1

(
1− 1

p

)
θ




1
θ

= I4.

(15)

Taking into account the fact that, for s ∈ Θ
(ν)
1 (N) ⊂ Θ(N)

2‖s‖1 ≍ N
1
r

d

∏
j=1

s
−

bj
r

j ,

and

sj ≍ log N, j = 1, . . . , ν, sj = 1, j = ν + 1, . . . d, |Θ
(ν)
1 (N)| ≍

(
log N

)ν−1
,

we get

I4 ≍
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ

×
(

N
1
r
(

log N
)− b1

r −...− bν
r

)1− 1
p
|Θ

(ν)
1 (N)|

1
θ ≍

(
log N

)− ν−1
θ
(

log N
) ν−1

θ = 1.

(16)

By comparing (15) and (16), we may conclude that g2 ∈ BΩ
p,θ with the corresponding constant

C5 > 0.

It was established in work [14] that for t ∈ T(Q̃(N)), the following estimate is satisfied:

‖t‖∞ ≪ ‖t‖q

(
N

1
r
(

log N
)− b1

r −...− bν
r

) 1
q (

log N
)(ν−1)

(
1− 1

q

)

.
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Taking into account the last relation and using estimate (14), we get

‖g2(x − y∗)− Gg2(x − y∗)‖q

≫ N−1
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ ‖g1(x − y∗)− Gg1(x − y∗)‖q

≫ N−1
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ ‖g1(x − y∗)− Ag1(x − y∗)‖q

≫ N−1
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ

×
(

N
1
r
(

log N
)− b1

r −...− bν
r

)− 1
q (

log N
)−(ν−1)

(
1− 1

q

)

‖g1(x − y∗)− Ag1(x − y∗)‖∞

≫ N−1
(

N
1
r
(

log N
)− b1

r −...−
bd
r +d−1

) 1
p−

1
q−1(

log N
)(d−1)

(
− 1

p+
2
q−

1
θ

)

M

≍ M−r
(

log M
)−b1−...−bν+(ν−1)r

M
1
p−

1
q−1(

log M
)(ν−1)

(
− 1

p+
2
q−

1
θ

)

M

= M
−r+ 1

p−
1
q
(

log M
)−b1−...−bν+(ν−1)

(
r− 1

p+
2
q−

1
θ

)
.

The lower bounds in (10) are established. Theorem 3 is proved.

In the following proposition, we consider other relations for the numbers r, b1, . . . , bd. Let

r ≤ b1 ≤ . . . ≤ bd, b2 > r. In this case, by Lemma 1, we obtain

M ≍ N
1
r
(

log N
)− b1

r ,

log M ≍ log N, N ≍ Mr
(

log M
)b1 .

Assume that

b1 = . . . = bν < bν+1 ≤ . . . ≤ bd.

Then, for ν = 1, the inequality r ≤ b1 < b2 holds. But ν ≥ 2, then b1 > r.

Theorem 4. Let 1 ≤ p < q < ∞, q < θ < ∞, and let Ω(t) be a function of the form (5). Then,

for 1
p −

1
q < r < l, b2 >

r
q
p−1

, the order estimates

d⊥M(BΩ
p,θ , Lq) ≍ dB

M(BΩ
p,θ , Lq) ≍ M

−r+ 1
p−

1
q
(

log M
)−b1 (17)

hold.

Proof. For q < θ < ∞, the embedding BΩ
p,θ ⊂ HΩ

p , is valid. Therefore, the upper bounds in (17)

follow from the corresponding estimate d⊥M(HΩ
p , Lq), proved in [14].

To get the lower bounds in (17), it is sufficient to get the corresponding lower bound for the

quantity dB
M(BΩ

p,θ , Lq).

We choose a vector s̃ = (s̃1, . . . , s̃d) ∈ Θ(N) so that

s̃1 ≍ log N, s̃2 = . . . = s̃d = 1,

and set

g3(x) = Ks̃(x) = ei(ks̃,x)K2s̃1−2(x1),
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where ks̃ = (2s̃1−1 + 2s̃1−2, 1, . . . , 1).

Suppose that the operator G belongs to LM(B)q, 1 < q < ∞. Consider the operator A =

Sρ(s̃)G, where Sρ(s̃) is the operator of taking partial Fourier sum corresponding to the set ρ(s̃).

Taking into account that

2‖s̃‖1 ≍ N
1
r
(

log N
)− b1

r ,

and using lemma 5, we get

min
y=x

ReAg3(x − y) ≤ M
1
2 B

(
∑

k

|ĝ3(k)|
2

) 1
2

≪ M
1
2
(
2‖s̃‖1

) 1
2 ≍ M

1
2 N

1
r
(

log N
)− b1

r . (18)

On the other hand,

g3(0) ≍ 2‖s̃‖1 ≍ N
1
r
(

log N
)− b1

r . (19)

Therefore, we can chose a number N so that |Q(N)| ≍ M and the right-hand side of (19)

will be at least twice as large as the right-hand side of (18). For some y∗ = (y∗1 , . . . , y∗d), for this

N we have

‖g3(x − y∗)− Ag3(x − y∗)‖∞ ≫ M. (20)

Consider the function

g4(x) = C6N−12
||s̃||1

(
1
p−1
)

g3(x), C6 > 0.

We now show that, at the corresponding choice of the constant C6, the function g4 belongs to

the class BΩ
p,θ.

Indeed, in view of the properties of the Fejér kernel, we have

‖g4‖BΩ
p,θ

=

(

∑
s

Ω−θ(2−s)‖As(g4)‖
θ
p

) 1
θ

≪ N−12
||s̃||1

(
1
p−1
) (

Ω−θ(2−s̃)‖As̃(g3)‖
θ
p

) 1
θ

≪ 2
||s̃||1

(
1
p−1
)
‖As̃(g3)‖p ≍ 2

||s̃||1
(

1
p−1
)

2
||s̃||1

(
1− 1

p

)
= 1.

Hence, g4 ∈ BΩ
p,θ with the corresponding constant C6 > 0.

It was established in work [14] that for a trigonometric polynomial t with "numbers" of

harmonics from the set ρ(s̃), the following relation is satisfied:

‖t‖∞ ≪ ‖t‖q2
‖s̃‖1

q .

Taking into account the last relation and using estimate (20), we get

‖g4(x − y∗)− Gg4(x − y∗)‖q ≫ N−12
||s̃||1

(
1
p−1
)
‖g3(x − y∗)− Gg3(x − y∗)‖q

≫ N−12
||s̃||1

(
1
p−1
)
‖g3(x − y∗)− Ag3(x − y∗)‖q

≫ N−12
||s̃||1

(
1
p−1
)

2
−

‖s̃‖1
q ‖g3(x − y∗)− Ag3(x − y∗)‖∞

≫ M−r
(

log M
)−b1 M

1
p−

1
q−1

M = M
−r+ 1

p−
1
q
(

log M
)−b1 .

The lower bounds in (17) are established. Theorem 4 is proved.
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Remark 1. Results, corresponding to Theorems 3 and 4, but for the classes BΩ
p,θ in the space

L∞, are obtained in [2].

Remark 2. The analogues of Theorems 3 and 4 for the classes HΩ
p are obtained by N.N. Pus-

tovoitov in [14]. Moreover, if the conditions of Theorem 4 are satisfied, the ordinal relations

d⊥M(BΩ
p,θ , Lq) ≍ dB

M(BΩ
p,θ, Lq) ≍ d⊥M(HΩ

p , Lq) ≍ dB
M(HΩ

p , Lq)

hold. In other words, the orders of the quantities d⊥M(BΩ
p,θ, Lq) and dB

M(BΩ
p,θ, Lq) are indepen-

dent on the parameter θ.
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Федуник-Яремчук О.В., Гембарська С.Б. Оцiнки апроксимативних характеристик класiв BΩ
p,θ пе-

рiодичних функцiй багатьох змiнних iз заданою мажорантою мiшаних модулiв неперервностi у про-

сторi Lq // Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 281–295.

В роботi продовжується вивчення апроксимативних характеристик класiв BΩ
p,θ перiоди-

чних функцiй багатьох змiнних, мажоранта мiшаних модулiв неперервностi яких мiстить як

степеневi, так i логарифмiчнi множники. Oдержано точнi за порядком оцiнки ортопроекцiй-

них поперечникiв класiв BΩ
p,θ у просторi Lq, 1 ≤ p < q < ∞, а також встановлено точнi за

порядком оцiнки наближення цих класiв функцiй у просторi Lq за допомогою лiнiйних опе-

раторiв, якi пiдпорядкованi певним умовам.

Ключовi слова i фрази: ортопроекцiйний поперечник, мiшаний модуль неперервностi, лi-

нiйний оператор, ядро Валле-Пуссена, ядро Фейєра.


