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BARANETSKI] YA.O.1, KALENYUK P.I.}, KOPACH M.1.2, SOLOMKO A.V.2

THE NONLOCAL BOUNDARY VALUE PROBLEM WITH PERTURBATIONS OF
MIXED BOUNDARY CONDITIONS FOR AN ELLIPTIC EQUATION WITH
CONSTANT COEFFICIENTS. I

In this article we investigate a problem with nonlocal boundary conditions which are multipoint
perturbations of mixed boundary conditions in the unit square G using the Fourier method.

The properties of a generalized transformation operator R : Ly(G) — Ly(G) that reflects nor-
malized eigenfunctions of the operator Lg of the problem with mixed boundary conditions in the
eigenfunctions of the operator L for nonlocal problem with perturbations, are studied. We construct
a system V(L) of eigenfunctions of operator L. Also, we define conditions under which the system
V(L) is total and minimal in the space L,(G), and conditions under which it is a Riesz basis in
the space Ly (G). In the case if V(L) is a Riesz basis in L, (G), we obtain sufficient conditions under
which nonlocal problem has a unique solution in form of Fourier series by system V(L).
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1 INTRODUCTION

The fundamentals of the theory of linear differential equations in partial derivatives with
constant coefficients were established by L. Ehrenpreis, L. Hermander, V. Malgrange, 1. Petro-
vsky.

Boundary value problems in bounded domains for certain classes of differential equations
with constant coefficients have been studied in [1-13]. This paper is a continuation of the
investigations that were begun in [3-6].

For our investigation we will use the following notations. Let G := {x := (x1,x,) € R?:
0 < x1, xp < 1}, Dj, D; are the operators of differentiation by the variables x1, x; respec-
tively; Hy := Lp(0,1), Hy := Lp(G); Hp := WZZ”(G) be a Sobolev space with a scalar product
and norm respectively

(u,v; Hy) := (u,v; Hy) + (D3"u, D3"v; Hy) + (D3"u, D3"v; Hy), ||u; Hal| := 1/ (u, u; Hy);

W:={veC01]: v eC[0,1],s=1,...,2n—1, o) e Hy};
Hos = {u(t) € Hy: u(t) = (~1)°u(1 - 1)}, s € {0,1};
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W, := WN Hy,, r =0,1; and [Hy] be a set of linear continuous operators on the space Hy. Let
us consider the boundary value problem

n . .
L(-D},—D}u:= Y a;DVDS" Fu = f(x), x€G, (1)
j=0

Csqu := DP " 2uly,—o + DF 2uly =1 + u =0, 2)

€n+s,1u = D%:izu‘xl:() - D%:izu‘xl:l =0, 3)

st := D3 2uly,—0 + D3°2uly,—1 = 0, (4)

lpysou = D%S’1u|x2:0 + D%S’1u|x2:1 =0,s=1,...,n, (5)

where

ks,l ny

E(s),ll/l = Z Z bslq/rD?uLxl:er, S = 1, . .,1’1, (6)
q=0r=0

0=x11<x12<-<x1 <1, a5, bs g0 €R,
q=0,1,...,ks1, ks1 <2n,r=0,1,...,nm,s=1,...,n,j=0,1,...,n.
Let L : H; — Hj be the operator of the problem (1)—(6) and
Lu := L(—D3?,—D3)u, u € D(L),
D(L):={u€ Hy: b u=0,s=1,...,2n, j=1,2}.

Definition. The functiony € D(L), that satisfies equality |L(—D3?, —D3)y — f; Hy|| = 0, is
called a solution of problem (1)—6).

Let us consider the following assumptions and theorems, that are necessary for further
investigation.

1. Assumption Py: bs g, = —(—=1)7bs g u,—r, X1, =1 —=X1p,—, ¥ =0,1,...,n1, s=1,...,n.
2. Assumption Py: k;1 <25 —2,s=1,...,n.

3. Assumption P;: for any real numbers py, py the positive number Cq(L) exists, that the
inequality Cy(L)[p[*" < [L(u1, p2)l, = (p1, p2), |1 == [ia * + [pa]?, holdss.

Theorem 1. Let Assumption Py holds. Then, for an arbitrarya;€ R, ¢ =0,1,...,n, bs 5, € R,
the operator L has a set of eigenvalues

o= {Ak,m = L(Hl,kr VZ,WI)/ ]’ll,k = 7.C2k2, Uom = 7.[2(21,” - 1)2/ k e Nr m e N}r (7)
and the system V (L) of eigenfunctions, which is complete and minimal in the space H;.

Theorem 2. Let Assumptions P;—P; hold. Then, the operator L has the system V (L) of eigen-
functions, which is the Riesz basis of the space H;.

Theorem 3. Let Assumptions P1—P3 hold. Then, for arbitrary function f € H; the unique
solution of problem (1)—(6) exists.
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Let Ag be the operator of boundary problem in the space Hj :
—z® () = g(t), t € (0,1), z(0) = z(1) = 0;
Apz = —23) (1), z(t) € D(Ap), D(Ap) := {z € W3(0,1) : z(0) = z(1) = 0};
Ti:= {1 sx(t) € Hy: T5x(t) := \/Esinps,kt, psk=(2k+s—1),keN, s=0,1};
Tis:={msx(t) € Hys, ke N}, s=0,1;
o(Ag) := {p1x = 7k*, k € N}.
Lemma 1. The operator A has the point spectrum o(Ay) and system of eigenfunctions Tj.

Proof. A direct substitution proves that the elements of system T; are the eigenfunctions of
operator Ap, which correspond to the eigenvalues o (Ap) .

Taking into account that the subsystem of eigenfunctions T; ; of the operator Ay is an or-
thonormal basis of spaces Hp;, s = 0,1, we obtain the statement of the lemma. O

Let © = {0 };>, be any sequence of real numbers. We consider the operator Ag : Hy —
Hy, which has a set of eigenvalues 0 (Ap), and the system of eigenfunctions

V(Ag) := {vsx(t, Ae) € Ho: voi(t, Ae) := Tiok(t),
v1k(t Ae) == T 1k(t) + 0xV/2 cos 2krmtt, k € N}

Lemma 2. For an arbitrary sequence ® the system of functions V(Ag) is complete and mini-
mal in the space Hy. The system of functions V (Ag) is the Riesz basis of this space if and only
if the sequence © is bounded.

Proof. Suppose that the system V(Ag) is not complete in the space Hy.
Let us suppose that there exist functions f = fo + f1 € Hop, and fs € Hps, s = 0,1, for
which the conditions of orthogonality hold:

(f, Us,k(tr A@),‘ Ho) =0,s=0,1, ke N.

Taking into account, that the system of functions 71,04(t) = vo4(t, Ae), 4 € N, is an orthonor-
mal basis of the space Hpg with respect to the condition of orthogonality, we obtain fy = 0.
Thus f = f1 S HO,l-

According to the condition of orthogonality we have the relation

(f,v1k(t, Ae); Ho) = (f, t11x(f); Hyo) =0, k € IN.

Taking into account the totality of the system of functions V;(Lg) = Tj 1 in the space Hy,
we have f = f; = 0. Thus the system V(Ag) is total (complete) in the space Hy. Therefore, the
operator Ag is defined on a dense set of the space Hj.

In the space Hj let us define the operators

R(Ag) := E+S(Ap), S(Ae)Tio4(t) =0, S(Ae)T1,14(t) := 05v2cos2gmt € Hyp, g € N.

According to equality S*(Ag) = 0 we get the relation R"!(Ag) = E — S(Ag). Therefore, the
system of functions V(Ag) is minimal in the space Hy. Let us prove the second part of the
lemma.
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Necessity. We choose any bounded sequence ® and show that S(Ae) : Hy — Hp is a
bounded operator.
Let us expand an arbitrary function 1 € Hy into Fourier series

o 1
=) Z Tk (£)
k=1j=0

Consider S(Ag)h = i 9mh1,k\/§cos 2krtt.
k=1

Taking into account that the system of functions {1,cos2krtt, k € IN} is an orthonormal
basis of Hy o and using Cauchy’s inequality, we obtain

IS(Ae)h; Hol|* < Ci|l; Hol|?, C1 = max |6k|*.

Thus S(Ae) € [Ho).
Taking into account the relation R"!(Ag) = E — S(Ag), we obtain an estimate

HR_l(A®)} [HO]”Z <G, G =2+2C.

Thus the system V(Ag) is the Riesz basis by definition.
Sufficiency. Let V(Ag) be the Riesz basis in the space Hy. Therefore, this system is almost
normalized. Thus, for any positive numbers C3 < Cy the next inequality holds:

Cs < ||vsm(t, Ag); Ho|| < Cq < 00, m € N.
Taking into account the equalities
lvox(t, Ae); Holl = 1, |loim(t, Ae); Holl = 1+ |0, k=0,1,..., m €N,
we obtain the proof of sufficiency. O

Let By be the operator of spectral problem

—2@ () = pz(t), peC,
tz:=2(0) +2(1) =0,
bz :=z1 (0) + zV(1) =0,
Boz := —z3)(t), z(t) € D(By), D(By) := {z € W3(0,1) : £z =0, s = 1,2},
Ty := {12, m(t) € Hy: Toom(t) :=V2sinw(2m — 1)t, To1 m(t) := V2cos w(2m —1)t, m € N},
o(Bo) := {pom = m*(2m —1)?, m € N}.
Lemma 3. The operator By has the point spectrum ¢(By) and system of eigenfunctions T,.

Proof. After performing a direct substitution we obtain that

Torm(t) € D(By), —Tz(,zr?m(t) =tomTrm(t), r=20,1, m € N.

Thus operator Lj has the system of eigenfunctions V(Lj), which corresponds to the set of
eigenvalues 0. O
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For the equation (1) we consider the boundary conditions gO,s,ju =0,s=1,...,2n,j=1,2,
which are the partial case of boundary conditions (2)—(6) for Z;lu =0,s=1,...,n.
Let Ly : H] — Hj be the operator of the obtained problem

Lou:=L <—D2,—D%> u, u € D(Lg), D(Lo) :={u € Hy: bpsju=0,5=1,...,2n,j=1,2},
and
V(Lo) = {vyskm(x Lo) € Hi: 0p50m(x, Lo) := Tisk(¥1)T2rm(x2), 7, s € {0,1}, m, k € N}

be the orthonormal basis of the space H;.

n
Considering the ratio Lo = (—1)" ¥ AjB; °, we obtain the following statement.
s=

Lemma 4. The operator Ly has eigenvalues (7) and the system of eigenfunctions V (Ly).

2 THE NON SELF-AJOINT PROBLEM FOR A DIFFERENTIAL EQUATION OF EVEN ORDER

For any fixed p € {1,...,n} we consider the problem

L(-D?, —D3)u := i asDF*D3" % u(x) = Au(x), x € G, A €C, (8)
s=0

Uy gqu = D%s_zu\xlzo + D%s_zu\xlzl =0,s#p,s=1,...,n, 9)

O pau = D" 2ul o+ DY Puly o1 + €0 ,u =0, (10)

U st i= D%s_2u|xlzo — D%s_2u|x1:1 =0,s#p, s=1,...,n, (11)

l1ot := D3 2uly,—0 + D3 2uly,—1 =0,5=1,...,n, (12)

Ot := D55 tuly, o4+ DF uly,o1 =0, s=1,...,n (13)

Let Ly, be the operator of the problem (8)—(13):

Ly pu = L(—D?,~D3)u, u € D (L1,),
D(Lip):={ueHy: by, ju=0,r=1,...,2nj=12},

and V (Ly,,) be the system of eigenfunctions of the operator Ly .
For any fixed m € IN let’s consider the solutions of problem (8)—(13) in the form of product

u(x) :=z(x1) T,m (x2), s € {0,1}.

To determine the unknown function z(x; ), we obtain the problem for eigenvalues

Zaq ) Sy;mq( D(x1) = Az(x1), % € (0,1), A€C, (14)

lS 12 1= Z(ZS’Z)(O) —{—2(2572)(1) =0,s#p s=1,...,n, (15)
Iz =272 (0) + 272 (1) +19,z =0, (16)
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Bz =2%20)-z2>21)=0,s=1,...,n (17)
where
kp1
12,12 =Y ) bp,q,rz@(xllr), p=1,...,n (18)
q=0r=0

Let Ly, be the operator of problem (14)—(18):

n

Lipmz == Z as(—l)m_syg:nsz(zs), z€D (Ll,p,m) ,
s=0

D (Lipm) = {z€W:lhz=0, j=1,...,2n}.
Lemma 5. Let Assumption P; holds. Therefore, for anya; € R, by, € R, 4 =0,1,.. .,kpll,
r=20,1,...,ny, m, p € N, the operator L, has the set of eigenvalues 0y, := {Mem € 0,
k € N}, and the system of eigenfunctions V (Ly,p,,) , which is complete and minimal in the
space Hy.
n
Proof. The solutions wy, (A), r =1,...,n, of equation ) as(—l)”_syg;fwzs = A, which is
=0 7

S=
characteristic for equations (14), we choose to fulfill the conditions
Rewpm (A) <Rewy_1m (A) <--- <Rewqy(A) <0.

Let us determine the functions

1
Zgm (X1,A) 1= E(exp wWgm (A) X1+ expwgm (A) (1= x1)) € Hoo, g=1,...,1,

1
Zntgm (X1,A) 1= E(exp wWgm (M) X1 —expwygm (A) (1 —x1)) € Hop, g=1,...,n,

2n
Zm(xl) = chzj,m (Xl,)t) s Cj € R. (19)
j=1

Substituting expression (19) into boundary conditions (15)—(17), we obtain an equation for de-
termining of eigenvalues for operator Ly, :

Ap(A) = det(l;,lzj,m (x,}\))]z,’;zl =0.

According to the relations z,,14,m (x1,A) € Ho,, l,}+sn e WS, s, re {0,1}, 12,1 e W, we
obtain
l}wq,lzj,m (x1,A) =0, l;llznﬂ-,m (x1,A)=0,j,9=1,...,n,
Apm(A) = Bom(A) A1 (A),

n

Am(A) = [TA =™y TT  (wjm (A) = @gm (A))* = 0. (20)

g=1 1<j<q<n
Let w,x,, be roots of the equation (20) for A = Ay,, which are selected so that
Wikm = 1k, Rewypn, < Rewy_ 1, < -+ < Rewyg,, < 0, k € IN. Substituting ex-

pression (19) in boundary conditions (15)—(17), we can find the eigenfunctions of the operator
Ll,p,m .
o (x1,Lipm) = V2sinpgxx1, pox = m(2k —1), k € N. (21)
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Let us define the system of functions

211 gm (X1) = V2008 py px1, p1x = 2km, k €N, (22)

1 _
Zl,q,k,m(xl) = E(1 + exp wq,k,m) 1(exp Wy kmX1 + exp wq,k,m(l —x1)), k€N, (23)

and a square matrix of order 7, elements of which we define by the following rule: pth row is
defined by functions (22), (23), and elements of other rows is defined by numbers

. 2-2r _ 2-2r, 2r—2 _ _
ﬂq,r,k,m = P1x ll,r,lzl,q,k,m/ Vgrkm = P71 Wl 4= 2,3,...,n,r#p,r=1,...,n

Opjom =2V2, r £ p, =2,3,...,n, ke N.
Determinant of the given matrix is denoted by z ,, x ,(x1), k € N.

Remark 1. For any fixed m € N and k — oo, we obtain the relation

. -1 _
51,k,m = wl,k,mpllk =1,

Sgfm = O Wakm = &g (1 + O <k‘1>) ,
where ¢, are the solutions of equation (=1)"(e)* =1, ey =1, Im e<0,g=23,...,n

Substituting function z; ; (x1) in boundary conditions (14)—(17), we obtain the equalities

el,s,lzZ,p,k,m =0,s 7& p, ll,p,lzZ,p,k,m = Cpkms S = 1,...,2n, ke N,

where ¢k = \/EZp?ﬁ(_ZWk,m, Wim = W <5%,k,m’ o, 02 ) is Vandermonde determinant of

n,k,m
order n, which is constructed by numbers 5§,k,m' g=1,...,n

Remark 2. For arbitrary m € IN and k — oo the number sequence {Wy ,, }7- ; converges to

Vandermonde determinant W (€2, €2,...,€2), which is constructed by numbers €2, . .., €%.
17 €2 n 4 1 n

Therefore, 8, , . m = s%r_z(l +0(1)), k=00, g=1,...,n

Thus, the positive numbers Cs, Cq exist such that the following inequality holds:
0<GCs < }cp,k,m}pi;zﬁ < Ce < o, k€ N.
Let us choose the functions
Z3,pm(X1) := ijlzz,p,k,m(xl), k € IN. (24)

Taking into account equalities (24), we obtain the relations

2p—2
g%/SZ;),,p,k,m =0,s#p, ﬂ%lpz;;,p,k,m(xl) = 2\/§p1”;{ ,s=1,...,n (25)
Let Ajsxm := det(ﬁqu’m)gfz rl,ns' Consider the functions y, i, (x1) := A7 11,k, mZ3,pkm(X1),
n
Yojom(¥1) = 211 jm (¥1) + Y Vjpkm?1,jem (X1), k € N, (26)
j=2

where v, km = Al,p,k,mAj,p,k,m/ j=23,...,n
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From formulas (24)—(26) we obtain

yp,k,m(xl) = Cl,p,k,mZZ,p,k,m(xl)/
where
-1
Cl,p,k,m = Wk,mAl,p,k,mr C7 < C1,pk,m < CS < 0.

Therefore,

2p-2
l%,pyp,k,m(xl) = ch,k,mZ\/ipL;;< , l%,syp,k,m(xl) =0,s#p s=1,...,n
The eigenfunctions vy  (x1, L1,,m) of the operator L; p, ,, we define by the equality

01k(x1, L1pm) = T,106(x1) + 1pgmYppm(x1), k € N. (27)

To determine the unknown parameters 7,,,,, we substitute the expression (27) in the
boundary conditions (16), (17).
Taking into account (24), we obtain

_ 2-2
Hpkm = (=1)Pv 8_1C1,;,k,mp1,k pl%,p"fl,l,k/ k € N. (28)

Thus, the operator Ly, has the system V (Ll,p,m) of eigenfunctions (21), (24), (28).

The completeness of the system of functions V (L1, ) in the space Hy is proved from the
opposite, like in the proof of the Lemma 2.

Let us consider the operators

R(Ll,p,m)r S(Ll,p,m) : H() — Ho, R(Ll,p,m) =E+ S(Ll,p,m)/

R(L1,p,m)ti0k(x1) := T0x(x1), R(L1,pm)T1k(x1) := 014(x1, L1,pm), k € N.

From the definition of operator S(Ly ;) we obtain S(L1,p,) : Hoo — 0, S(L1,p,m) : Ho1 —
Hoo, S*(L1,pm) =0, R™Y(Ly,pm) = E—S(L1,p,m). Therefore, the system of functions V (L1, )
is minimal in the space Hy. Lemma 5 is proved. O

Let 0y = 17y km, then Ap = Ag, k, me N, p € {1,...,n}.

Lemma 6. If {1,k };-, is a bounded sequence, then the system of functions V(Lyp,) is the
Riesz basis in the space Hy.

Proof. Taking into account the definition of the function y,  ,,(x1) and the choice of numbers
Wykm, 4 = 1,...,n, we can conclude: if 6 = 1,1m, kK € N, p € {1,...,n}, is a bounded
sequence, then the systems of functions V(L1 ), V (Ap,n) are quadratically approximate for
everym e N, pe {1,...,n}.

Therefore, taking into account the Lemma 5 and the theorem N.K. Bari [10], we obtain the
statement of Lemma 6. O

Let us choose an arbitrary sequence of real numbers ® = {6, }> ;, and define the operator
Ae,pm : Ho — Hp, which has the set of eigenvalues 7y, = {A, € 0, k € N} and the system
V(Ae,pm) = {Vskm(¥1, A@,pm) € Ho: s =0,1, k € N} of eigenfunctions

00 k,m (X1, Ae,pm) = T10k(X1), OLkm(X1, Ae,pm) = T1,1k(%1) + OkYpim(x1), K EN. (29
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Consider the operators

R(A@/lg’m) = E + S(A@/lg’m),
S(Ae,pm)T10k(x1) := 0,
5(Ae,pm)T1,1k(x1) = OYpjem(x1), k € N
Let I'y ,(Lo,m) be the set of operators, which have purely point spectrum ¢y, and the system

of eigenfunctions (29).
We define on I'y ;(Lo,») the commutative multiplication operation

R(A®1,p,m)R(A®2,p,m) =E+ S(A®1,p,m) + S(A®2,p,m) = R(A®2,p,m)R(A®1,p,m)f

A®2,p,m/ A®1,p,m S rl,p(LO)/

and inverse operator R™!(Ag pm) = E — S(Ae,pm), Aepm € T1(Lom)-

Lemma 7. For any real numbers 0, € R, g € N, the system of functions V(Ag ) is complete
and minimal in the space Hy. The system of functions V(Ae ) is the Riesz basis in Hy if and
only if the sequence © is bounded.

Proof. The lemma can be proved by the schema of proof the Lemma 2. O

We define by the formulas

Us,r,k,m (xl Ll,p) = vs,k (xlr Ll,p,m) TZ,r,m (x2) 7 Sr r E {O/ 1}/ k/ m E N/ (30)
the eigenfunctions of operator Ly .

Lemma 8. Suppose that the Assumption P; holds. Then, for arbitrary as € R, by, € R,
the operator Ly, has the point spectrum o, and the system of eigenfunctions V (Ly,) :=
{01 pm (x,L1,p), s, r € {0,1}, k, m € N}, which is complete and minimal in Hy.

If the Assumptions Py—P3 hold, then the system of functions V (L1 ) is the Riesz basis in
the space Hj.

Proof. Substituting functions (30) into the equations (8)—(13) makes sure that the numbers
Am € 0 are eigenvalues, if k, m € IN.

In the space H; we define the operator R (Ly ) := E 4+ S (Ly,,) , which maps the system of
functions V (Lg) into V' (L) -

The operator R (L; ,) has the form

R (LLP) = ZR(Ll,p,m> X T02,r,ms

r,m

where 713, ,,, is the orthoprojector into the one-dimensional proper subspace in Hy, which cor-
responds to eigenfunction 1, , ,,(x2) of operator By.

We consider the operator A, : Hy — Hj, which has purely point spectrum o(A,) :=
{Mem € R: Ay = Pk + pom, k, m € N} and the system of eigenfunctions

V(Ap) :={vgppm (X1, %2, Ap) 1= vs (X1, Apm) Torm (x2), s, ¥ € {0,1}, k, m € N}.

Let R(Ap) := ¥ R(Apm) X 72,0 m-
r,m
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According to the Lemma 5, for an arbitrary m € IN the system of functions W (L1, ) exists,
and it is biorthogonal to the system V (L1, ) -

Therefore, we can define the elements of system W (L, ,,) , which is biorthogonal to system
V (L1,p) in the space H; :

Wy y jom (X1, X2, L1,p) = Ws (%1, L1,pm) T2r,m(x2), 5, ¥ € {0,1}, k, m € N.

Thus, the system V (L;,) is complete and minimal in Hj.

Therefore, when the Assumptions P, and P; hold, then we obtain the inequality |17, x| <
Cy < oo, for arbitrary m, k € IN. Taking into account the estimates ||R(A,); [H1]||* < Cyo, we
obtain the statement: eigenfunctions (30) of operator A, are almost normalized, and system
V (A,) is the Riesz basis of the space Hj.

We consider the operator R(L1,,) = E+ S(L1,,) = (E + Q)(E + S(A})). Then the operator
Qp := S(L1,p) — S(Ay) is completely continuous, because the systems of functions V' (L1,p,m),
V(Ap,m) are quadratically approximate and the operator Qpm := S(L1,p,m) — S(Ap,m) is idem-
potent: Q%,m =0.

According to the definition of function v, ,,(x, Ly), we obtain

1QpVs v km (X, Lo); Hi|| = O(m + k)f?’, m, k — oo.

Then, for an arbitrary 1 = Y Ng, g s rkm(¥, Lo) € Hi, from Cauchy’s inequality we can
s,r,mk

get the inequality

HQph} Hle - ” Z hs,r,k,meUs,r,k,m(xr LO); Hle < Cll”h} HlH2~
s,rkm
Thus ||Qp; [H1]||> <oe, (L1,p) =Qp + R(A1,p) € [H1], R(L1,p) '=(E—S(A,)(E—Q)€[Hy]. O
n
Proof. Proof of the Theorem 1. Let R(L) :=
p=

R(Ly,p). The eigenfunctions of operator L we
1

can define in the form
vs,r,k,m(xr L) = R(L)vs,r,k,m(xl LO)/ r, s € {0,1}, k, m € N.

Taking into account, that operators R(Ly ) are elements of the group I'1 ,(Lo), we obtain
n
R(L) = E+S(L), R"Y(L) = E—S(L), S(L) := Y _ S(Ly,).
p=1

Therefore, the system of eigenfunctions V (L) is complete and minimal in Hj. O

Proof. Proof of the Theorem 2. Let the Assumptions P;—P; hold, then the system of eigenfunc-
n
tions V (Ly,,) is the Riesz basis in the space H;, and R(L) = [] R(Ly,,) € [Hj]. Therefore,
p=1
taking into account the theorem N.K. Bari [10], we obtain the statement of the theorem. O

Let us define the elements of system W(L), which is biorthogonal to system V (L) in the
space Hi:
Wsr km(X, L) := R(L)T1 5 (x1)T2rm(x2), s,7v € {0,1}, k, m € N.
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Remark 3. The positive numbers C1(L), Cy(L) exist, such that for function

f(x> = Z fs,r,k,mvs,r,k,m(xlr X2, L)r fs,r,k,m = (f/ ws,r,k,m(xlr X2, L)? Hl)

s,rk,m

the following inequality holds

QOIS HIP < Y forkml’ GO Hil (31)

s,r,k,m

Proof. Proof of the Theorem 3. We will use a solution of the problem (1)—(6) in the form of
series

u(x) = Z us,r,k,mvs,r,k,m(xlerI L). (32)

s,rk,m

If we substitute series (31), (32) into equation (1), we obtain
T
Taking into account the Assumption P3 and inequality A ,}1 <1, we can get
lu; Hi || < Cs(L) || f3 Fll?, Cs(L) = Ca(L)~H(L)C3(L)Cy (L),

ID3"u; Hy||* < Cs(L)|| f3 Fhll?,
ID3"w; Hy|* < Cs(L)|| f5 Fh||*.
Therefore, |lu; Hy||> < 3Cs(L)||f; H1|? O
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bapanenskmit 51.0., Kaaentok I1.I., Komau M.I., Conomko A.B. HenokanoHa kpatiosa 3adaua 3i 36ypeH-
HAMU MIUAHUX Kpaiiosux Yymoe 0.1 eninmuuHoeo pisHaHHS 3i cmanrumu koepiyienmamu. I // Kapmarceski
MaTeM. my6A. — 2019. — T.11, Ne2. — C. 228-239.

Y poborTi B oavHMUIHOMY KBaapaTi G MeToaoM Dyp’e AOCAIAXYETHCS 3aAaUa 3 HEAOKAABHVIMU
yMoBaMy, SIKi € 6araToTOYKOBMMM 30YpPEeHHSIMM MilllaHMX KPaifoBMX yMOB. BMBYeHO BAACTMBOCTI
y3araAbHEHOT0 orneparopa nepersopeHHs R : Ly (G) — Ly (G), stkwmit BiAobpaskae HOpMOBaHi BAACHI
dyHkLii onepaTopa Lo 3apadi i3 MilllaHMMM KpalfoBMMM yMOBaMM Y BAacHi pyHKIiI oneparopa L
36ypeHoi HeAOKaABHOI 3apaui. [To6yaoBaHo cucremy V(L) BAacHMX dpyHKLiN onepaTopa L. Busna-
YeHO yMOBY, ITpu sIKMX cucTeMa V(L) moBHa Ta MiHiMaAbHA B ripocTopi Ly (G), Ta yMOBY, TIpU SIKMX
BOHa € 6asucoM Picca y mpocropi Ly (G). Y Bumaaxy, sikimo cvicrema V(L) e 6asucom Picca B mpocTopi
L,(G), BCTAHOBA€HO AOCTATHI MOBI, IIPY SIKMX HEAOKAABHA 3aAdUa Ma€ CAVHIIA PO3B’SI30K Y BUTASIAL
psiay ®yp’e 3a aucremoro V(L).

Kntouosi crosa i ppasu: amdpepeHIiarbHe PiBHSHHS 3 YaCTMHHMMM IOXiAHMMM, KOpeHeBi pyH-
Kuii, 6a3uc Picca.



