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THE RELATIONSHIP BETWEEN ALGEBRAIC EQUATIONS AND (1, m)-FORMS,
THEIR DEGREES AND RECURRENT FRACTIONS

Algebraic and recursion equations are widely used in different areas of mathematics, so various
objects and methods of research that are associated with them are very important. In this article
we investigate the relationship between (1, m)-forms with generalized Diophantine Pell’s equation,
algebraic equations of n degree and recurrent fractions. The properties of the (1, m" + 1)-forms
and their characteristic equation are considered. The author applied parafunctions of triangular
matrices to the study of algebraic equations and corresponding recurrence equations. The form
of adjacent roots of the annihilating polynomial of arbitrary (#, m)-forms over the field of rational
numbers are explored.

The following question is very importan for some applied problems: Is a given form the largest
by module among its adjacent roots? If it is so, then there is a periodic recurrence fraction of n-
order that is equal to this (1, m)-form, and its mth rational shortening will be its rational approxi-
mation.The author has identified the class (nm)-forms with the largest module among their adjacent
roots and showed how to find periodic recurrence fractions of n-order and rational approximations
for them.

Key words and phrases: (n, m)-form, parapermanent, unit of field, Diophantine equation, recur-
rence fraction, rational approximation.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: 1ishchynsky81@gmail.com

1 PRELIMINARY CONCEPTS AND THEOREMS

1.1 Algebraic form of n order

Definition 1. A real number
x=sg+s1Vm+...+s,_1Vm"1, neN,s;;meQ, (1)
or corresponding n-dimensional vector

x = (S0,51,--+,51—-1) (2)
is called an algebraic (n, m)-form or briefly (n, m)-form.

It is known that the set of (1, m)-forms with the usual operations of addition and multipli-
cation is a field.

We check the isomorphism of (1, m)-forms with some class matrices. For each (1, m)-form
(1) we put in correspondence the circular n order matrix
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and for each (n, m)-form (2) we put in correspondence the matrix

S0 MSy—1 MSp—3
S1 S0 msy, 1

52 51 50
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Both matrices (3) and (4) are uniquely defined by their first columns.
The product of (1, m)-forms

M TR )
w"/ n—1

X" =) +s{Vm+ ...+

is the following (1, m)-form

where

x:SO—FSlW-i-...

ZS; ;’]+m Z ss ],':

j=i+1

Thus, we have proved the following theorem.
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+ Snfl ': mn_lr
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Theorem 1. The semigroups of (n, m)-forms (1) and (2) are isomorphic to the semigroups of
matrices (3) and (4), respectively.

From the above it follows that k degree of (n, m)-for
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m (5) is responsible k degree of matrix
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It is also obvious that if the last two matrices multiply by on the matrices columns

1 1
50 50
Il n 1/
s1/m sy
X// _ : X// _ .
- . s - : ’
"N o "
Spo VM Sp—2
nooon 1 "
Sy Vm" Sn—1
then we get the matrices columns
S0 S0
S1v/m S1
X = : , X = : ,

Sp—pV'm"2 Sn—2
Sp—q Vm=1 Sn—1

where s; are defined by (6).
For any (n, m)-form

x=s9+s1Vm+...+s,_4Vmn-1

there exists a unique (1, m)-form
XT=5g4+5Vm+...+5,7Vm"1,

such that product x¥ is a real number. The (1, m)-form ¥ is called conjugated to (n, m)-form x,
and their product is called a norm of x and denoted by |(n, m)]|.
Let X and X are matrices that corresponds to (1, m)-form

x=sg+s1Vm+...+s,_1Vmn-1
and conjugate (n, m)-form x. Then
X-X=|(nm)|-E,

where E be the identity matrix. The norm of (1, m)-form x is equal to det X, and matrix that
corresponds to conjugated (1, m)-form ¥ is inverse to the matrix X multiplied on the determi-
nant of X.

Therefore, the equation

Sg MS,_q MSy_p --- MSy mMS]
51 S0 ms,_q1 -+ MWS3 MSp
S2 51 S0 cer MSy niss
==1
Sn—2  Sp-3  Sp—4 S0 MSy_q
Sp—1  Sp-2  Sp-3 - S1 S0

is an n-dimensional generalization Pell’s equation

sp msq

= s3 —ms3 = +1.
51 50
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Using the polynomial formula it is easy to prove the equality

(so4s1/m—+ ...+ s, 1 Vmn—1)k

k! Ao A A i

_ : 0.1 n—1,,,S,., -

= _S_ sa0sit L s imPm

A1 - . 170 "1 1

Ao+FAL+ A Ay 1=k AotAgt - Ay
MA2A0+ A (n=1)A, 1 =ns+i

However, the above formula is inconvenient for the elevation of (1, m)-forms to the k degree,
because it is associated with orderly partition number of # on integer nonnegative summands.

1.2 Parafunctions of triangular matrices (tables)

Let K be some field of numbers.

Definition 2 ([2]). Triangular table

a1
a1 4ax

A=| 7 T )
anl An2 - Aan

n

of numbers in K is called a triangular matrix.

To every element a;; of the triangular matrix (7) we put in correspondence the (i —j+ 1)
elements a;, k € {j,...,i} which are called derived elements of triangular matrix, generated by
a key element aj;;. A key element of a triangular matrix is also a derived element. The product
of all derived elements generated by a key element of a;; is denoted by {a;;} and is called a
factorial product of this key element, i.e.,

i
{aij} = T Tau
k=

Definition 3 ([2]). The paradeterminant and parapermanent of the triangular matrix (7) are
the numbers

n T
ddet(A) = Z Z (_1)117”H{apl+...+ps,p1+...+p5,1+1}r

r=1p1+..+pr=n s=1

n r

pper(A) = Z Z 1__[{apl+...+ps,171+...+17571+1}r

r=1p1+..+pr=ns=1

where the summation of over the set of natural solutions of the equality p; + ...+ pr = n.

Paradeterminants and parapermanents of triangular matrices can be used in Algebra,
Number Theory and Combinatorics (see [2] for more details and examples).
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1.3 One-periodic recurrence fractions
Let us consider the algebraic equations of nth order
X" =g Vb a2+ +ay, (8)

where a,, # 0, and the expression

ai
a
ay al
Ay, Ay —
n—l =2z ai
an-2 an—3 (9)
iy An-1 az al
ap—1 ap—2 7 a1
an as a
0 s 28 -2 a
An—1 a3 ay 1
a Ay Ay
0 0 ... G Gy G2
L ap—1 Ap-2 ap-3 dm

which is closely related to (8). The expression (9) looks like as a symbol fraction, the numerator
of which is a parapermanent P, of order m formed by the removal columns from the expres-
sion pipe and the denominator of which is a parapermanent Q,, of order m — 1 without first
column of parapermanent of numerator.

If in the expression (9) we direct to the limit as m — co, we obtain an one-periodic recurrent
fraction of order n

a
a
ay al
Ay Ay —
n-l n=z ai
An—2 an-3 (10)
ay ay—1 a a .
An-1 ap—p "7 a1 1
n as a
0 23 -2 a
An-1 a2 ay 1
237 | Ap-—2
0 0 ... MAw cnl oon2 o 0og
L ap—1 Ap—2 ap-3 1 1 oo

The expression (9) is called the mth approximant of (10).

Theorem 2 ([3]). Let (8) be an algebraic equation from pairwise different roots. If for the m-
rational shortening of one-periodic recurrent fraction of nth order (10) a finite non-zero real
limit exists asm — oo, i.e.,

Ijm&:x;éo,

m—oo Qm

then a recurrent fraction of order n is an image of the real root of algebraic equations (8) with
the largest module.

More information about recurrent fractions can be found in [3].
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2 RELATIONSHIP (n,m)-FORM WITH ALGEBRAIC EQUATIONS
Let us find the integer coefficients of equation
no__ n—1 n—2 1
X' =ap X" Fapx" T+ a1 X+ Ay (11)
the root of which is the (n, m)-form
X =59+ m~+...+5,_1Vmn-1,
where s; € Q, m € IN.
The main minor of rth order of matrix
ain a a1n
ar1 dyp ... Ay
X = . . (12)
anl 4n2 -+ Ann
is denoted by
Aiyip Bigiy 0 Qigi,
i1 Ip ... 1 Ainiy  Aigjiy **° iy,
X(,l '2 1r>: 2.1 2,12 zlr’
1 I ... Iy : :
air/il air/iz T aii’/ii’

wherei; <ip <...

or

where

< 1,. The characteristic equation of matrix (12) is

det(X —xE) =0
n __ n—1 n—2 1
X" = a,nx + X + oot Ay u_1X + &up,

pj = (—1)/71 Y X < i 1:2 l] ) : (13)

1§i1<i2<...<ij§n h 2 ... l]

According to theorem Hamilton-Cayley, each square matrix satisfies the characteristic equa-

tion, so

X" =y X" b w0 X2 a1 X (14)

with coefficients (13), where X is matrix (12).
If matrix X in (14) is given by (4), then the coefficients a,; of equation (11), for which a
(n, m)-form (2) is the root, can be found using the equalities (13). Thus, we prove

Theorem 3. If the (n, m)-form

Xx=so+s1Vm+...+s,_4Vmn-1

is a root of equation

X" =g a4+ an,n,lxl + ann,



102 LISHCHYNSKY]J I.1.

then the coefficients of this equation are equal

ay = (—1)/71 Yy x(fl o Z:f:>,

1<iy<ip<...<ij<n h ...

x(k
1 1 ... l]'

where

are major minors of matrix

S0 msy,_1 MSy—o2 --- MSy msq
51 S0 msy_—1 --- MS3 msp
S S1 S0 st MSy mss
X =
Sn—2  Sn-3 Sn—4 U 50 MSp—1
Sn—1 Sn-2 Sp—3 81 50

Theorem 4. The (n, m" + 1)-form

m" e A 1L+ m’\’/(m" +1)n=2 4/ (mn 4 1)1

is the root of an algebraic equation

x" = " m" 1 4 " mt 2+ " mx + " )
1 2 n—1 n

Proof. Since all the major minors the same order of matrix

m" b mt 1 mm"+1) ..o m" 3 (m" 1) m 2 (m" 4-1)

m"'=2  m"1 m'+1  ...om" At m" 1) m" 3 (m" + 1)
mn—3  m"2 mh—1 . m”_S(m” +1) m”_4(m” +1)
m m2 md . mn—1 m" +1
1 m m2 .. mh—2 mn—1

are equal, we find one of them. Let us find the major minor of matrix

m" b m"+1 m(m"+1) - mT2(m"+1)
mn—Z mn—l mh 41 .. ms—3(mn + 1)
mn—3 mn—Z mn—l .. ms—4(mn + 1)
mh—s mnfs+1 mnfs+2 mnfl

We multiply the first column on —m’, r =1,2,...,s — 1 and add it to the (r + 1) column; then
we get the determinant of matrix

mn—l 1 m .- ms—Z
man 0 1 . msf3
mnf?) 0 0 .. msf4

mi=s 0 0 - 0
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Decomposing above determinant by elements of the first column, we get (—1)"1m" 5.
Thus, according to the Theorem 3, coefficients a,s are equal to

(0t (1) =

O
3 SOME CALCULATIONS RELATED TO AN ALGEBRAIC EQUATIONS OF 11 DEGREE
Theorem 5. If
X" =g N a4+ Appn—1X + Apn
and
A= A"V A 2+ Apn_1X+ Amn, 1 < m,
then foralli =1,2,...,n
Ani
An,it1
aunl inl
n,i+2 an
an2 aZl anl
Ann Ann—i Apn—i-1
Apn—i  Ann—i-1 Ann—i-2 Anl
= 0 Ann An,n—i ann a (15)
An,n—i App—i-1 an1 nl
Ann an,nfl ”n,i+1 Ay
0 Apn—1 Ann—2 e Api Ap,i—1 An1
Ann Ay n—1 An3  4n2
L 0 0 0 U Gpp—1 Anp-2 an2  Anl an1 4 m—n+1

Proof. Obviously, equality (15) is true at m = n . Let us show that the induction step is per-

formed. We have

m+1 _ n—1 n—i
X = Am+1,1x + ...+ Am+1’ix + ...+ AmH,n_lx + Am+1,n-

On the other side,

XM = A+ A L+ Amln,lx2 + Apnx

= At (a X" P Fapx" 2 .+ App—1X + Apn) + Apx™ 14+ Amln,lx2 + Apnx

= (anlAml + AmZ)xnil +...+ (aniAml + Am,i—i-l)xniz
+...+ (an,nflAml + Amn>x + A Am1.

Thus
Amt1,i = AniAm + Apmjiva-

It is easy to see that decomposing the parapermanent A,,;; by elements of the first column,
U

we get a,i A1 + Apiv1e
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Corollary 1. If
X" =g a4+ Appn—1X + Ann

and
A= Apgx" N Ao 2+ Apn_1X+ Amn, 1 < m,

then coefficients A,,;; can be found from the recurrence equations
Api = apiAm—11 + apiv1Am—21+ -+ amnAp—nyii1, 1 =12,...,m,
where
An =am, An11=1A21=...= Ap1 =0.

Proof. The proof it follows from the decomposition of parapermanent (15) by the elements of
the first column. O

Example 1. If

x3 = 61313(2 + 61323(1 + ass3

and
X" = A x* + Appxt + Ays, m >3,

then coefficients A,,;,i = 1,2,3 can be found from the recurrence equations
Al = a31Ap-11 + a32Am-21 + a33Am-31,

Amp = axpAy_11+a33Am_21,
Amz = az3Am-11, m > 4,

where A31 = 1131,A21 =1, All = AOl =0.
For comparison, let us consider a similar algorithm of Delone and Fadeev ([1, p. 73]). Let
w® = Sw?+ Quw+ N
and
then the coefficients U,;, V;;;, W, can be found from relations
|
u, = Z M g Qﬁ N7,
o a!Bly!
a+2B+3y=m—2
Vm = um+1 - umsr
Wi = um+2 - um—i—ls - qu-
Note that similar algorithms with n > 3 were not considered.
Theorem 6. If (1, k)-form looks like

x:SO_FSl\n/%_'_..._'_Snil\n/knfll

then others of adjacent roots of diriment polynomial over the field of rational numbers of this
form are as follows

X;j = Sg + sleiW +---+ Snfls(nil)i V kn—1,

where ¢ is the primitive root of degreen of 1 andi =1,...,n — 1.
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Proof. To unify notation we also denoted (#, k)-form x by x,. We will show that for every k,
Sm = Yi—q X" does not depend on radicals and belongs the field of rational numbers.

Let us consider, first, Y-/ ; 7 = e Y_I" | €'P. Since ¢ is the primitive root of degree 1 of unit,
then

n—1 no no
Y eP =Y P ie, Y €7=0,
i=0 i=1 i=1

if p is not a multiple of n.
In formula x;-” each summand will looks like

Spy €PIVKPL sy P kP = (s, .. sy, )€ PP o,

where py,...,pm € {0,1,2,...,n—1}. Thenin S, = Y ; x/" we can regroup the terms in
groups of sets with the same py, ..., py; each a such group has representation:

n

. n .
Z(spl...spm)el(pﬁ“‘ﬂ’m)\”/kP1+~~+Pm = (Spy - Spy) (Zez(pﬁmwm)) WPt pm,
i=1

i=1

Hence, if p1 + - - - + py is not a multiple of 7, then this group of summands is equal to zero; if
p1+ -+ -+ pn is a multiple of n, then this group of summands is a rational number.
According to Newton’s formulas, 0, (elementary symmetric expressions of x1, ..., x,), m =
1,...,n are expressed through the S;, g < m, i0;, r < m. Since 07 = S; and all Sy, is a rational
number, then all ¢;;, where m = 1,...,n, also a rational number. According to the Viete
formulas (x — x1) ... (x — x,) € Qx], that proves the theorem. O

For some applications it less important to known the view of adjacent roots of (1, k)-form
then the answer to the question: Is this form the largest by module? This question is quite
difficult and requires a special investigation, but we have an obvious consequence.

Corollary 2. If sy,s1,...,5,—1, n € IN are nonnegative rational numbers, then (n,k)-form
x =sg+s;Vk+ - +s, 1Vk" 1 is the largest by module among its adjacent roots diriment
polynomial over the field of rational numbers.

Thus, using Theorem 3 for each (1, m)-form (1) we can write an algebraic equation of order
n. According to Corollary 2 and Theorem 2, by rational approximations of recurrent fractions
we can build a mth rational shortening (9) to the (n, m)-form (1).

Theorem 7. If (n, m)-form (1) with nonnegative coefficientss;,i = 0,1,...,n — 1 is the root of
an algebraic equation (8), then recurrent fraction (10) is it’s image, and it’s mth approximant
(9) is it’s rational approximation.
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Aimvcsxuni L1 38’930k aneebpaiunux pisHans 3 (n, m)-oopmamis, ix crenenamil i peKypeHmHumu 0po-
6amu // Kapnarceki Matem. myba. — 2019. — T.11, Nel. — C. 96-106.

Anrebpaiuni Ta peKypeHTHi piBHSHHs MalOTh IIMPOKe 3aCTOCYBaHHsI He TIABKM B aATebpi are 71 B
IHIIX po3Airax MaTeMATMKIM, UMM BUKAMKAIOTH Heabysike 3allikaBA€HHS AO Pi3HOTO pOAYy 06’eKTiB
Ta METOAIB AOCAIAYKEHHSI IOB SI3aHMX i3 HMMM. B 11011 cTaTTi AOCAIAKEHO 3B SI30K (n, m)-cpopM 3 y3a-
raAbHeHVMM piBHSHHSIMM [lens, arrebpalusmMy piBHSHHSIMU 11-OTO CTeTIEHS i peKypeHTHMU APO-
6amu. PosrastHyTO BAacTmBOCTi (1, m" + 1)-dpopMut i ii XapaKTepUCTUYHOTO PiBHSHHS. 3acTOCOBa-
HO HapadpyHKIII TPMKYTHMX MaTPUIIb A0 aATebpaidHMX PiBHSHB N-OTO CTEIeHs Ta BiAIOBIAHMX IM
PeKYpPeHTHUX PiBHSIHb. AOCAIAKEHO BUTASIA CYMIKHUX KOPEHIB aHyAIOIOUOro IMOAIHOMA AOBIABHOI
(n, m)-dpopMu Haa IOAEM paLliOHAABHMX UMCEA.

AAsT AeSIKMX TIPUKAAAHMX 33Aa4 BeAMKe 3HaUeHHST Mac BIAIIOBiAb Ha IIMTAHHS: Ui € AaHa (1, m)-
dopMa HaltbiAbIIIa 32 MOAYAEM CEpPeA CBOIX CyMiXHMX KopeHiB? ToAl B IIbOMy BUITAAKY iCHYBaTMMe
OAHOIIEPIOAVYHIIA peKypeHTHIMI Api6 1-0ro MOPSIAKY, SIKMIL AOpiBHIOBaTMME AaHiit (1, 1m)-dopmi,
a Jforo m-Te palioHaAbHe BKOPOUeHHs OyAe 1i pallioHaAbHVM HabAVDKeHHSIM. ABTOP BMAIAMB KAAC
(n, m)-dpopM, sIKi € HaMBGIABIIIMMY 32 MOAYAEM Cepea, CBOIX CYMIXHMX KOPEHiB, Ta II0Ka3aB SIK AAS
HIIX 3HAWTY OAHOTIEPiOAMYHI peKypeHTHi Apoby 11-0T0 IOPSIAKY 7 palliOHaAbHI HaOAVIKeHHSI.

Kutouosi cnosa i ppasu: (n, m)-dpopma, mapariepMaHeHT, y3araabHeHe piBHSHHS [1eAsl, peKypeH-
THUI Api6, palioHaAbHe HabOAVDKEeHHSI.



