http://www.journals.pu.if.ua/index.php/cmp

Carpathian Math. Publ. 2019, **11** (1), 89–95 doi:10.15330/cmp.11.1.89-95



### KRAVTSIV V.V.

# ALGEBRAIC BASIS OF THE ALGEBRA OF BLOCK-SYMMETRIC POLYNOMIALS ON

 $\ell_1 \oplus \ell_{\infty}$ 

We concider so called block-symmetric polynomials on sequence spaces  $\ell_1 \oplus \ell_\infty$ ,  $\ell_1 \oplus c$ ,  $\ell_1 \oplus c$ ,  $\ell_1 \oplus c$ , that is, polynomials which are symmetric with respect to permutations of elements of the sequences. It is proved that every continuous block-symmetric polynomials on  $\ell_1 \oplus \ell_\infty$  can be uniquelly represented as an algebraic combination of some special block-symmetric polynomials, which form an algebraic basis. It is interesting to note that the algebra of block-symmetric polynomials is infinite-generated while  $\ell_\infty$  admits no symmetric polynomials. Algebraic bases of the algebras of block-symmetric polynomials on  $\ell_1 \oplus \ell_\infty$  and  $\ell_1 \oplus c_0$  are described.

Key words and phrases: symmetric polynomials, block-symmetric polynomials, algebraic basis, topological algebra.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine E-mail: maksymivvika@gmail.com

#### 1 Inroduction

Algebras of polynomials and analytic functions on a Banach space X which are invariant with respect to a group or semigroup of linear operators acting on X were studied by many authors (see e.g. [1, 3-5, 9]). In oder to study spectra of such algebras it is impotant to figure out with their algebraic bases (if exist). Let  $S_{\infty}$  be the group of all permutations of the set of natural numbers  $\mathbb{N}$ . That is,  $S_{\infty}$  consists of all bijections of  $\mathbb{N}$  to itself. Let  $S_{\infty}^0$  be the subgroup in  $S_{\infty}$  of all finite permutations. If X is a sequence Banach space and for each  $x = (x_1, x_2, \dots, x_n, \dots) \in X$ ,  $\sigma(x) := (x_{\sigma(1)}, \dots, x_{\sigma(n)}, \dots) \in X$ ,  $\sigma \in S_{\infty}$ , then we can concider functions which are invariants with respect to the operators  $\sigma(x)$ . A function  $f:X\to\mathbb{C}$  is called *symetric* if  $f(\sigma(x)) = f(x)$  for every  $x \in X$  and  $\sigma \in S_{\infty}$ . If it is true for all  $\sigma \in S_{\infty}^0$  then f is called finitely symmetric. In [11] Nemirovskii and Semenov described algebraic bases of algebra of continuous symmetric polynomials on real spaces  $\ell_p$ , where  $1 \le p < \infty$ . Their results were generalized by Gonzalez et al. [7] for real separable rearrangement-invariant sequence spaces. Also, in [7] it is proved that for  $\ell_p$ ,  $1 \le p < \infty$ , finitely symmetric polynomials are symmetric and  $c_0$  does not admit finitely symmetric polynomials. In [8] it is proved that there are no symmetric polynomials on  $\ell_{\infty}$  but we have a lot of finitely symmetric polynomials. It is not difficult to check that every symmetric (and finitely symmetric) polynomial on *c* can be generated by the following one

$$L(x) = \lim_{n \to \infty} x_n.$$

In [9,10] were concidered *block-symmetric polynomials*, wich also are called MacMahon Polynomials on Banach spaces. The block-symmetric polynomials can be defined by the following

90 Kravtsiv V.V.

way. Let  $X_1, ..., X_m$  be sequence spaces. Then every  $x \in X_1 \times ... \times X_m$  can be represented by  $x = (x^1, ..., x^m)$ , where  $x^j \in X_j$ . For any  $\sigma \in S_\infty$  we can define  $\sigma(x) = (\sigma(x^1), ..., \sigma(x^m))$  and a polynomial  $P: X_1 \times ... X_m$  is block-symmetric if  $P(\sigma(x)) = P(x)$  for every  $\sigma \in S_\infty$ . In [10] algebra of block-symetric analytic functions on  $\ell_1 \times \ell_1$  is investigated. In [9] constructed an algebraic basis of block-symmetric polynomials on  $\ell_1 \times \ell_2 = \ell_p(\mathbb{C}^n)$ . In this paper

we construct an algebraic basis on the algebra of all block-symmetric polynomials on  $\ell_1 \times \ell_\infty$ . It is interesting to note that the algebra of block-symmetric polynomials is infinite-generated while  $\ell_\infty$  admits no symmetric polynomials. Also, we concider block-symmetric polynomials on  $\ell_1 \times c_0$  and  $\ell_1 \times c$ .

## 2 MAIN RESULTS

Let us denote by  $\ell_1 \oplus \ell_\infty$  the space with elements  $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_m \\ y_m \end{pmatrix}, \dots \end{pmatrix}$ , where  $(x_1, x_2, \dots, x_n, \dots) \in \ell_1$ ,  $(y_1, y_2, \dots, y_n, \dots) \in \ell_\infty$ . The space  $\ell_1 \oplus \ell_\infty$  with norm

$$||(x,y)||_{\ell_1 \oplus \ell_\infty} = \sum_{i=1}^{\infty} |x_i| + \sup_{i>1} |y_i|$$

is a Banach space.

A polynomial P on the space  $\ell_1 \oplus \ell_\infty$  is called block-symmetric (or vector-symmetric) if

$$P\left(\left(\begin{array}{c}x_1\\y_1\end{array}\right),\ldots,\left(\begin{array}{c}x_m\\y_m\end{array}\right),\ldots\right)=P\left(\left(\begin{array}{c}x_{\sigma(1)}\\y_{\sigma(1)}\end{array}\right),\ldots,\left(\begin{array}{c}x_{\sigma(m)}\\y_{\sigma(m)}\end{array}\right),\ldots\right),$$

for every permutation  $\sigma$  on the set of natural numbers  $\mathbb{N}$ , where  $\begin{pmatrix} x_i \\ y_i \end{pmatrix} \in \mathbb{C}^2$ .

Let us denote by  $\mathcal{P}_{vs}(\ell_1 \oplus \ell_\infty)$  the algebra of block-symmetric polynomials on  $\ell_1 \oplus \ell_\infty$ ; by  $\mathcal{H}_{bvs}(\ell_1 \oplus \ell_\infty)$  the algebra of block-symmetric analytic functions of bounded type on  $\ell_1 \oplus \ell_\infty$ .

In [9] it was proved that polynomials  $H^{k_1,...,k_n}(x) = \sum_{\substack{j=1\\k_s>0}}^{\infty} \prod_{\substack{s=1\\k_s>0}}^{n} (x_j^s)^{k_s}$ , where  $x = (x_1, x_2,...) \in$ 

 $\ell_1(\mathbb{C}^n)$ ,  $x_j = (x_j^1, \dots, x_j^n) \in \mathbb{C}^n$  form an algebraic basis of the algebra  $\mathcal{P}_s(\ell_1(\mathbb{C}^n))$ .

For a multi-index  $k = (k_1, k_2, ..., k_n) \in \mathbb{Z}_+^n$  let  $|k| = k_1 + k_2 + ... + k_n$ . For an arbitrary nonempty finite set  $M \in \mathbb{Z}_+^n$  let us define a mapping  $\pi_M : c_{00}(\mathbb{C}^n) \to \mathbb{C}^{|M|}$ , where |M| is the cardinality of M, by

$$\pi_M(x) = (H^{k_1,\dots,k_n}(x))_{(k_1,\dots,k_n)\in M}.$$

In [9] it was proved the following theorem.

**Theorem 1** ([9]). Let M be a finite nonempty subset of  $\mathbb{Z}_+^n$  such that  $|k| \ge 1$  for every  $k \in M$ .

- 1. There exists  $m \in \mathbb{N}$ , such that for every  $\xi = (\xi_{(k_1,\ldots,k_n)})_{(k_1,\ldots,k_n)\in M} \in \mathbb{C}^{|M|}$  there exists  $x_{\xi} \in c_{00}^{(m)}(\mathbb{C}^n)$  such that  $\pi_M(x_{\xi}) = \xi$ , where  $c_{00}^{(m)}(\mathbb{C}^n)$  is the space of all sequences  $x = (x_1,\ldots,x_m,0,\ldots), x_1,\ldots,x_m \in \mathbb{C}^n$ ;
- 2. There exists a constant  $\rho_M > 0$  such that if  $||\xi||_{\infty} < 1$ , then  $||x_{\xi}||_p \le \rho_M$  for every  $p \in [1, +\infty)$ , where  $||\xi||_{\infty} = \max_{k \in M} |\xi_k|$ .

Let us denote by  $(\ell_1 \oplus \ell_\infty)^{(m)}$  the space of all sequences

$$\left(\begin{array}{c} x \\ y \end{array}\right)_m = \left(\left(\begin{array}{c} x_1 \\ y_1 \end{array}\right), \ldots, \left(\begin{array}{c} x_m \\ y_m \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \ldots\right),$$

where  $(x_1,\ldots,x_m,0\ldots)\in \ell_1$ ,  $(y_1,\ldots,y_m,0\ldots)\in \ell_\infty$ . Clearly, that  $c_{00}^{(m)}(\mathbb{C}^n)=(\ell_1\oplus\ell_\infty)^{(m)}$ . For an arbitrary nonempty finite set  $M\in\mathbb{Z}_+^2$  let us define a mapping  $\pi_M:\ell_1\oplus\ell_\infty\longrightarrow\mathbb{C}^{|M|}$  by

$$\pi_M((x,y)) = (H^{k_1,k_2}(x,y))_{(k_1,k_2) \in M}.$$

**Corollary 1.** Let M be a finite nonempty subset of  $\mathbb{Z}_+^2$  such that  $k_1 + k_2 \ge 1$  for every  $(k_1, k_2) \in M$ .

- 1. There exists  $m \in \mathbb{N}$ , such that for every  $\xi = (\xi_{(k_1,k_2)})_{(k_1,k_2)\in M} \in \mathbb{C}^{|M|}$  there exists  $(x,y)_{\xi} \in (\ell_1 \oplus \ell_{\infty})^{(m)}$  such that  $\pi_M((x,y)_{\xi}) = \xi$ ;
- 2. There exists a constant  $\rho_M > 0$  such that if  $||\xi||_{\infty} < 1$ , then  $||(x,y)_{\xi}||_{\ell_1 \oplus \ell_{\infty}} \le \rho_M$ .

For elements 
$$\begin{pmatrix} x \\ y \end{pmatrix}_m$$
,  $\begin{pmatrix} z \\ t \end{pmatrix}_m \in \ell_1 \oplus \ell_\infty$ , let

$$\begin{pmatrix} x \\ y \end{pmatrix}_m \oplus \begin{pmatrix} z \\ t \end{pmatrix}_m = \begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_m \\ y_m \end{pmatrix}, \begin{pmatrix} z_1 \\ t_1 \end{pmatrix}, \dots, \begin{pmatrix} z_m \\ t_m \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \dots \end{pmatrix}.$$

For  $(x, y)^1$ ,  $(x, y)^2$ , ...,  $(x, y)^r \in \ell_1 \oplus \ell_\infty$ , let

$$\bigoplus_{j=1}^r (x,y)^j = (x,y)^1 \oplus (x,y)^2 \oplus \ldots \oplus (x,y)^r.$$

Obviously that

$$\left| \left| \bigoplus_{j=1}^{r} (x,y)^{j} \right| \right|_{\ell_{1} \oplus \ell_{\infty}} \leq \sum_{j=1}^{r} \left| \left| (x,y)^{j} \right| \right|_{\ell_{1} \oplus \ell_{\infty}}.$$

Also note that for every  $(k_1, k_2) \in \mathbb{Z}_+^2$ , such that  $k_1 + k_2 \ge 1$ ,

$$H^{k_1,k_2}\left(\bigoplus_{j=1}^r (x,y)^j\right) = \sum_{j=1}^r H^{k_1,k_2}((x,y)^j). \tag{1}$$

For  $N \in \mathbb{N}$  let  $M_N$  be a finite nonempty subset  $\mathbb{Z}_+^2$  such that  $1 \le k_1 + k_2 \le N$  for every  $(k_1, k_2) \in M_N$ .

By Corollary 1, for  $M=M_N$  there exists  $\rho=\rho_M$ , such that  $\pi_{M_N}(V_\rho)$  contains the open unit ball of the space  $\mathbb{C}^{|M|}$  with norm  $||\xi||_{\infty}$ , where

$$V_{\rho} = \left\{ (x, y) \in \ell_1 \oplus \ell_{\infty} : ||(x, y)||_{\ell_1 \oplus \ell_{\infty}} \leq \rho \right\}.$$

**Proposition 1.** Let  $q(\xi_{(l_1,l_2)})_{(l_1,l_2)\in M_N}$  be a polynomial on  $\mathbb{C}^{|M_N|}$ . If q is bounded on  $\pi_M(V_\rho)$ , then q does not depend on  $\xi_{(0,k)}$ ,  $k \in \mathbb{N}$ .

92 Kravtsiv V.V.

*Proof.* Let  $(0,k) \in \mathbb{Z}_+^2$ ,  $k \in \mathbb{N}$ . Let  $K = \pi_{M_N}(V_\rho)$ ,  $K_1 = \pi_{M_N \setminus \{(0,k)\}}(V_\rho)$  and  $\eta : K \to K_1$  be an orthogonal projection, defined by

$$\eta: (\xi_{(l_1,l_2)})_{(l_1,l_2)\in M_N}\mapsto (\xi_{(l_1,l_2)})_{(l_1,l_2)\in M_N\setminus\{(0,k)\}}.$$

Let us show that for every ball

$$B(u,r) = \left\{ \xi \in \mathbb{C}^{|M_N \setminus \{(0,k)\}|} : ||\xi - u||_{\infty} < r \right\}$$

centered at  $u=(u_{(l_1,l_2)})_{(l_1,l_2)\in M_N\setminus\{(0,k)\}}\in\mathbb{C}^{|M_N\setminus\{(0,k)\}|}$  and of radius r>0 such that  $B(u,r)\subset\pi_{M_N\setminus\{(0,k)\}}(V_\rho)$ , the set  $\eta^{-1}(B(u,r))$  is unbounded. Since  $u\in\pi_{M_N\setminus\{(0,k)\}}(V_\rho)$ , there exists  $(x,y)_u\in V_\rho$  such that  $\pi_{M_N}((x,y)_u)=u$  by Corollary 1. For  $m\in\mathbb{N}$ , we set  $(x,y)_m=\oplus_{j=1}^m\left(\frac{1}{j^{\frac{1}{|k|}}}\right)a_k$ , where  $a_k=\frac{1}{k^{\frac{1}{k}}}\left(\begin{pmatrix}0\\\alpha_{k,0}\end{pmatrix},\ldots,\begin{pmatrix}0\\\alpha_{k,k-1}\end{pmatrix},\begin{pmatrix}0\\0\end{pmatrix}\ldots\right)$ ,  $\alpha_{m,j}=(\sqrt[m]{-1})_j$ ,  $0\leq j\leq m-1$ .

Choose  $\varepsilon$  such that

$$0 < \varepsilon < \min \left\{ 1, \frac{\rho - ||(x,y)_u||_{\ell_1 \oplus \ell_\infty}}{||a_k||_{\ell_1 \oplus \ell_\infty} \zeta(\frac{1}{k})}, \frac{r}{||a_k||_1^N \zeta(s - 1 + \frac{1}{k})} \right\},\,$$

where  $\zeta(\cdot)$  is the Riemann zeta-function.

Let  $(x, y)_{m,\varepsilon} = (\varepsilon(x, y)_m) \oplus (x, y)_u$ . Let us show that  $(x, y)_{m,\varepsilon} \in V_{\rho}$ .

$$||(x,y)_m||_{\ell_1\oplus\ell_\infty} = \sum_{j=1}^m \left| \left| \frac{1}{j^{\frac{1}{k}}} a_k \right| \right|_{\ell_1\oplus\ell_\infty} = \sum_{j=1}^m \frac{1}{j^{\frac{1}{k}}} ||a_k||_{\ell_1\oplus\ell_\infty} = ||a_k||_{\ell_1\oplus\ell_\infty} \sum_{j=1}^m \frac{1}{j^{\frac{1}{k}}} < ||a_k||_{\ell_1\oplus\ell_\infty} \zeta(\frac{1}{k}).$$

Therefore,  $||(x,y)_m||_{\ell_1 \oplus \ell_\infty} < ||a_k||_{\ell_1 \oplus \ell_\infty} \zeta(\frac{1}{k})$ . Then

$$||(x,y)_{m,\varepsilon}||_{\ell_1 \oplus \ell_\infty} \leq \varepsilon ||(x,y)_m||_{\ell_1 \oplus \ell_\infty} + ||(x,y)_u||_{\ell_1 \oplus \ell_\infty} < ||a_k||_{\ell_1 \oplus \ell_\infty} \zeta(\frac{1}{k}) + ||(x,y)_u||_{\ell_1 \oplus \ell_\infty}.$$

Since  $\varepsilon < \frac{\rho - ||(x,y)_u||_{\ell_1 \oplus \ell_\infty}}{||a_k||_{\ell_1 \oplus \ell_\infty} \zeta(\frac{1}{k})}$ , it follows that  $||(x,y)_{m,\varepsilon}||_{\ell_1 \oplus \ell_\infty} < \rho$ . Hence,  $(x,y)_{m,\varepsilon} \in V_\rho$ .

Note that for arbitrary  $(l_1, l_2) \in \mathbb{Z}_+^2$  such that  $l_1 + l_2 \ge 1$ , by equality (1),

$$H^{l_{1},l_{2}}((x,y)_{m}) = \sum_{j=1}^{m} \frac{1}{j^{\frac{l_{1}+l_{2}}{k}}} H^{l_{1},l_{2}}(a_{k}) = H^{l_{1},l_{2}}(a_{k}) \sum_{j=1}^{m} \frac{1}{j^{\frac{l_{1}+l_{2}}{k}}},$$

$$H^{l_{1},l_{2}}((x,y)_{m,\varepsilon}) = \varepsilon^{l_{1}+l_{2}} H^{l_{1},l_{2}}((x,y)_{m}) + H^{l_{1},l_{2}}((x,y)_{u})$$

$$= \varepsilon^{l_{1}+l_{2}} H^{l_{1},l_{2}}(a_{k}) \sum_{j=1}^{m} \frac{1}{j^{\frac{l_{1}+l_{2}}{k}}} + H^{l_{1},l_{2}}((x,y)_{u}).$$
(2)

Let us show that  $\pi_{M_N\setminus \{(0,k)\}}((x,y)_{m,\varepsilon})\in B(u,r)$ . For  $(l_1,l_2)\in M_N\setminus \{(0,k)\}$ , such that  $l_2\neq 0 \mod k$ ,  $H^{l_1,l_2}(a_k)=0$  (see [9, Prop. 3]) and therefore, by (2),  $H^{l_1,l_2}((x,y)_u)=u_{(l_1,l_2)}$ . Let  $(l_1,l_2)\in M_N\setminus \{(0,k)\}$  be such that  $l_1=0$  and  $l_2\equiv 0 \mod k$ . Then  $l=l_2=s\cdot k$ ,  $s\geq 1$ ,

 $s \in \mathbb{N}$ . Hence

$$\left| H^{0,l}((x,y)_{m,\varepsilon}) - u_{(0,l)} \right| < \varepsilon^{l} |H^{0,l}(a_k)| \sum_{j=1}^{m} \frac{1}{j^{\frac{l}{k}}} < \varepsilon^{l} |H^{0,l}(a_k)| \sum_{j=1}^{m} \frac{1}{j^{s-1+\frac{1}{k}}} < \varepsilon^{l} |H^{0,l}(a_k)| \zeta(s-1+\frac{1}{k}).$$

Since  $||H^{0,l}|| \le 1$  (see [9, Prop. 2]),  $|H^{0,l}(a_k)| \le ||a_k||_1^l$ . Since  $\varepsilon < 1$ , and  $\varepsilon^l < \varepsilon$ , so

$$\varepsilon^{l}|H^{0,l}(a_{k})|\zeta(s-1+\frac{1}{k})<\varepsilon||a_{k}||_{1}^{l}\zeta(s-1+\frac{1}{k}).$$

From the inequality  $\varepsilon < \frac{r}{||a_k||_1^N \zeta(s-1+\frac{1}{k})}$ , it follows that  $\left|H^{0,l}((x,y)_{m,\varepsilon}) - u_{(0,l)}\right| < r$  and therefore  $\pi_{M_N\setminus\{(0,k)\}}((x,y)_{m,\varepsilon}) \in B(u,r)$ .

By [9, Prop. 3],  $H^{0,k}(a_k) = 1$ . Then

$$H^{0,k}((x,y)_{m,\varepsilon}) = \varepsilon^k \sum_{j=1}^m \frac{1}{j} + H^{(0,k)}((x,y)_u) \longrightarrow \infty$$

as  $m \to \infty$ . Hence,  $\eta^{-1}(B(u,r))$  is unbounded. By [9, Lemma 11], q does not depend on  $\xi_{(0,k)}$ .

**Theorem 2.** Polynomials

$$H^{k_1,k_2}(x,y) = \sum_{i=1}^{\infty} x_i^{k_1} y_i^{k_2},$$

form an algebraic basis of the algebra  $\mathcal{P}_{vs}(\ell_1 \oplus \ell_\infty)$ , where  $k_1, k_2 \in \mathbb{N}, k_1 \geq 1, k_2 \geq 0$ .

*Proof.* In [9] it was proved that polynomials  $H^{k_1,k_2}(x,y) = \sum\limits_{i=1}^\infty x_i^{k_1} y_i^{k_2}$ , where  $k_1,k_2 \in \mathbb{N}$ ,  $k_1 \geq 0$ ,  $k_2 \geq 0$  form an algebraic basis of the algebra  $\mathcal{P}_{vs}(\ell_1 \oplus \ell_1)$ . Thus they are algebraically independed. Let us show that  $H^{k_1,k_2}(x,y) = \sum\limits_{i=1}^\infty x_i^{k_1} y_i^{k_2}$ , where  $k_1,k_2 \in \mathbb{N}$ ,  $k_1 \geq 1$ ,  $k_2 \geq 0$  are algebraically independed on  $\ell_1 \oplus \ell_\infty$ . Suppose the opposite. Then there exists  $Q \neq 0$  such that  $Q(H^{1,0}(x,y),H^{2,0}(x,y),H^{1,1}(x,y),\ldots,H^{k_1,k_2}(x,y))=0$ . Let  $Q_0$  be the restriction of Q on  $\ell_1 \oplus \ell_1$ . Then  $Q_0(H^{1,0}(x,y),H^{2,0}(x,y),H^{1,1}(x,y),\ldots,H^{k_1,k_2}(x,y))=0$ , where  $Q_0 \neq 0$ . But it cntradicts algebraically independed of polynomials  $H^{k_1,k_2}$  on  $\ell_1 \oplus \ell_1$ , where  $k_1,k_2 \in \mathbb{N}$ ,  $k_1 \geq 0$ ,  $k_2 \geq 0$ . So, polynomials  $H^{k_1,k_2}$ ,  $k_1,k_2 \in \mathbb{N}$ ,  $k_1 \geq 1$ ,  $k_2 \geq 0$  are algebraically independed.

Let us prove that  $H^{k_1,k_2}(x,y)$  are continuous on  $\ell_1 \oplus \ell_{\infty}$ . Indead,

$$\left| H^{k_1,k_2}(x,y) \right| = \left| \sum_{i=1}^{\infty} x_i^{k_1} y_i^{k_2} \right| \le \sum_{i=1}^{\infty} |x_i|^{k_1} |y_i|^{k_1}.$$

Since  $||(x,y)||_{\ell_1 \oplus \ell_\infty} = \sum_{i=1}^{\infty} |x_i| + \sup_{i>1} |y_i| \le 1$  then  $\sum_{i=1}^{\infty} |x_i| \le 1$  and  $\sup_{i>1} |y_i| \le 1$ .

Moreover 
$$\sum_{i=1}^{\infty} |x_i|^{k_1} |y_i|^{k_2} \le \sum_{i=1}^{\infty} |x_i|^{k_1} \cdot \left( \sup_{i \ge 1} |y_i| \right)^{k_2}$$
.

Hence

$$\left| \left| H^{k_1,k_2} \right| \right| = \sup_{||(x,y)|| \le 1} \left| H^{k_1,k_2}(x,y) \right| \le \sup_{||(x,y)|| \le 1} \left( \sum_{i=1}^{\infty} |x_i|^{k_1} \cdot \left( \sup_{i \ge 1} |y_i| \right)^{k_2} \right) \le 1.$$

Therefore  $H^{k_1,k_2}(x,y)$  are bounded and so continuous on  $\ell_1 \oplus \ell_{\infty}$ .

Let us prove that every continuous block-symmetric polynomial  $P \in \mathcal{P}_{vs}(\ell_1 \oplus \ell_\infty)$  can be represented as an algebraic combination of polynomials  $H^{k_1,k_2}(x,y)$ ,  $k_1,k_2 \in \mathbb{N}$ ,  $k_1 \geq 1$ ,  $k_2 \geq 0$ .

94 Kravtsiv V.V.

Let  $\tilde{P}$  be restriction of P on  $\ell_1 \oplus \ell_1$ . For polynomial  $\tilde{P}$  there exists a unique polynomial  $q: \mathbb{C}^{M_N} \to \mathbb{C}$  such that  $\tilde{P} = q \circ \pi_{M_N}$ . Since  $\tilde{P}$  is continuous,  $\tilde{P}$  is bounded on  $V_\rho$ , so q is bounded on  $\pi_{M_N}(V_\rho)$ .

By Proposition 1, a polynomial q does not depend on  $\xi_{(0,k)}$ ,  $k \in \mathbb{N}$ .

Since polynomials  $H^{k_1,k_2}$ , where  $(k_1,k_2) \in M_N \setminus \{(0,k)\}$  are well-defined and continuous on  $\ell_1 \oplus \ell_{\infty}$ , then  $P = q \circ \pi_{M_N \setminus \{(0,k)\}}$ .

Therefore  $H^{k_1,k_2}(x,y)$ ,  $k_1,k_2 \in \mathbb{N}$ ,  $k_1 \geq 1$ ,  $k_2 \geq 0$  form an algebraic basis of the algebra  $\mathcal{P}_{vs}(\ell_1 \oplus \ell_{\infty})$ .

Note that there are finitely symmetric polynomials on  $\ell_1 \oplus \ell_{\infty}$  which are not symmetric. For example, let U be a free ultrafilter on  $\mathbb{N}$ . Then polynomials of the form

$$P_U(x,y) = \lim_{U} y_n$$
 and  $Q_{U,k}(x,y) = \lim_{U} \frac{\sum\limits_{n=1}^{m} y_n^k}{m}$ 

are finitely symmetric but not symmetric (see [8]).

Since,  $\ell_1 \oplus c_0 \subset \ell_1 \oplus \ell_\infty$ , we can concider the algebra of block-symmetric polynomials on  $\ell_1 \oplus c_0$ ,  $\mathcal{P}_{vs}(\ell_1 \oplus c_0)$ .

**Proposition 2.** The restriction  $H_0^{k_1,k_2}$  of polynomials  $H^{k_1,k_2}$ ,  $k_1 \in \mathbb{Z}_+$ ,  $k_2 \in \mathbb{N}$  onto  $\ell_1 \oplus c_0$  form an algebraic basis in  $\mathcal{P}_{vs}(\ell_1 \oplus c_0)$ .

*Proof.* Since  $\ell_1 \oplus \ell_1 \subset \ell_1 \oplus c_0 \subset \ell_1 \oplus \ell_\infty$  and the restriction of  $H^{k_1,k_2}$  onto  $\ell_1 \oplus \ell_1$  are algebraically independed, so  $H_0^{k_1,k_2}$  are algebraically independed. Let P be a symmetric polynomial on  $\ell_1 \oplus c_0$  and  $\tilde{P}$  its Aron-Berner extension (see [2]) to the second dual  $(\ell_1 \oplus c_0)'' = \ell_\infty' \oplus \ell_\infty$ . It is known that the map  $P \mapsto \tilde{P}$  is an algebra homomorphism and  $\tilde{P}$  is symmetric on  $(\ell_1 \oplus c_0)''$  with respect to extension of operators  $\sigma(x,y), \sigma \in S_\infty$  (see [6]). Let  $\tilde{P}_1$  be the restriction of  $\tilde{P}$  to  $\ell_1 \oplus \ell_\infty = (\ell_1 \oplus c_0)''$ . Then  $\tilde{P}_1$  is symmetric and according to Theorem 2 can be represented by

$$\tilde{P}_1 = \sum_{l_1|k^1|+...+l_r|k^r|=0}^{\infty} a_{k^1,...,k^r,l_1,...,l_r} \left(H^{k^1}\right)^{l_1} \dots \left(H^{k^r}\right)^{l_r},$$

where  $k^j = (k_1^j, k_2^j), |k^j| = k_1^j + k_2^j$ .

So *P* is the restriction of  $\tilde{P}_1$  to  $\ell_1 \oplus c_0$  and have the representation

$$P = \sum_{l_1|k^1|+...+l_r|k^r|=0}^{\infty} a_{k^1,...,k^r,l_1,...,l_r} \left(H_0^{k^1}\right)^{l_1} ... \left(H_0^{k^r}\right)^{l_r},$$

where  $k^j = (k_1^j, k_2^j), |k^j| = k_1^j + k_2^j$ .

Hence,  $H_0^{k_1,k_2}$ ,  $k_1 \in \mathbb{Z}_+$ ,  $k_2 \in \mathbb{N}$  form an algebraic basis in  $\mathcal{P}_{vs}(\ell_1 \oplus c_0)$ .

Note that  $\ell_1 \oplus c$  admits a block-symmetric polynomial

$$L(x,y) = \lim_{n \to \infty} y_n$$

wich can not be obtained by an algebraic combination of  $H^{k_1,k_2}$ ,  $k_1 \in \mathbb{Z}_+$ ,  $k_2 \in \mathbb{N}$ .

#### REFERENCES

- [1] Alencar R., Aron R., Galindo P., Zagorodnyuk A. *Algebra of symmetric holomorphic functions on*  $\ell_p$ . Bull. Lond. Math. Soc. 2003, **35**, 55–64. doi: 10.1112/S0024609302001431
- [2] Aron R., Berner P. *A Hahn-Banach extension theorem for analytic mappings*. Bull. Soc. Math. France 1987, **106** (1), 3–24.
- [3] Aron R., Falcó J., Garcia D., Maestre M. *Algebras of symmetric holomorphic functions of several complex variables*. Rev. Mat. Complut 2018, **31** (3), 651–672. doi:10.1007/s13163-018-0261-x
- [4] Aron R., Galindo P., Pinasco D., Zalduendo I. *Group-symmetric holomorphic functions on a Banach space*. Bull. Lond. Math. Soc. 2016, **48** (5), 779–796. doi: 10.1112/blms/bdw043
- [5] Chernega I., Galindo P., Zagorodnyuk A. *Some algebra of symmetric analytic functions and their spectra*. Proc. Edinburgh Math. Soc. 2012, 55, 125–142. doi:10.1017/S0013091509001655
- [6] Garcia D., Maestre M., Zalduendo I. *The spectra of algebras of group-symmetric functions*. Proc. Edinburgh Math. Soc. 2018. In press. doi:10.1017/S0013091518000603
- [7] Gonzalez M., Gonzalo R., Jaramillo J. Symmetric polynomials on rearrangement invariant function spaces. J. Lond. Math. Soc. (2) 1999, 59, 681–697. doi:10.1112/S0024610799007164
- [8] Galindo P., Vasylyshyn T., Zagorodnyuk A. *Symmetric and finitely symmetric polynomials on the spaces*  $\ell_{\infty}$  *and*  $L_{\infty}[0, +\infty]$ . Math. Nachr. 2018, **291** (11-12), 1712–1726. doi:10.1002/mana.201700314
- [9] Kravtsiv V., Vasylyshyn T., Zagorodnyuk A. On Algebraic Basis of the Algebra of Symmetric Polynomials on  $l_p(C^n)$ . J. Funct. Spaces 2017, 2017 (2017), 1–8. doi:10.1155/2017/4947925
- [10] Kravtsiv V.V., Zagorodnyuk A.V. *On algebraic bases of algebras of block-symmetric polynomials on Banach spaces*. Mat. Stud. 2012, **37** (1), 109–112.
- [11] Nemirovskii A., Semenov S. *On polynomial approximation of functions on Hilbert space*. Math. Sb. 1973, **21**, 257–281. doi:10.1070/SM1973v021n02ABEH002016

Received 18.03.2019

Кравців В.В. Алгебраїчний базис алгебри блочно-симетриних поліномів на  $\ell_1 \oplus \ell_\infty$  // Карпатські матем. публ. — 2019. — Т.11, №1. — С. 89–95.

В робті розглянуто так звані блочно-симетричні поліноми на просторах послідовностей  $\ell_1 \oplus \ell_\infty, \ell_1 \oplus c, \ell_1 \oplus c_0$ , а саме, поліноми які є симетричними відносно перестановок елементів послідовностей. Доведено, що кожен неперервний блочно-симетричний поліном на  $\ell_1 \oplus \ell_\infty$  може бути єдиним чином поданий як алгебраїчна комбінація деяких спеціальних блочно-симетричних поліномів, які утворюють алгебраїчний базис. Цікаво зауважити, що алгебра блочно-симетричних поліномів є нескінченно породжена, при цьому на  $\ell_\infty$  не існує симетричних поліномів. У статті описано алгебраїчні базиси алгебр блочно-симетричних поліномів на  $\ell_1 \oplus \ell_\infty$  та  $\ell_1 \oplus c_0$ .

*Ключові слова і фрази:* симетричні поліноми, блочно-симетрині поліноми, алгебраїчний базис, топологічна алгебра.