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KRrAVTSIV V. V.

ALGEBRAIC BASIS OF THE ALGEBRA OF BLOCK-SYMMETRIC POLYNOMIALS ON
El SP) eoo

We concider so called block-symmetric polynomials on sequence spaces ¢1 ® {e, {1 ® ¢, {1 P co,
that is, polynomials which are symmetric with respect to permutations of elements of the sequences.
It is proved that every continuous block-symmetric polynomials on ¢1 @ ¢ can be uniquelly rep-
resented as an algebraic combination of some special block-symmetric polynomials, which form an
algebraic basis. It is interesting to note that the algebra of block-symmetric polynomials is infinite-
generated while /o, admits no symmetric polynomials. Algebraic bases of the algebras of block-
symmetric polynomials on ¢; @ ¢ and ¢ @ cp are described.
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1 INRODUCTION

Algebras of polynomials and analytic functions on a Banach space X which are invari-
ant with respect to a group or semigroup of linear operators acting on X were studied by
many authors (see e.g. [1,3-5,9]). In oder to study spectra of such algebras it is impotant
to figure out with their algebraic bases (if exist). Let Se be the group of all permutations of
the set of natural numbers IN. That is, Se consists of all bijections of IN to itself. Let SY, be
the subgroup in S of all finite permutations. If X is a sequence Banach space and for each
x = (x9,%,...,%,...) € X, 0(x): = (xg(l), e X () - .) € X, 0 € Se, then we can concider
functions which are invariants with respect to the operators o(x). A function f : X — C is
called symetric if f(o(x)) = f(x) for every x € X and ¢ € Se. If it is true for all ¢ € SO, then
f is called finitely symmetric. In [11] Nemirovskii and Semenov described algebraic bases of al-
gebra of continuous symmetric polynomials on real spaces £, where 1 < p < co. Their results
were generalized by Gonzalez et al. [7] for real separable rearrangement-invariant sequence
spaces. Also, in [7] it is proved that for £,,1 < p < oo, finitely symmetric polynomials are
symmetric and co does not admit finitely symmetric polynomials. In [8] it is proved that there
are no symmetric polynomials on / but we have a lot of finitely symmetric polynomials. It
is not difficult to check that every symmetric (and finitely symmetric) polynomial on ¢ can be
generated by the following one

L(x) = r}iixgoxn.

In [9,10] were concidered block-symmetric polynomials, wich also are called MacMahon Polyno-
mials on Banach spaces. The block-symmetric polynomials can be defined by the following
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way. Let Xj,..., X;; be sequence spaces. Then every x € X; x ... x X;; can be represented

by x = (x!,...,x™), where x/ € X;. For any 0 € Se, we can define o(x) = (o(x!),...,o(x™))

and a polynomial P : Xj X ... X, is block-symmetric if P(c(x)) = P(x) for every ¢ € Se.

In [10] algebra of block-symetric analytic functions on ¢1 x /1 is investigated. In [9] constructed

an algebraic basis of block-symmetric polynomials on ¢, x ... x £, ~ £,(C"). In this paper
———

we construct an algebraic basis on the algebra of all block—synﬁmetric polynomials on £; X le.
It is interesting to note that the algebra of block-symmetric polynomials is infinite-generated
while £, admits no symmetric polynomials. Also, we concider block-symmetric polynomials
on ¢ X cgand #1 X c.

2 MAIN RESULTS

Let us denote by /1 @ / the space with elements < X ) = (( *1 ) S, ( m ) ,) ,
y n Ym

where (x1,x2,...,%n,...) € {1, (Y1, Y2, -, Yn, - --) € Leo. The space {1 & Lo with norm

(9]

(x )lley e = Y |xi] + sup |yl
=1

i= i>1

is a Banach space.
A polynomial P on the space ¢ @ /s is called block-symmetric (or vector-symmetric) if

P<(X1>"-.’(xm>’~.'>zp xU(l) yeoess xO’(ﬂl) sl
Y1 Ym Yo(1) Yo(m)

. Xi
for every permutation ¢ on the set of natural numbers IN, where ( ! ) € C2
i

Let us denote by Pys(¢1 & o) the algebra of block-symmetric polynomials on ¢; & {w; by
Hpps (01 @ L) the algebra of block-symmetric analytic functions of bounded type on ¢1 & (c.
(e} n
In [9] it was proved that polynomials H*v+kn(x) = ¥ T] (xjs-)kS, where x = (x1,xp,...) €

j=1s=1
ks>0

6(C"), x; = (x]l, ceey x;q) € C" form an algebraic basis of the algebra Ps(¢1(C")).

For a multi-index k = (kq,k, ..., ky) € Z" let |k| = k1 +ky + ...+ ky. For an arbitrary
nonempty finite set M € Z' let us define a mapping 7ty : coo(C") — CMI, where |M]| is the
cardinality of M, by

o (x) = (H () (k- kyem-

In [9] it was proved the following theorem.
Theorem 1 ([9]). Let M be a finite nonempty subset of Z"_ such that |k| > 1 for every k € M.

1. There exists m € IN, such that for every ¢ = (i, k) (k1. hn)eM € CIMI there exists
xg € c(()g’)(C”) such that mmy(xgz) = G, where c(()g’)(C”) is the space of all sequences x =
(x1, .o, %m,0,...),x1, ..., xm € C";

2. There exists a constant pp; > 0 such that if ||||c < 1, then ||xg||, < pum for every
p € [1, +0), where |¢]l = max| .
S
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Let us denote by (/1 @ o)™ the space of all sequences

(), = () (G )-(a) )

where (x1,...,%m,0...) € {1, (y1,---,Ym,0...) € L. Clearly, that cé'g)(C”) = (01 @ Leo) ™).
For an arbitrary nonempty finite set M € Z2 let us define a mapping rm : £1 ® foo — CIM|
by
(%)) = (HY2(,9)) (1, ky)em-

Corollary 1. Let M be a finite nonempty subset of Z2 such thatk; +k, > 1 for every (ki,ka) €
M.

1. There existsm € IN, such that for every § = (‘:(h,kz))(kl,kz)eM e CIMI there exists (x,y)z €
(41 © Leo) ™ such that (%, y)e) =&

2. There exists a constant pp; > 0 such that if ||C||e < 1, then ||(x,¥)e||e,00. < pM-
t

(0), 20 (G0 )-(0) )

For (x,y)!, (x,y)?,..., (x,y)" € {1 D le, let

For elements < X ) , < z ) € 01D Lo, let
y m m

r

P y) =xy)'®xy)*o...o(xy).
=1

Obviously that

r

D(xyy

j=1

<y
=1

[E

glﬂagoo ’

l1Bl
Also note that for every (k1, k) € Zi, such thatky +k, > 1,

mm(émw)iwmmwn o

=1 j=1

For N € N let My be a finite nonempty subset Z2 such that 1 < k; +k, < N for every
(ki,k2) € My.

By Corollary 1, for M = My there exists p = py, such that 7rp1, (V) contains the open unit
ball of the space C/M| with norm |||, where

Vo={(xy) € ti @l : [|(x,¥)l|y0r <P}

Proposition 1. Let 9(¢(, 1,)) (1,,1,)emy be @ polynomial on CIMn|. If ¢ is bounded on Vo),
then g does not depend on G g ), k € IN.
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Proof. Let (0,k) € Z7,k € N. Let K = mp, (Vp), Ky = T\ {(0)} (Vp) and 77 : K — K be an
orthogonal projection, defined by
13 (St iyeny = (§ul)) )M\ {04}
Let us show that for every ball

B(u,r) = {C e CIMVMOI g — ule < r}

centered at u = (11, 1,)) (1,,1,)eMy\{ (0, o) e CIMNM\OM and of radius r > 0 such that B(u,r) C
T\ {(04)}(Vp), the set 77 ~Y(B(u,r)) is unbounded. Since u € T\ {(0k)} (Vp), there exists
(xy)u € Vp such that 7w, ((x,y)u

) = u by Corollary 1. For m € N, we set (x,y), =
0 0 0
m 1 1 m
a;, wh a, = — S, , o), e, = (V-1);,0 <
= ]\il by WREEE Kk IXk,o) <1Xk,k—1> (0) ) mj = )
j<m-—1
Choose ¢ such that

0<e<min{1,p_H(x’y)”Hfleafoo r }

et ()  laxl NS =1+ §)
where {(+) is the Riemann zeta-function.
Let (x,y)me = (e(x,¥)m) © (x,y)u. Let us show that (x,y)m,e € V.

o1 UL L 1
Y mlln oo, = Y || 7% Z —laxlley e = Nkl leyoen Z 7 < llakllend(R)-
j:1 ]k él@é = ]k j:l]k
Therefore, ||(x, ¥)mlle, ot < |lakllne.d(F)- Then
1
G YImellaoe < ell(xy)mlloen + 11 Yullnen < lladllnend () + 1 y)ulloer.

P*H(x/?/)uHé’leaé’oo
gl 2006 (F)
Note that for arbitrary (I4,1) € Zi such that /1 + I, > 1, by equality (1),

Since € < , it follows that ||(x, ) me|| o, < o- Hence, (X,¥)me € V.

1,1 _ 1,1 oyl
HY2((x,y)n) = Y~ HY2 () = H'2(a) Y ——,
j:1] k j:1] K

HVY2((x,y)me) = e 2HVY2 (2, y)m) + HY2 (6, 1))

m
= e ) Y o HIR ()
=17 %
Let us show that 7y \ 1041 (X, ¥)me) € B(u,r). For (I1,1) € My \ {(0,k)}, such that
I #0 mod k, H""2(a;) = 0 (see [9, Prop. 3]) and therefore, by (2), HY:2((x,y)y) = ULy 1)
Let (I1,1;) € My \ {(0,k)} be such thatl; =0and I =0 mod k. Then! =1, =s-k,s > 1,
s € IN. Hence

(2)

1
1
s—1+1

| —

m
<e[HY (ap)| Y

j=1]

< ¢ HY (@) (s — 1+ 7).

m
)HOZ X, y)mg)—um ) <sl]HOZ (ay \Z
=17

o~
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Since ||H™|| < 1 (see [9, Prop. 2]), |H (ay)| < ||ax||}. Sincee < 1,and & < ¢, s0
1 1
e HO (@) [gls — 1+ 1) < ellagl}Z(s ~ 1+ ).

. . r . 0,1 —
From the inequality ¢ < T2 =17 it follows that ’H ((x,Y)me) —ug@y| < rand

therefore 7y 1\ 1(0,0)1 (X, Y)me) € B(u, 7).
By [9, Prop. 3], H**(a;) = 1. Then

o
HO'k((xry)m,8> = ¢ Z -+ H(O'k)((xry)u> —>
=1

as m — oo. Hence, 771 (B(u,r)) is unbounded. By [9, Lemma 11], g does not depend on
S(0k)- 0

Theorem 2. Polynomials
Hkl kz x y Z xklnyI
form an algebraic basis of the algebra Pys({1 & {), where ki, kp € N, k1 > 1,ky > 0.

Proof. In [9] it was proved that polynomials H¥/*2(x,y) = OZOZ xklyk2 where k1,k, € N, k1 > 0,

k, > 0 form an algebraic basis of the algebra Pos(l1 ® 61) Thus they are algebraically in-

depended. Let us show that Hk. kz(x y) = Z xklyfz, where ki,kp € IN,k; > 1,ko > 0 are

algebraically independed on ¢; @ / Suppose the opposite. Then there exists Q # 0 such
that Q(H(x,y), H*'(x,y), H"' (x,y),..., H"*2(x,y)) = 0. Let Qp be the restriction of Q on
01 ® fq. Then Qo(HY(x,v), H*(x,y), H" (x,v),..., HV*2(x,y)) = 0, where Qy # 0. But it
cntradicts algebraically independed of polynomials H¥1*2 on ¢1 @ ¢1, where k1, k; € N, k1 > 0,
ky > 0. So, polynomials H*1#2, k1, ky € N, k; > 1,k > 0 are algebraically independed.

Let us prove that H*/*2(x, y) are continuous on ¢1 @ fe. Indead,

HR )| = || < ) el il
i=1
Since | (x,) |l er., = X [l +sup ly < 1then T || < 1and suply| < 1.
i>1 i>1

kz
(o) (o]
Moreover Y. |x;[ft[y;[*2 < ¥ |x;|F1 - [sup || | -
i=1 i=1 i>1
Hence

i

ko
= sup ’Hkl'kz(x,y)’ < sup (Zx 1. (sup |yi|> ) <1.

H(xy)|[<1 H(xy)[<1 i21

Therefore H*'*2(x,v) are bounded and so continuous on #; @ /.
Let us prove that every continuous block-symmetric polynomial P € Pys(¢1 @ fo) can be
represented as an algebraic combination of polynomials Hkke (x,v),k1,ko € N, ky > 1,kp > 0.
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Let D be restriction of P on ¢; & £;. For polynomial P there exists a unique polynomial
g : CMN — C such that P = go 7y, Since P is continuous, P is bounded on Vo, 80 q is
bounded on 7ty (Vp).

By Proposition 1, a polynomial g does not depend on &g ), k € IN.

Since polynomials H*#2, where (k;, k) € My \ {(0,k)} are well-defined and continuous
on El @ leo, then P = go nMN\{(O,k)}'

Therefore H*k2(x, y), k1,kp € N, ky > 1,k > 0 form an algebraic basis of the algebra
Pos(l1 D Leo). O

Note that there are finitely symmetric polynomials on ¢; ® /o which are not symmetric.
For example, let U be a free ultrafilter on IN. Then polynomials of the form

m
k
Y. Yn
n=1
m

Pu(x,y) = limy, and Qux(x,y) = lim

are finitely symmetric but not symmetric (see [8]).
Since, {1 ® cg C ¥1 @ L, we can concider the algebra of block-symmetric polynomials on
{1 D co, Pos (fl D Co).

Proposition 2. The restriction Hgl’kz of polynomials H"¥* |y € Z, ks € N onto {1 ® ¢ form
an algebraic basis in Pys(¢1 @ cp).

Proof. Since /1 © ¢ C £ Dcg C 1 ® Lo and the restriction of H*2 onto #; @ ¢; are alge-
braically independed, so Hgl’kz are algebraically independed. Let P be a symmetric polynomial
on /1 @ cg and P its Aron-Berner extension (see [2]) to the second dual (¢1 ® co)” = l4 @ leo. It
is known that the map P + P is an algebra homomorphism and P is symmetric on (¢ & ¢g)”
with respect to extension of operators o(x,y), 0 € S (see [6]). Let P, be the restriction of P to
01 ® loo = (f1 D cp)"”. Then P; is symmetric and according to Theorem 2 can be represented by

(o]

! !

p Kl 1 \

b = )3 S T (H ) <H ) ,
1KY ..+, k7| =0

where ki = (k], k), [K/| = K| + kL.
So P is the restriction of P; to ¢1 & cg and have the representation

(e 9]

! !
= K1 1 r\ ‘r
P= Z I <H0 ) (HO ) ,
11‘k1‘+...+1r|k":0

where ki = (k], k), [K/| = K| + kL.
Hence, Hgl’kz, ki € Z4,ky € N form an algebraic basis in Pys(¢1 & ¢p). O

Note that ¢; @ c admits a block-symmetric polynomial

L(x,y) = lim y,

n—oo

wich can not be obtained by an algebraic combination of H*1*2, k; € Z,k, € N.
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B pobTi po3rAsIHYTO TakK 3BaHi OAOYHO-CMMETpWUHI MOAIHOMM Ha IIPOCTOpax IMOCAiAOBHOCTEN
U ® Lo, 1 B¢, D cy, a came, IOAHOMM sIKi € CUMETPMYHMMY BiAHOCHO IIEPECTAHOBOK eAeMEeHTIB
TIOCAIAOBHOCTEI. AOBEAEHO, ITI0 KOXeH HellepepBHMII DAOUHO-CMMETPUIHMIL TTOAHOM Ha {1 @ lo
MOXe OYTM €AVHVM UMHOM IOAAHWIA SIK aArebpaiuHa KOMOIHAINS AeSKMX CIeliaAbHMX GAOYHO-
CMMETPUYHNX TOAIHOMIB, SIKi yTBOPIOIOTE aaTebpaiurmii 6asmc. LlikaBo 3ayBaxkmTy, o arrebpa
HAOUHO-CMMETPUYHNX MOAIHOMIB € HeCKiHUeHHO IIOPOAKeHa, TIpY ITboMY Ha (o He iCHye cMeTpu-
YHMX ITOAIHOMIB. Y cTaTTi omvcaHo aaTebpaiuHi 6a3ucy aAre6p 6AOUHO-CMMETPUIHNX TIOAIHOMIB Ha
El (&) Eoo Ta El () CQ.

Kntouosi cnosa i ppasu: cumeTpUUHi IOAIHOMM, 6AO0UHO-CMMETPWHI TOAIHOMM, aATebpaiuHIT H6a-
3UC, TOIIOAOTIYHa aATebpa.



