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INTERCONNECTION BETWEEN WICK MULTIPLICATION AND INTEGRATION ON
SPACES OF NONREGULAR GENERALIZED FUNCTIONS IN THE LEVY WHITE
NOISE ANALYSIS

We deal with spaces of nonregular generalized functions in the Lévy white noise analysis, which
are constructed using Lytvynov’s generalization of a chaotic representation property. Our aim is to
describe a relationship between Wick multiplication and integration on these spaces. More exactly,
we show that when employing the Wick multiplication, it is possible to take a time-independent
multiplier out of the sign of an extended stochastic integral; establish an analog of this result for
a Pettis integral (a weak integral); and prove a theorem about a representation of the extended
stochastic integral via the Pettis integral from the Wick product of the original integrand by a Lévy
white noise. As examples of an application of our results, we consider some stochastic equations
with Wick type nonlinearities.
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INTRODUCTION

A theory of test and generalized functions depending on infinitely many variables (i.e.,
with arguments belonging to infinite-dimensional spaces) is highly sought in many areas of
modern physics and mathematics. One of successful approaches to building of such a theory
consists in introduction of spaces of the above-mentioned functions in such a way that the
dual pairing between test and generalized functions is generated by integration with respect
to some probability measure on a dual nuclear space. First it was the Gaussian measure, the
corresponding theory is called the Gaussian white noise analysis (e.g., [2,16,26-28]), then it were
realized numerous generalizations. In particular, important results can be obtained if one uses
the Lévy white noise measure (e.g., [6,7,29]), the corresponding theory is called the Lévy white
noise analysis.

A very important role in the Gaussian analysis belongs to a so-called chaotic representation
property (CRP). This property consists, roughly speaking, in the following: any square inte-
grable random variable can be decomposed in a series of repeated Itd’s stochastic integrals
from nonrandom functions (see, e.g., [30] for a detailed presentation). Using CRP, one can
construct various spaces of test and generalized functions, introduce stochastic integrals and
derivatives on these spaces, etc. In the Lévy analysis there is no CRP (more exactly, the only
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Lévy processes with CRP are Wiener and Poisson processes) [35]; but there are different gener-
alizations of this property: It6’s generalization [18], Nualart-Schoutens” generalization [31,32],
Lytvynov’s generalization [29], Oksendal’s generalization [6,7], etc. The interconnections be-
tween these generalizations are described in, e.g., [1,6,7,21,29,34,36]. Now, depending on
problems under consideration, one can select a most suitable generalization of CRP, construct
corresponding spaces of test and generalized functions, and introduce necessary operators and
operations on these spaces.

In the present paper we deal with one of the most useful and challenging generalizations of
CRP in the Lévy white noise analysis, which is proposed by E. W. Lytvynov [29] (see also [5]).
The idea of this generalization is to decompose random variables, square integrable with re-
spect to the Lévy white noise measure, in series of special orthogonal functions, by analogy
with decompositions of random variables, square integrable with respect to the Gaussian mea-
sure, by Hermite polynomials (remind that the last decompositions are equivalent to the de-
compositions by repeated Itd’s stochastic integrals). Like using CRP in the Gaussian analysis,
one can use Lytvynov’s generalization of CRP in order to construct and study spaces of regular
and nonregular test and generalized functions [19], various operators and operations on these
spaces, etc. In particular, the extended stochastic integral and the Hida stochastic derivative
on the spaces of regular test and generalized functions are introduced and studied in [10, 19],
operators of stochastic differentiation—in [8,9,13], some elements of a Wick calculus and its re-
lationship with operators of stochastic differentiation—in [11]. As for the spaces of nonregular
test and generalized functions—the corresponding results are presented in [19,22-24].

As is well known, in the Gaussian white noise analysis, in the same way as in various ver-
sions of a non-Gaussian analysis, a natural multiplication on spaces of generalized functions
is a so-called Wick multiplication. In particular, in many cases, using the Wick multiplication,
one can take a time-independent multiplier out of the sign of an extended stochastic integral.
Moreover, such a result holds true for a Pettis integral (a weak integral). Also, the extended
stochastic integral can be presented as a Pettis integral (or a formal Pettis integral—depending
on the concrete situation) from the Wick product of the original integrand by the derivative (in
the sense of generalized functions) of the integrator. On the above-mentioned spaces of regu-
lar generalized functions in the Lévy analysis such results were obtained in [12]. The aim of
the present paper is to transfer the results of [12] to the spaces of nonregular generalized func-
tions, which are constructed using Lytvynov’s generalization of CRP. In a sense, this paper is
a continuation of the paper [22].

The paper is organized in the following manner. In the first section we introduce a Lévy
process L and construct a probability triplet connected with L, convenient for our considera-
tions; then we describe Lytvynov’s generalization of CRP; construct a nonregular rigging of
the space of square integrable random variables (the positive and negative spaces of this rig-
ging are the spaces of nonregular test and generalized functions respectively); describe the
extended stochastic integral with respect to L on the spaces of nonregular generalized func-
tions; and recall necessary notions of the Wick calculus. In the second section we show that
when employing the Wick multiplication, it is possible to take a time-independent multiplier
out of the sign of the extended stochastic integral and of the Pettis integral; prove a theorem
about a representation of the extended stochastic integral via the Pettis integral; and consider
examples.
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1 PRELIMINARIES

In this paper we denote by || - || g or | - | the norm in a space H; by (-, -) the real, i.e., bilin-
ear scalar product in a space H; and by ((-, -)) iy the dual pairing generated by the scalar product
in a space H. Further, we use a designation pr lim (resp., ind lim) for a projective (resp., induc-
tive) limit of a family of spaces, this designation implies that the limit space is endowed with
the projective (resp., inductive) limit topology (see, e.g., [3] for a detailed description).

1.1 A Lévy process and its probability space

Denote Ry := [0, +00). Let L = (Ly)uecRr, be a real-valued locally square integrable Lévy
process (i.e., a continuous in probability random process on IR+ with stationary independent
increments and such that Ly = 0, see, e.g., [4] for details) without Gaussian part and drift. As
is well known (e.g., [7]), the characteristic function of L is

E[el1] = exp {u/

Ox 1
]R(e 1 z@x)v(dx)], (1)

where v is the Lévy measure of L, which is a measure on (R, B(R)), here and below B de-
notes the Borel c-algebra; E denotes the expectation. We assume that v is a Radon measure
whose support contains an infinite number of points, v({0}) = 0, there exists ¢ > 0 such that
[ ¥2e*ly(dx) < o0, and [ x*v(dx) = 1.

Define a measure of the white noise of L. Let D denote the set of all real-valued infinite-
differentiable functions on R4 with compact supports. As is well known, D can be endowed
by the projective limit topology generated by a family of Sobolev spaces (e.g., [3]; see also
Subsection 1.3). Let D’ be the set of linear continuous functionals on D. For w € D’ and ¢ € D
denote w(¢) by (w, ¢). It is worth noting that D and D’ are the positive and negative spaces
of a chain

D' 5 L*(R;) DD, 2)

where L?(R ) is the space of (classes of) real-valued functions on R, square integrable with
respect to the Lebesgue measure (e.g., [3]), and therefore (-, -) is the dual pairing generated by
the scalar product in L2(IR..). The notation (-, -) will be preserved for dual pairings in tensor
powers of the complexification of chain (2).

Definition 1. A probability measure u on (D’,C(D’)), where C denotes the cylindrical o-
algebra, with the Fourier transform

/D/ Py (dw) = exp [/]R+X]R(ei9”(”)x —-1- iq)(u)x)duv(dx)] , ¢9€D, 3)

is called the measure of a Lévy white noise.

The existence of u follows from the Bochner-Minlos theorem (e.g., [17]), see [29]. Below we
assume that the o-algebra C(D") is completed with respect to .

Denote by (L?) := L*(D’,C(D’'), i) the space of (classes of) complex-valued functions on
D', square integrable with respect to y (in what follows, this notation will be used very often).
Let f € L?(R.) and a sequence (¢; € D)ren converge to f in L>(R) as k — oo (remind
that D is a dense set in L?(R; )). One can show [6,7,21,29] that (o, f) := (LZ)_I}LH;<O' @x) is a

well-defined element of (L?).
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Denote by 1, the indicator of a set A, and put Loy = 0. It follows from (1) and (3)
that ((o, 1[0,u)>)u R, Can be identified with a Lévy process on the probability space (triplet)
(D',C(D’"), u), see, e.g., [6,7]. So, for each u € R4 we have L, = (o, 1[0,u)> € (L?).

Note that the derivative in the sense of generalized functions of a Lévy process (a Lévy
white noise) is L.(w) = (w,8.) = w(-), where § is the Dirac delta-function. Therefore L is
a generalized random process (in the sense of [14]) with trajectories from D’, and u is the
measure of L in the classical sense of this notion [15].

Remark 1. A Lévy process L without Gaussian part and drift is a Poisson process if its Lévy mea-
sure v is a point mass at 1. This measure does not satisfy the assumptions accepted above (its
support does not contain an infinite number of points); nevertheless, all results of the present
paper have natural analogs in the Poissonian analysis. The reader can find more information
about peculiarities of the Poissonian case in [21], Subsection 1.2.

1.2 Lytvynov’s generalization of CRP

Denote by @ the symmetric tensor multiplication, by a subscript C—complexifications of
spaces. Set Z; := IN U {0}. Denote by P the set of complex-valued polynomials on D’ that
consists of zero and elements of the form

Ny -

flw) =Y (@, M), weD, f" eDg", NyezZy, fN) #£0,

n=0
here Ny is called the power of a polynomial f; (w0, FO)) .= £(0) ¢ Dgo := C. The measure u
of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3) and
properties of the measure v, see also [29]), therefore P is a dense set in (LZ) [33]. Denote by
Py, n € Z, the set of polynomials of power smaller than or equal to n, by P, the closure of
Py in (L?). Let for n € N P, := P, © P,,_1 (the orthogonal difference in (L?)); put Py := P,.
It is clear that -

(12) = & P, 4)

Let f(n) S Dg@n, n € Z4. Denote by : <O®”,f(”)> . the orthogonal projection of a monomial
(o®", f(M) onto P,. Let us define real (bilinear) scalar products (-, -)ex; on D", n € Z, by
setting for f(”),g(n) c ng

(£, 8 ews = 1 [ ™, £ (@, g0 (o), ©
. JD!
The proof of the well-posedness of this definition coincides up to obvious modifications with
the proof of the corresponding statement in [29].
Denote by | - |ext the norms corresponding to scalar products (5), i.e., | - |ext := v/ (*,)ext-

Let H(n)

extr 1 € Z4, be the completions of Dg)” with respect to these norms. For F (n) ¢ H(n)

ext
define a Wick monomial : (o®", F(")) . def (Lz)—klim :<o®",fk(")> :, where D%" > fk(") — F(M as
—00

k — oo in ngt) . The well-posedness of this definition can be proved by the method of "mixed

sequences". It is easy to show that : (020, F(0)): = (020, F(0)) = F(0) and : (o, F): = (o, F))
(cf. [29]). -

Since, as is easy to see, for each n € Z, the set {: (o®", f(M):|f(") ¢ D¢"} is dense in Py,
the next statement from (4) follows.
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Theorem 1 (Lytvynov’s generalization of CRP, cf. [29]). A random variable F € (L?) if and

only if there exists a unique sequence of kernels F") ¢ 1 ne Z., such that

ext’

o]

F=) (0% M) (6)

n=0

(the series converges in (L?)) and

IFI22 = [ 1F(@)Puldew) = EIFP = Y ntlF) 2, < e
n=0

Remark 2. In this paper we do not use directly an explicit formula for the scalar products
(v, )ext, and therefore we prefer not to write it down. But for the interested reader we note
that such a formula is calculated in [29]; in another record form (more convenient for some
calculations) it is given in, e.g., [9, 11, 13]. Also we note that for each n € IN the space ngg is
the symmetric subspace of the space of (classes of) complex-valued functions on IR, square

integrable with respect to a certain Radon measure.

Denote H := L?(R), then H¢ = L?(IR; )¢ (in what follows, this notation will be used very
often). It follows from the explicit formula for (-, -)ext that 7-[(1) = Hc, and for n € N\{1} one

ext
can identify Hg&" with the proper subspace of ngt) that consists of "vanishing on diagonals”

elements (roughly speaking, such that F(m) (ug,...,uy) = 0if thereexistk,j € {1,...,n}: k #j,
(n)

oxt 15 an extension of HE", this explains why we use the

but uy = u;). In this sense the space H
subscript "ext" in our designations.

1.3 A nonregular rigging of (L?)

Let T be the set of indexes T = (11, T»), where 77 € IN, T, is an infinite differentiable
function on R4 such that for all u € R4 72(u) > 1. Denote by 7. the real Sobolev space on
R, of order 71 weighted by the function 1, i.e., H+ is the completion of D with respect to the
norm generated by the scalar product

(9w, = |

T
() + Y- M)y () ) ra(u)du,
R+ k=1
here ¢l¥l and ¥l are derivatives of order k of functions ¢ and ¢ respectively. It is well known

(e.g., [3]) that D = pr lim #; (moreover, one can show that for any n € N D" = pr lim H2"),
TeT TeT
and for each T € T H is densely and continuously embedded into H = L?(Ry). Therefore

one can consider a chain
D>O>H :DODOHDH:DD,

where H_., T € T, are the spaces dual of H. with respect to . Note that by the Schwartz
theorem [3] D’ = ind lTim H_. (it is convenient for us to consider D’ as a topological space
TE

with the inductive limit topology). By analogy with [20] one can easily show that the measure
 of a Lévy white noise is concentrated on _z with some T € T, i.e., u(H_z) = 1. Excepting
from T the indexes 7 such that y is not concentrated on H_,, we will assume, in what follows,
that foreacht € T uy(H—.) = 1.
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Denote the norms in #H, ¢ and its symmetric tensor powers by | - |, i.e., for f (n) e H?g,
nezy,|fM,= (f(">,jT)H®n (note that HE2 := C and | f(O| = |£()]).

It follows from results of [19] that one can modlfy T again (it is necessary to remove from T
some "bad" indexes) in order to obtain the following statement.

Proposition 1. For each T € T and eachn € Z, the space ’H?E is densely and continuous]y
embedded into the space #") and there exists ¢(t) > 0 such that for all f") € H®g |f()

nle()|F 2.

Accept on default ¢ € Z, and T € T. Denote Py := {f = ZnNi05<O®",f(")>1,f(”) €
DE", Ny € Z } C (L?). Define real (bilinear) scalar products (-, -)r,; on Py by setting for

ext

Ny N
Z oM, fM):, g =} (0", g): € Py
n=0 n=0
min(Ny,Ng)
(fr&)egi= Y, (m22"(f",g"), 0. 7)
n=0 T,

The well-posedness of this definition is proved in [22].
Let || - |4 be the norms corresponding to scalar products (7), i.e., || - ||z4 := 1/(+,*)7,4- De-
note by (), the completions of Py with respect to these norms, and set (H) := pr lim(H),,

q—00

(D) := prlim (H;)4. Asis easy to see, f € (H¢), if and only if f can be uniquely presented
TeT,g—c0
in the form
=L S £ € MR ®)
(the series converges in (H¢),), with
112 = 1 £,y = Z (n)?20 f ]} < eo ©)

(since for each n € Z. H®" C Hext, for f(") H%g :(0®", f(1)): is a well defined Wick
monomial, see Subsection 1. 2) Further, f € (’HT) (f € (D)) if and only if f can be uniquely
presented in form (8) and norm (9) is finite for each g € Z, (foreach v € T and each g € Z,).

Proposition 2 ([19,22]). Foreacht € T there exists qo(7) € Z such that foreachq € N, () =
{90(7),q0(7) +1,...} the space (H<), is densely and continuously embedded into (LZ)

In view of this proposition one can consider a chain
(D) D (H-x) D (Hx)gD (L) D (He)g D (He) D (D), TET, € Nyyr),  (10)

where (H_r)—y, (H—7) = ind lim(H_¢)_ and (D’) = ind lim (H_z)_ are the spaces dual

q'—o0 TeT,g'—o0

of (H+)q, (H+) and (D) with respect to (L?).
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Definition 2. Chain (10) is called a nonregular rigging of the space (L?). The positive spaces
of this rigging (H+)y, (H:) and (D) are called (Kondratiev-type) spaces of nonregular test
functions. The negative spaces of this rigging (H )4, (H <) and (D') are called (Kondratiev-
type) spaces of nonregular generalized functions.

Finally, we describe natural orthogonal bases in the spaces (%) ;. Let us consider chains

D" > HM S HE) S HEE S DI, (1)

ext

m € IN, where ’H( )C and D¢ () — ind 1T1m ’H( )C are the spaces dual of ’H®g and Dg’” with
Te

respect to ngt) Set D®O H?g = %ﬁﬁi = 7-[(_0;@ = D‘f:( ) .= C. In what follows, we denote

by (-, )ext the real (blhnear) dual pairings between elements of negative and positive spaces

(m)

from chains (11), these pairings are generated by the scalar products in H,,, .
The next statement follows from the definition of the spaces (H 1) 4 and the general du-
ality theory (cf. [19,20]).

Proposition 3. There exists a system of generalized functions

{ <O®m1Fe(xt)>' € (% ) | ext G H( T)C’ me Z+}

such that
1) for E(Z) € ng} C ’H(lnT) : (o ®m,Fe(xt)>: is a Wick monomial that is defined in Subsec-
tion 1.2;

2) any generalized function F € (H )4 can be uniquely presented as a series
Z ®m’ Fext Y Fe(;::) < ,H(fmr),C’ (12)
m=0

that convergesin (H_+) g, ie.,

”FH%T,*q = HF”%’H Z 2 qm‘ ext (m) OO, (13)
and, vice versa, any series (12) with finite norm (13) is a generalized function from
(H—<)—4 (i.e., such a series converges in (H_1)4);

3) the dual pairing between F € (H_)_4 and f € (H<), that is generated by the scalar
product in (L?), has the form

(E fhay =Y mU(ELY, £ o, (14)

where E™ ¢ 7-[( m) c and f € H%&” are the kernels from decompositions (12) and (8)

ext

for F and f respectwe]y

Itis clear that F € (H_<) (F € (D')) if and only if F can be uniquely presented in form (12)
and norm (13) is finite for some g € Ny, (1) (for some T € T and some g € NqO(T)).
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1.4 An extended stochastic integral on spaces of nonregular generalized functions

Decomposition (6) for elements of (L?) defines an isometric isomorphism (a generalized
Wiener-Ito-Sigal isomorphism)
1:(L%) — @ TETA

ext’
n_

where @On"H( 2 is a weighted extended symmetric Fock space: for F € (L?) of form (6)

IF = (FO,FM), ) ¢ EB nH") . Denote by 1: Hc — Hc the identity operator. The opera-

ext "
n=0

tor I®1: (L) ® He — ( @On!’;’-[(”)) ®He = %011!(7-[( " ® Hc) is, obviously, an isometric
n= n=

ext ext

isomorphism between the spaces (L?) ® Hc and n%)n!(?—[gzt) ® Hc). It is clear that for ar-

bit € Z; and " € H) tor (0,...,0,F",0,...) belongs to th
itrary m + an H,k ® He a vector ( ) belongs to the space

ext

o n'(?—[g;g ® He). Set

n=0

(o®m Ey. Y 19 1)710,...,0,E™,0,..) € (12) ® He. (15)

m

By the construction elements :<o®”,F,(”)> : F" ¢ ’H(n) ® He, n € Z4, form an orthogo-

ext

nal basis in the space (L?) ® Hc in the sense that F € (L?) ® Hc if and only if F can be
uniquely presented as F F(-) =Y g: (o®n, F.(n)> : (the series converges in (L?) ® Hc), with

2 2
PR 3y = ot IF Ry < o0
Since, obviously, the restrictions of the generalized Wiener-1t6-Sigal isomorphism I to the

spaces (), are isometric isomorphisms between (’HT)q and weighted symmetric Fock spaces
% (n!)quan@g (cf. [25]), for arbitrary n € Z and f.( € H®g ® HC c H1 ® Hc we have
n=0 !

ext

:<o®”,f.(n)>: € (H)q ® Hc. Moreover, elements : (0" f > f H®g ®He, n € Zy,
form orthogonal bases in the spaces (H); ® HC f € (Hr)g ® Hc if and only if f can be

uniquely presented as f f() = Zn o (0@ f > (the series converges in (H); ® He),

Further, as in the case of spaces (H_— ) —q 1t follows from the general duality theory that
there exists a system of orthogonal in each (H ;) 4 ® H¢ generalized functions

{:(™ EW): € (Hox) q@He | E) € H e @ He, me 2. ) (16)

such that for £ € 1™ & H¢ HS’?{C ® Hc : (o®™, F (m )> is given by (15); any generalized

ext, ext 7 *ext,

function F € (H_1)_4 ® H¢ can be uniquely presented as a convergent in (H_:)_; ® Hc
series

F=F()= Y (o Emy:, E e n™ o He, (17)
m=0
with -
HF”2 ) g@He — Z 2" qm‘ ext,- ’2 m) e < o0; (18)

m=0
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and, vice versa, any series (17) with finite norm (18) is a generalized function from (H ;) 4 ®
Hc (i.e., such a series converges in (1 1) 4, ® Hc). So, system (16) is an orthogonal basis in
each space (H_¢)_; ® Hc. Moreover, itisclear that F € (H_¢) ® Hc := incLlim(H,T)fq ®@Hc
q oo
(Fe (D)@ Hc:= in%l lim (H )4 ® Hc) if and only if F can be uniquely presented in form
Tel,q—o0

(17) and norm (18) is finite for some q € N, () (for some 7 € T and some g € N, ().

Now our aim is to describe the construction of an extended stochastic integral with respect

to a Lévy process L, that is based on decomposition (17). We need a small preparation.
Consider a family of chains

®m ®
D™ S HOM L D HE™ S HEW S DE™, (19)

m € N (as is well known (cf. [3]), ’H®mc and Do’:@’m = ind lTlm ’H®mc are the spaces dual of
TE

”H%g and D%m respectively). Set D%O = 7—[?[?: = H%O = H?QIC = D‘{:@’O := C. Since the spaces
of test functions in chains (19) and (11) coincide, there exists a family of natural isomorphisms

Up: D™ 5 DL mez,,

such that for all F") e D&(m) and (") ¢ Dg’”

ext

<Fe(a}:tl)ff(m)>ext <umFe(xt)/f(m)>' (20)

(m)

It is easy to see that the restrictions of U, to the spaces H'

between the spaces HST),C and H@E’?C.

7,C are isometric ISOIIIOI'phISIIIS

Remark 3. Since 7-[( ) =

ext

= Hc, in the case m = 1 chains (19) and (11) coincide. Thus U; = 1 is
the identity operator on D @

onC.

= D¢. In the case m = 0 Uy is, obviously, the identity operator

Definition 3. Let A € B(Ry) and F € ( t)—q ® He. We define an extended stochastic
integral with respect to a Lévy process [, F(u)dL, € (H 1) by setting

/A Z ®m+1 Fext)A> (21)

where
B = Ul {Pr[(Un @ DES) 1A ()]} € HUD, (22)

Pr is the symmetrization operator (more exactly, the orthoprojector acting for each m € Z

from 7—[®mc ®He C H®mC @ H_c to H®m+1), ext € 7-[( T)C ® He, m € Z., are the kernels
from decomposition (17) for F.

Since

Bt Al = [PrI(Un © DE Oz < [(Un @ DF o gy = IEE Ly e
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and therefore by (21), (13) and (18)

H/FucTL Zzﬂ””H M!zmﬂ
A
2
<2V L 2D e =2 o
this definition is well-posed and, moreover, the extended stochastic integral
/Ao(u)ELu C(Hot) g @He = (M) 4 (23)

is a linear continuous operator.

As appears from the above, an extended stochastic integral can be defined by (21), (22) as
a linear continuous operator acting from (H_;) ® H¢ to (H_<), or from (D’) ® H¢ to (D’).
Exactly the integral

/A o(u)dLy : (H_x) ® He — (H_x) (24)
will be the object of our considerations in the forthcoming section.

Remark 4. As easily appears from results of [19, 21], stochastic integral (23) and its extension
(24) are generalizations of the extended Skorohod stochastic integral on (LZ) ® Hc [21]. The
last integral, in turn, is an extension of the Ito stochastic integral.

Also we note that, in contrast to the regular case [9,12,13,19], integrals (23) and (24) cannot
be naturally restricted to the spaces of nonregular test functions, see [23] for details.

Remark 5. It follows from the definition of the extended stochastic integral that for each A €
B(R4)

/Ao(u)dLu - /1R+ o(ut)1a (11)dL. (25)

One can use this representation for an important generalization. Let a function F : Ry —
(H_+) be such thatF ¢ (H_+) ® Hc, but for some ® € B(R;) we have F(-)1g(:) € (H-_1) ®
Hc. Itis clear that for any measurable A C © we have now F(-)14(+) € (H-) ® Hc, therefore
one can define [, F( u)dL, € (H_) by formula (25).

Finally we note that the operator, adjoint to the extended stochastic integral, is called the
Hida stochastic derivative. This derivative is closely connected with so-called operators of sto-
chastic differentiation on spaces of nonregular test functions [24]. All the mentioned operators
play an important role in the Lévy white noise analysis.

1.5 Elements of a Wick calculus

Let F € (H_+1). We define an S-transform (SF)(A), A € D¢, as a formal series

[ee]

(SF)(A) := Y (EM, aemy, = FO) Z A e, (26)

m=0 m=1

where E") € 3" )C are the kernels from decomposition (12) for F. In particular, (SF)(0) =

ext

FO g1 =1.

ext’
Note that each term in series (26) is well-defined, but the series can diverge. However, the

last is not an obstruction in order to construct the Wick calculus.
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Definition 4. ForF,G € (H_+) and a holomorphic at (SF)(0) functionh : C — C we define a
Wick product FOG and a Wick version of h h¥ (F) by setting formally

FOG := S~Y(SF-SG), hY(F) := S~ h(SF).

It is obvious that the Wick multiplication ¢ is commutative, associative and distributive
over a field C.
Note that a function & can be decomposed in a Taylor series

= Y hw(u—(SF)(0))™. (27)
m=0
Using this decomposition, it is easy to calculate that 1% (F) = Yor_o hy (F — (SF)(0)) Om, where
FOm .= FO .- OF = STY(SF)™], F®0 := 1.
N—_———

m times
"Coordinate formulas" for the Wick product and for the Wick versions of holomorphic

functions (i.e., representations of FOG, Fi(---OF,, n € N, and ho (F) via kernels from de-
compositions (12) for F, G, Fy, .. ., F,, and coefficients from decomposition (27) for h) are given
in [22]. Using these formulas, one can prove the following statement.

Theorem 2 ([22]). 1) LetFy,...,F, € (H_7),n € N. Then F1{ --- OF, € (H_+). Moreover,
the Wick multiplication is continuous in the sense that

HF1<>"'<>FHH—T,—QS max[Z m(m+1)n 1““:1” —7,—(g—-1) ”Fn” —1,—(g—-1)r

meZ.

where g € N is such thatFy, ..., F, € (’H_T),(q,l).

2) Let F € (H_;) and a function h : C — C be holomorphic at (SF)(0). Then h®(F) €
(H—x).

Finally, we will write out a “coordinate formula” for FOG, F,G € (H_.), which will be
necessary in the next section. We need a small preparation: it is necessary to introduce an

(m)

analog of the symmetric tensor multiplication on the spaces H'"/, m € Z,.
For Fe(xt) € 7-[( ) c and Ge(xt) S HET)C, n,me Z,set
Fil o Gal = unim{PrMunPst) © UnGer) N} = Upid (U B (UG )} € ML,

(28)
It follows from properties of operators U, (see Subsection 1.4) and of the symmetric tensor
multiplication that the multiplication ¢ is commutative, associative and distributive over a

field C. One can show [22] that| ext g:;)| orem <| ext| o |Gext | . ,and forany A € D¢

<F( ) )\®n>ext<G( )A®m> = <F( )<>G( )A®n+m> t-

ext’ ext 7 ext ext ’

Proposition 4 ((22]). For F,G € (H_+)
FOG: Z oM Z extOGeZif k o (29)
m=0

where F%) ¢ ’H( ), Glmh ¢ ’H(m?tk ), are the kernels from decompositions (12) for F and G

ext —1,C7 “ext

respectively. In particular, for e(xt) en )C and Géxt) e H" T)C
< ®n'Fe(xt)> <> < ¥ Ge(xt)> < ®n+mfPe(xt)<>Ge(xt)> (30)
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Remark 6. It is relevant to note that the multiplication ¢ is an extension of an analog of the

symmetric tensor multiplication on the spaces ngt), m € Zy [22,24]. Using this fact, one
can show that the Wick products and the Wick versions of holomorphic functions, introduced
on the spaces of regular and nonregular generalized functions (see [11] and [22] respectively),
coincide on the intersections of the mentioned spaces. The interested reader can find a detailed

information in [22].

2 MAIN RESULTS AND EXAMPLES

21 The Wick multiplication under the sign of an integral

As is known, some properties of an extended stochastic integral differ from habitual prop-
erties of the Lebesgue integral. In particular, for F € (H_.) and HY) € H¢

/ (Fo HNYwdL, = [ F-HOwdL, #F- [ HO(u)dL,,

Ry Ry Ry

generally speaking, although F does not depend on u. Moreover, in general, the pointwise
product F - fR )dL is undefined. Note that these facts are not directly related with
pecularities of the Levy analysis, and hold true even in the classical Gaussian analysis.

But if one uses the Wick multiplication instead of the pointwise multiplication, it becomes
possible to take a time-independent multiplier out of the sign of the extended stochastic inte-
gral, as in the Lebesgue integration theory (again, this statement holds true in the Gaussian
analysis, in the same way as in the Lévy analysis on the spaces of reqular generalized func-
tions [12]). In this subsection we’ll explain this in detail.

We begin with a preparation. Let F e(xt) € 7-[( T) cr GE(Z? € H(_n?c ® He, n,m € Z. Using the
notation of the previous section, define ’

EQ)sGln) = (UL, o D{(ProD[(UEL) © (Un© DG e H W @ He. (1)

Remark 7. Letn,m € Z, Fe(;lt) € H(fr),o:/ e(xt) S ’H( )C and HY € He¢. By (31) and (28)
Els(Gl) @ HD) = (B o GlY) @ HO (32)

(cf. [24]).

It is easy to estimate the norm of F M3G™) in the space 7-[( TC) ® He: since operators

ext ext,
Uy : H(_'i)c — H%’TC, m € Z., are isometric isomorphisms (see Subsection 1.4), by (31) we
obtain

= [(Pr o 1)[(U.EL) © (U ®1)GLr)

’ ext ext ‘H@;{:’O@'HC )] ’H§n+m®7{

(U ©1)G™

< [UxF, ext) ext,: |H€O?C®H | ext|

”) |Gext | "1) ®HC

(33)

|H®n

Definition 5. LetF € (H_.) and G € (H_.) ® Hc. We define a Wick product FOG € (H_1) ®
Hc, setting

FOG = (FOG)(-) := Y_ :(o®™ Z Wiy, (34)

m=0 k=0
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where Fe(xt) e H! zc and Ge(xt M ¢ H(_n;,_([jk) ® Hc are the kernels from decompositions (12) and

(17) for F and G respectively (cf. (29)).

Using estimate (33) one can prove by analogy with [22] that this definition is well-posed,
and the Wick multiplication ¢ is continuous in the sense that for any g € N such that F €
('Hfr),(q,l) and G € (H_+ ),(qfl) ® Hce,

1EGGl 1y e < NFll ooy, oGm0y yyomc

Remark 8. Let F,G € (H_T) and HY € He. Usmg (34), (32) and (29), one can easily show
that

FO(G® HWY) = (FOG) @ HW, (35)
Theorem 3. LetA € B(R4),F € (H_1) and G € (H_1) ® Hc. Then
/ FOG(u)dLy = / (FOG)(u)dLy = FO / W)dLy € (H_q). (36)

Remark 9. It is possible to interpret G as a function acting from R, to (H_+) and, taking
into account the construction of the W1Ck multiplications ¢ and {, rewrite equality (36) in a
classical form [, FOG(u )dL, = FO J G( u)dLy,.

Proof. 1t is sufficient to consider the case A = R only: if A # R, it is necessary to substitute
G(-)15(+) instead of G.
Let at first F = : (o®" E )> G(-) = : (o®m ,G" )) L, E e 4l T)C, G e ym )C ® He,

7 *ext ext, ext ext,:

n,m € Z. By (34) we have (FOG)(-) = : (™" FISG) ), hence [y (FOG)(u)dL, =

ext ext,

< ®n+m+1 1:( )/G(\

ext 9Gext R, ) ¢ (see (21), (22)). On the other hand, by (21)

/1R+ G(u)dL, = :<o®m+1fée(z1t?lR+>:/

therefore FO fR u)dL, = : (o®ntm+l Fe(xt) oGéxt]R ) : (see (30)). So, we have to prove that
e(xt)OGe(xt)]R =F e(xt) GE(ZQIR+ (37)

in ’H(f”: g H).
Using (22) and (31) we obtain

—

Pe(xt)OGe(xt)lR = U, Ly {Pr[(Unm ®1)( ext ext >]}
= ULy {Pr[(Unen @ (UL, © D{(Pr @ D(UFL) © (Un @ DGR }
= unim+1{Pr[(u”Fe(xt)) ® (Un ® 1)G(gxt?‘)]}/

whereas by (28) and (22)

e(xt) © Ge(xt)IR+ = un—&m—o—l{Pr[(u”Fe(xt)) ® (um+1é\(§z)]1{+)]}
= un—&m—o—l{Pr[ u”Fe(xt)) ® (um+1um+1{Pr[(um & 1>G(§xt) ]})} }

= Uy AP @ (Un @ 1G]
Therefore equality (37) is true, hence in our special case the theorem is proved. In the general
case the statement follows from the just obtained result, continuity of the Wick multiplications
¢ and ¢, and continuity of operator of stochastic integration (24). O
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Now let us obtain an analog of property (36) for a so-called Pettis integral (i.e., for a weak
integral) on the spaces of nonregular generalized functions. Denote by p the Lebesgue measure
on Ry and consider A € B(Ry) such that p(A) < oo. Forany G € (H_) ® Hc define the
Pettis integral [, G(u)du € (H_+) as a unique element of (#_) such that for each f € (H.)

<</A G(u)du, f) 12y = (G(C), f @1a()) (12) @1 (38)

Since by the generalized Cauchy-Bunyakovsky inequality for each ¢ € N, () (see Proposi-
tion 2)

(GC) f @1aC)) a2yemel < NG a ) yeuclfllam,\/o(B),

this definition is well-posed and the Pettis integral
/A o(u)du : (H_1) @ He — (H_) (39)

is a linear continuous operator.
LetG e (H-+), H® € Hc. Then

/A(G@)H(l))(u)du E/AG-H(l)(u)du :G-/AH(l)(u)du. (40)

In fact, for each f € (#.) by (38) we have

/G HY (u)du, ) 12y = (G @ HY (), f @ 1a0)) (12)0me

= (G, Mz [(HY (wau = (G- [ HO ), £) 12

Letnow F,G € (H_1) and H 1) e He. Using (35) and (40) we obtain

/A FO((G® HY)(u))du = / (P@(G@@H(U))(u)du: /A ((F<>G)®H<1>)(u)du
—/ (FOG) - HO (u)du = (FOG) - /H
— FO(G /H u)du) _FQ/GH w)du
EFO/ (G o HW)(u)du.
A

From here, by virtue of continuity of the Wick multiplications ¢ and ¢, and continuity of Pettis
integral (39), we obtain the following statement (cf. Theorem 3).

Theorem 4. Let A € B(IR;) be such that p(A) < oo, F € (H_7) and G € (H_1) ® Hc. Then

/poc w)du = /(poc)( w)du = p<>/ w)du € (H_-). (41)
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Remark 10. As in the case of the extended stochastic integral, now one can interpret G as
a function acting from R to (H_+), and rewrite equality (41) in a form [, FOG(u)du =

FO [\ G(u)du
2.2 A representation of the extended stochastic integral via the Pettis integral

It is well known that in the Gaussian analysis the extended stochastic integral on spaces of
generalized functions can be presented as a Pettis integral:

/AF(u)cTWu :/AF(u)OWudu, A € B(Ry). (42)

Here W is a Wiener process, W is a Gaussian white noise. Depending on the spaces under
consideration, equality (42) can be formal or can have a rigorous sense. In any case this equality
is very useful for applications, in particular, for studying stochastic equations with Wick type
nonlinearities.

Remark 11. In a sense, equality (42) is an analog of a formula for replacement of a measure in
the Lebesgue integration theory. In particular, W is an analog of a Radon-Nikodym derivative.

In the Lévy analysis representation (42) for the extended stochastic integral holds true up
to obvious modifications: it is necessary to substitute a Lévy process and a Lévy white noise
instead of a Wiener process and a Gaussian white noise respectively. Now on the spaces of
regular generalized functions the analog of (42) is a formal equality [12]; in the nonregular case
the corresponding analog is a rigorous equality. Let us explain this in detail.

As we saw in Subsection 1.1, a Lévy white noise can be presented in a form L, = (0,04),
u € Ry. Asis well known (e.g., [3]), for each u the Dirac delta-function d,, € H_, therefore
Ly = (0,6y) =:(0,8,): € (H_7). Let F € (H_1) @ Hc. In this subsection it will be convenient
to interpret F as a function acting from Ry to (H_¢), so, for p-almost all u € R4 the Wick
product F(u)(L, is a well-defined element of (#_+) (remind that p is the Lebesgue measure
on Ry). For arbitrary A € B(IRy) let us define the Pettis integral [, F(u)QL,du as a unique
element of (H_+) such that for each f € (H)

(P OLudu, ) iz) = [ (EG)OLu, £) 12 3)

(cf. (38)). Since it is possible now that p(A) = oo, we cannot use the reasoning from Subsec-
tion 2.1 and have to prove the correctness of this definition (simultaneously we’ll obtain an
analog of (42)). It is sufficient to consider the case A = R, : if A # R4, one has to substitute
F(-)1a(+) instead of F. By (29), (28) and Remark 3 for p-almost all u € R

F(u)OLy = Fu)0:(0,8,): = Y : (0™ L F) 06,):

m=0

=Y (e U {Pr(UR ) 98}

m=0
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therefore by (8), (14) and (20) we obtain

Jo, CF)OLu £) 12

¢

(0™, UL {PrI(UnEGD,) © 8]}, X (07, F0)2) gy du
n=0

+

[l 5

o

(m 4+ D)UY P (UnES) ) © 84}, F7 D) expdu

+
3
I

(e}

(m 4+ V)W(UnEL,) @ 6, F ) du

+
3
[ gk

e i -

(m+ DU EY™ Fm D (g, u))du

ext,u’

¢

+ m=0
= Y D U F )
m=0
= L (m+ D)N(Un @ DES), F0).
m=0
(44)
Note that the penultimate equality in (44) is valid because, as is easy to verify,
| On e DUUEL ) O (o) s < oo
+ m=0
On the other hand, by (21), (22), (8), (14) and (20) we obtain
([ FdLu, )
Ry
= (L ™ U L {Pr{Um @ DEGIN 2 L0 ) s
m=0 n=0
(45)

(m 4+ DU {Pr[(Uy @ )ED]Y, £ 1)

I
agk

3
<H:

(m 4+ 1)Uy @ 1)E, D),

ext,-’

I
¢

3
I
S

Comparing (44) and (45) we conclude that for all f € () and A € B(Ry)

J (B @OL, Pz = [ ((F@)15(0)OLu, ) iz

+

=, FOOta@dLu, ) = | FGOLu £ 0z

therefore by (43) f A <>L du is a well-defined element of (H_+) and, moreover, we have the
following statement

Theorem 5. For arbitrary A € B(R+) and F € (H_1) ® Hc¢

/A F(u)dLy = /A F(u)O Ldu. (46)
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Remark 12. The extended stochastic integral can be defined by formulas (21), (22) with A =
R+ as a linear continuous operator acting from (H_.) ® H_,¢ to (H_<), cf. [23] (now it is
impossible to define the integral by a set A # R because a multiplication of an element of

”H(l?lc ®@ H_rc or (H-1) ® H_r ¢ by 1, is undefined, cf. (22), (25)). It is easy to show that
formulas (36) and (46) (with A = IR) hold true for this integral.

Finally we note that all results of Subsections 2.1 and 2.2 hold true for integrands and mea-
surable sets A, satisfying the assumptions of Remark 5.

2.3 Examples

In order to illustrate possible applications of our results, we consider some stochastic equa-
tions with Wick type nonlinearities.

Example 1. (a linear equation) Let us consider an integral stochastic equation
t _ .
X = Xo + / FOXudu + / GOXydLy, 47)
0 0

where Xy, F, G € (H_+) (we use here the classical notation fot = f[O,t) ). Applying to this equa-
tion the S-transform with regard to (41), (36) and (46), and solving the obtained nonstochastic
equation, we get

t
SX; = SXp - exp {SFt + SG/ )\(u)du}.
0
Applying to this equality the inverse S-transform, we obtain the solution of (47)

X¢ = X0 exp® {Ft + GOLi} € (H_x).

Example 2. (a Verhulst type equation) Consider an integral stochastic equation
t t ~

where Xy € (H-7), N,r,v € R, N > 0,7 > 0, (5X)(0) > 0. Here for p-almost all u € R
we interpret X, as a generalized function, it follows from the solution of (48) (see below) that
Xu € (H—-+) and all integrals in (48) are well defined. As in the previous example, applying
to (48) the S-transform with regard to (46), solving the obtained equation, and applying the
inverse S-transform, we get the solution

X, =N {1 + (NXOTY —1)0exp® { — N(rt + th)}] oD (H_),

where YO(=1) .= g1 (SLY)

Remark 13. It is very easy to show that all results of this paper hold true (up to obvious
modifications) if we consider the spaces (D') and (D') ® Hc instead of the spaces (H_-) and
(H—¢) ® Hc respectively.
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Mu MaeMo cIpaBy 3 IPOCTOpaMM HEPETYASIPHIUX y3arabHeHMX (OYHKIIIN B aHaAisi 6iroro mry-
My AeBi, siki T06yAOBaHi 3 BUKOPMCTaHHSIM AWTBMHIBCBKOTO y3araAbHEHHSI BAACTMBOCTI XaOTIIHOTO
po3xaapy. Hamra mera — ommcaTyt B3a€MOBIAHOCHMHM MiX BiKiBCbKVMM MHOXXEHHSIM Ta iHTerpyBaH-
HsIM Ha IUX Ipocropax. TouHilre, My MoKa3yeMo, 110, BUKOPUCTOBYIOUM BiKiBCbKe MHOXEHHSI, MO-
JKHa BMHOCUTM He3aAeXXHMI BiA Yacy MHOXHMK 33 3HaK PO3IIMPEHOr0 CTOXaCTMYHOTO iHTerpaay;
BCTaHOBAIOEMO aHAAOT LIbOTO Pe3yABTaTy AAs iHTerpany Ilerrica (caabkoro iHTerpaay); Ta AOBOAM-
MO TeopeMy PO MPeACTaBAEHHsI PO3IIMPEHOTo CTOXaCTUYHOTO iHTerpaAy depes inTerpan Ilerrica
BiA BikiBcbKOTO AOOYTKY BMXiAHOI MiAiHTerpaAbHOI pYHKIIII Ha 6iawmit irym AeBi. SIk mpukaaay 3a-
CTOCYBaHHsI HAalllMX Pe3yAbTaTiB MM PO3TASIAQEMO AeSIKi CTOXACTMUHI PiBHSIHHS 3 HeAIHIHOCTSIMMI
BiKiBCHKOI'O THITY.

Knrouosi cnosa i ppasu: Ilpolec AeBi, po3lImpeHIii CToOXacTUIHMIA iHTerpaa, iHTerpana Ilerrica,
BiKiBCBKIIT AOBYTOK.



