Карпатські матем. публ. 2018, Т.10, №2, С.395-401

ISSN 2075-9827 e-ISSN 2313-0210

Carpathian Math. Publ. 2018, **10** (2), 395–401 doi:10.15330/cmp.10.2.395-401

Vasylyshyn T.V.

SYMMETRIC *-POLYNOMIALS ON \mathbb{C}^n

*-Polynomials are natural generalizations of usual polynomials between complex vector spaces. A *-polynomial is a function between complex vector spaces X and Y, which is a sum of so-called (p,q)-polynomials. In turn, for nonnegative integers p and q, a (p,q)-polynomial is a function between X and Y, which is the restriction to the diagonal of some mapping, acting from the Cartesian power X^{p+q} to Y, which is linear with respect to every of its first p arguments, antilinear with respect to every of its last q arguments and invariant with respect to permutations of its first p arguments and last q arguments separately.

In this work we construct formulas for recovering of (p,q)-polynomial components of *-polynomials, acting between complex vector spaces X and Y, by the values of *-polynomials. We use these formulas for investigations of *-polynomials, acting from the n-dimensional complex vector space \mathbb{C}^n to \mathbb{C} , which are symmetric, that is, invariant with respect to permutations of coordinates of its argument. We show that every symmetric *-polynomial, acting from \mathbb{C}^n to \mathbb{C} , can be represented as an algebraic combination of some "elementary" symmetric *-polynomials.

Results of the paper can be used for investigations of algebras, generated by symmetric *-polynomials, acting from \mathbb{C}^n to \mathbb{C} .

Key words and phrases: (p,q)-polynomial, *-polynomial, symmetric *-polynomial.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine E-mail: taras.v.vasylyshyn@gmail.com

INTRODUCTION AND PRELIMINARIES

*-Polynomials (see definition below), acting between complex vector spaces *X* and *Y*, were studied in [4–6]. If *X* has a symmetric structure, like a symmetric basis, it is natural to consider *-polynomials, which are invariant (symmetric) with respect to a group of operators, acting on *X*, which preserve this structure.

Symmetric (invariant) analytic functions of several complex variables with respect to a group of operators on the n-dimensional complex vector space \mathbb{C}^n were investigated by many authors (see, e. g., [1–3]).

In this work we consider symmetric (see definition below) *-polynomials, acting from \mathbb{C}^n to \mathbb{C} . We investigate the structure of such *-polynomials and show that every symmetric *-polynomial, acting from \mathbb{C}^n to \mathbb{C} , can be represented as an algebraic combination of some "elementary" symmetric *-polynomials. Also we establish the general result, which gives us the method of recovering of components of a *-polynomial by the values of this *-polynomial.

Let \mathbb{N} be the set of all positive integers and \mathbb{Z}_+ be the set of all nonnegative integers. Let X and Y be complex vector spaces. A mapping $A: X^{p+q} \to Y$, where $p, q \in \mathbb{Z}_+$ are such that $p \neq 0$ or $q \neq 0$, is called a (p,q)-linear mapping, if A is linear with respect to every

УДК 517.98

2010 Mathematics Subject Classification: 46J20, 46E15.

of first p arguments and it is antilinear with respect to every of last q arguments. A (p,q)linear mapping, which is invariant with respect to permutations of its first p arguments and
last q arguments separately, is called (p,q)-symmetric. A mapping $P: X \to Y$ is called a (p,q)-polynomial if there exists a (p,q)-symmetric (p,q)-linear mapping $A_P: X^{p+q} \to Y$ such that P is the restriction to the diagonal of A_P , i.e.

$$P(x) = A_P(\underbrace{x, \dots, x}_{p+q})$$

for every $x \in X$. The mapping A_P is called the (p,q)-symmetric (p,q)-linear mapping, associated with P. Note that

$$P(x_{1} + \ldots + x_{m}) = \sum_{\substack{\mu_{1} + \ldots + \mu_{m} = p \\ \mu_{1}, \ldots, \mu_{m} \in \mathbb{Z}_{+}}} \sum_{\substack{\nu_{1} + \ldots + \nu_{m} = p \\ \nu_{1}, \ldots, \nu_{m} \in \mathbb{Z}_{+}}} \frac{p!}{\mu_{1}! \ldots \mu_{m}!} \frac{q!}{\nu_{1}! \ldots \nu_{m}!} \times A_{P}(\underbrace{x_{1}, \ldots, x_{1}, \ldots, x_{m}, x_{m}, x_{m}, x_{1}, \ldots, x_{1}, \ldots, x_{m}, x_{$$

for every $x_1, \ldots, x_m \in X$. Also note that

$$P(\lambda x) = \lambda^p \bar{\lambda}^q P(x) \tag{2}$$

for every $x \in X$ and $\lambda \in \mathbb{C}$.

For convenience, we define (0,0)-polynomials from X to Y as constant mappings. A mapping $P: X \to Y$ is called a *-polynomial if it can be represented in the form

$$P = \sum_{k=0}^{K} \sum_{j=0}^{k} P_{j,k-j},$$
(3)

where $K \in \mathbb{Z}_+$ and $P_{j,k-j}$ is a (j,k-j)-polynomial for every $k \in \{0,\ldots,K\}$ and $j \in \{0,\ldots,k\}$. Let deg P be the maximal number $k \in \mathbb{Z}_+$, for which there exists $j \in \{0,\ldots,k\}$ such that $P_{j,k-j} \not\equiv 0$.

A *-polynomial $P : \mathbb{C}^n \to \mathbb{C}$, where $n \in \mathbb{N}$, is called *symmetric* if

$$P((z_1,\ldots,z_n))=P((z_{\sigma(1)},\ldots,z_{\sigma(n)}))$$

for every $(z_1,...,z_n) \in \mathbb{C}^n$ and for every bijection $\sigma : \{1,...,n\} \to \{1,...,n\}$.

For every $\gamma=(\gamma_1,\gamma_2)\in\mathbb{Z}_+^2$ let us define a (γ_1,γ_2) -polynomial $H_{\gamma}^{(n)}:\mathbb{C}^n\to\mathbb{C}$ by

$$H_{\gamma}^{(n)}(z) = \sum_{m=1}^{n} z_m^{\gamma_1} \bar{z}_m^{\gamma_2},\tag{4}$$

where $z = (z_1, ..., z_n) \in \mathbb{C}^n$. Note that $H_{\gamma}^{(n)}$ is symmetric.

A mapping $f: S \to \mathbb{C}$, where S is an arbitrary set, is called an *algebraic combination* of mappings $f_1, \ldots, f_k: S \to \mathbb{C}$ if there exists a polynomial $Q: \mathbb{C}^k \to \mathbb{C}$ such that

$$f(x) = Q(f_1(x), \dots, f_k(x))$$

for every $x \in S$.

In this work we show that every symmetric *-polynomial, acting from \mathbb{C}^n to \mathbb{C} , can be represented as an algebraic combination of *-polynomials $H_{\gamma}^{(n)}$, defined by (4).

1 THE MAIN RESULT

Let us prove formulas for recovering of (p,q)-polynomials by the values of a *-polynomial. For complex numbers t_1, \ldots, t_m , let V_{t_1, \ldots, t_m} be the Vandermonde matrix:

$$V_{t_1,\dots,t_m} := egin{pmatrix} 1 & t_1 & t_1^2 & \dots & t_1^{m-1} \ 1 & t_2 & t_2^2 & \dots & t_2^{m-1} \ dots & dots & dots & \ddots & dots \ 1 & t_m & t_m^2 & \dots & t_m^{m-1} \end{pmatrix}.$$

It is well-known that

$$\det(V_{t_1,\ldots,t_m}) = \prod_{1 \leq j < s \leq m} (t_s - t_j).$$

If all the numbers t_1, \ldots, t_m are distinct, then $\det(V_{t_1, \ldots, t_m}) \neq 0$.

Proposition 1. Let $P: X \to Y$ be a *-polynomial of the form (3), where X and Y are complex vector spaces. Let $\lambda_0, \ldots, \lambda_K$ be distinct real numbers. Then

$$\sum_{j=0}^{k} P_{j,k-j}(x) = \sum_{s=0}^{K} w_{ks} P(\lambda_{s} x)$$

for every $k \in \{0,...,K\}$ and $x \in X$, where w_{ks} are elements of the matrix $W = (w_{ks})_{k,s=\overline{0,K}}$, which is the inverse matrix of the Vandermonde matrix $V_{\lambda_0,...,\lambda_K}$.

Proof. Let $x \in X$. For every $s \in \{0, ..., K\}$, by (3),

$$P(\lambda_s x) = \sum_{k=0}^K \sum_{i=0}^k P_{j,k-j}(\lambda_s x).$$

By (2), taking into account that λ_s is real,

$$P_{j,k-j}(\lambda_s x) = \lambda_s^j \bar{\lambda}_s^{k-j} P_{j,k-j}(x) = \lambda_s^j \lambda_s^{k-j} P_{j,k-j}(x) = \lambda_s^k P_{j,k-j}(x).$$

Therefore, for every $s \in \{0, ..., K\}$,

$$P(\lambda_s x) = \sum_{k=0}^K \lambda_s^k \sum_{j=0}^k P_{j,k-j}(x).$$

Thus, we have the vector equality

$$(P(\lambda_0 x), \dots, P(\lambda_K x))^T = V_{\lambda_0, \dots, \lambda_K} (P_{0,0}(x), \sum_{j=0}^1 P_{j,1-j}(x), \dots, \sum_{j=0}^K P_{j,K-j}(x))^T.$$

Since $\lambda_0, \ldots, \lambda_K$ are distinct, it follows that $\det(V_{\lambda_0, \ldots, \lambda_K}) \neq 0$. Consequently, $V_{\lambda_0, \ldots, \lambda_K}$ is invertible. Let

$$W = (w_{ks})_{k,s=\overline{0,K}} := V_{\lambda_0,...,\lambda_K}^{-1}$$

Then

$$(P_{0,0}(x), \sum_{j=0}^{1} P_{j,1-j}(x), \dots, \sum_{j=0}^{K} P_{j,K-j}(x))^{T} = W(P(\lambda_{0}x), \dots, P(\lambda_{K}x))^{T}.$$

Therefore,

$$\sum_{i=0}^{k} P_{j,k-j}(x) = \sum_{s=0}^{K} w_{ks} P(\lambda_{s} x)$$

for every $k \in \{0, ..., K\}$.

Proposition 2. Let $k \in \mathbb{Z}_+$ and $P_{j,k-j} : X \to Y$ be a (j,k-j)-polynomial for every $j \in \{0,\ldots,k\}$, where X and Y are complex vector spaces. Let $\varepsilon_0,\ldots,\varepsilon_k$ be complex numbers such that $\varepsilon_0^2,\ldots,\varepsilon_k^2$ are distinct and $|\varepsilon_0|=\ldots=|\varepsilon_k|=1$. Then

$$P_{j,k-j}(x) = \sum_{l=0}^{k} u_{jl} \varepsilon_l^k \sum_{j=0}^{k} P_{j,k-j}(\varepsilon_l x)$$

for every $j \in \{0, ..., k\}$ and $x \in X$, where u_{jl} are elements of the matrix $U = (u_{jl})_{j,l=\overline{0,K}}$, which is the inverse matrix of the Vandermonde matrix $V_{\varepsilon_0^2,...,\varepsilon_K^2}$.

Proof. Let $x \in X$. For every $j, l \in \{0, ..., k\}$, by (2), $P_{j,k-j}(\varepsilon_l x) = \varepsilon_l^j \overline{\varepsilon}_l^{k-j} P_{j,k-j}(x)$. Since $|\varepsilon_l| = 1$, it follows that $\overline{\varepsilon}_l^{k-j} = \varepsilon_l^{j-k}$. Therefore, $P_{j,k-j}(\varepsilon_l x) = \varepsilon_l^{2j-k} P_{j,k-j}(x)$.

Consequently,

$$\varepsilon_l^k \sum_{j=0}^k P_{j,k-j}(\varepsilon_l x) = \sum_{j=0}^k \varepsilon_l^{2j} P_{j,k-j}(x)$$

for every $l \in \{0, ..., k\}$. Thus, we have the vector equality

$$\left(\varepsilon_0^k \sum_{j=0}^k P_{j,k-j}(\varepsilon_0 x), \ldots, \varepsilon_k^k \sum_{j=0}^k P_{j,k-j}(\varepsilon_k x)\right)^T = V_{\varepsilon_0^2,\ldots,\varepsilon_k^2} \left(P_{0,k}(x), P_{1,k-1}(x), \ldots, P_{k,0}(x)\right)^T.$$

Since $\varepsilon_0^2, \dots, \varepsilon_k^2$ are distinct, it follows that $\det(V_{\varepsilon_0^2, \dots, \varepsilon_k^2}) \neq 0$. Consequently, $V_{\varepsilon_0^2, \dots, \varepsilon_k^2}$ is invertible. Let

$$U = (u_{jl})_{j,l=\overline{0,k}} := V_{\varepsilon_0^2,\dots,\varepsilon_k^2}^{-1}.$$

Then

$$(P_{0,k}(x), P_{1,k-1}(x), \dots, P_{k,0}(x))^{T} = U(\varepsilon_0^{k} \sum_{j=0}^{k} P_{j,k-j}(\varepsilon_0 x), \dots, \varepsilon_k^{k} \sum_{j=0}^{k} P_{j,k-j}(\varepsilon_k x))^{T}.$$

Therefore,

$$P_{j,k-j}(x) = \sum_{l=0}^{k} u_{jl} \varepsilon_l^k \sum_{j=0}^{k} P_{j,k-j}(\varepsilon_l x)$$

for every $j \in \{0, ..., k\}$.

Let us consider *-polynomials on \mathbb{C}^n .

Lemma 1. Every *-polynomial $P: \mathbb{C}^n \to \mathbb{C}$ can be uniquely represented in the form

$$P(z) = \sum_{k=0}^{K} \sum_{j=0}^{k} \sum_{\substack{\mu_1 + \dots + \mu_n = j \\ \mu_1, \dots, \mu_n \in \mathbb{Z}_+}} \sum_{\substack{\nu_1 + \dots + \nu_n = k - j \\ \nu_1, \dots, \nu_n \in \mathbb{Z}_+}} \alpha_{\mu_1, \dots, \mu_n, \nu_1, \dots, \nu_n} z_1^{\mu_1} \dots z_n^{\mu_n} \bar{z}_1^{\nu_1} \dots \bar{z}_n^{\nu_n},$$
 (5)

where $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, $K = \deg P$ and $\alpha_{\mu_1, \ldots, \mu_n, \nu_1, \ldots, \nu_n} \in \mathbb{C}$.

Proof. Let $P: \mathbb{C}^n \to \mathbb{C}$ be a *-polynomial of the form (3). If K=0, then $P=P_{0,0}$, where $P_{0,0} \in \mathbb{C}$. Thus, in this case, we have the representation of P in the form (5). Consider the case K>0. Every $z=(z_1,\ldots,z_n)\in\mathbb{C}^n$ can be represented as $z=\sum_{m=1}^n z_m e_m$, where

$$e_m = (\underbrace{0,\ldots,0}_{m-1},1,\underbrace{0,\ldots,0}_{n-m})$$

for every $m \in \{1, ..., n\}$. Therefore, by (1),

$$P(z) = P_{0,0} + \sum_{k=0}^{K} \sum_{j=0}^{k} \sum_{\substack{\mu_1 + \dots + \mu_n = j \\ \mu_1, \dots, \mu_n \in \mathbb{Z}_+}} \sum_{\substack{\nu_1 + \dots + \nu_n = k - j \\ \nu_1, \dots, \nu_n \in \mathbb{Z}_+}} \frac{j!}{\mu_1! \dots \mu_n!} \frac{(k-j)!}{\nu_1! \dots \nu_n!} z_1^{\mu_1} \dots z_n^{\mu_n} \bar{z}_1^{\nu_1} \dots \bar{z}_n^{\nu_n}$$

$$\times A_{P_{j,k-j}} \underbrace{(e_1, \dots, e_1, \dots, e_n, \dots, e_n, e_n, \dots, e_n, e_1, \dots, e_n, \dots, e_n,$$

where $A_{P_{j,k-j}}$ is the (j, k-j)-symmetric (j, k-j)-linear mapping, associated with the (j, k-j)-polynomial $P_{j,k-j}$. Let $\alpha_{0,\dots,0} = P_{0,0}$ and

$$\alpha_{\mu_1,\dots,\mu_n,\nu_1,\dots,\nu_n} = \frac{j!}{\mu_1!\dots\mu_n!} \frac{(k-j)!}{\nu_1!\dots\nu_n!} \times A_{P_{j,k-j}}(\underbrace{e_1,\dots,e_1}_{\mu_1},\dots,\underbrace{e_n,\dots,e_n}_{\nu_n},\underbrace{e_1,\dots,e_1}_{\nu_1},\dots,\underbrace{e_n,\dots,e_n}_{\nu_n})$$

for $\mu_1, \ldots, \mu_n, \nu_1, \ldots, \nu_n \in \mathbb{Z}_+$ such that $1 \leq \mu_1 + \ldots + \mu_n + \nu_1 + \ldots + \nu_n \leq K$. Then

$$P(z) = \sum_{k=0}^{K} \sum_{j=0}^{k} \sum_{\substack{\mu_1 + \dots + \mu_n = j \\ \mu_1, \dots, \mu_n \in \mathbb{Z}_+}} \sum_{\substack{\nu_1 + \dots + \nu_n = k - j \\ \nu_1, \dots, \nu_n \in \mathbb{Z}_+}} \alpha_{\mu_1, \dots, \mu_n, \nu_1, \dots, \nu_n} z_1^{\mu_1} \dots z_n^{\mu_n} \bar{z}_1^{\nu_1} \dots \bar{z}_n^{\nu_n}.$$

Theorem 1. Every symmetric *-polynomial $P: \mathbb{C}^n \to \mathbb{C}$ can be represented as an algebraic combination of *-polynomials $H_{\gamma}^{(n)}$, where $\gamma = (\gamma_1, \gamma_2) \in \mathbb{Z}_+^2$ are such that $\gamma_1 + \gamma_2 \leq \deg P$.

Proof. We proceed by induction on n. In the case n = 1 for $z = z_1 \in \mathbb{C}$, by Lemma 1, we have

$$P(z) = \sum_{k=0}^{\deg P} \sum_{j=0}^{k} \alpha_{j,k-j} z_1^j \bar{z}_1^{k-j} = \sum_{k=0}^{\deg P} \sum_{j=0}^{k} \alpha_{j,k-j} H_{(j,k-j)}^{(1)}(z).$$

Suppose the statement holds for n-1 and prove it for n. Let $P: \mathbb{C}^n \to \mathbb{C}$ be a symmetric *-polynomial and $z=(z_1,\ldots,z_n)\in\mathbb{C}^n$. Then P(z) can be represented in the form

$$P(z) = \sum_{k=0}^{K} \sum_{j=0}^{k} z_n^j \bar{z}_n^{k-j} r_{j,k-j}((z_1, \dots, z_{n-1})),$$

where $K = \deg P$ and $r_{j,k-j}: \mathbb{C}^{n-1} \to \mathbb{C}$ are *-polynomials. Let us show that *-polynomials $r_{j,k-j}$ are symmetric. For fixed $z_1, \ldots, z_{n-1} \in \mathbb{C}$, the mapping $R: z_n \mapsto P((z_1, \ldots, z_n))$ is a *-polynomial, acting from \mathbb{C} to \mathbb{C} . Let $\lambda_0, \ldots, \lambda_K$ be distinct real numbers. Then, by Proposition 1,

$$\sum_{j=0}^{k} z_n^j \bar{z}_n^{k-j} r_{j,k-j}((z_1, \dots, z_{n-1})) = \sum_{s=0}^{k} w_{ks} R(\lambda_s z_n)$$
 (6)

for every $k \in \{0,...,K\}$. For $k \in \{0,...,K\}$, let $\varepsilon_0,...,\varepsilon_k$ be complex numbers such that $\varepsilon_0^2,...,\varepsilon_k^2$ are distinct and $|\varepsilon_0| = ... = |\varepsilon_k| = 1$. Then, by Proposition 2,

$$z_n^j \bar{z}_n^{k-j} r_{j,k-j}((z_1, \dots, z_{n-1})) = \sum_{l=0}^k u_{jl} \varepsilon_l^k \sum_{j=0}^k (\varepsilon_l z_n)^j (\bar{\varepsilon}_l \bar{z}_n)^{k-j} r_{j,k-j}((z_1, \dots, z_{n-1}))$$
 (7)

for every $j \in \{0, ..., k\}$. By (6) and (7),

$$z_n^j \bar{z}_n^{k-j} r_{j,k-j}((z_1,\ldots,z_{n-1})) = \sum_{l=0}^k u_{jl} \varepsilon_l^k \sum_{s=0}^K w_{ks} R(\lambda_s \varepsilon_l z_n)$$

for every $k \in \{0, ..., K\}$ and $j \in \{0, ..., k\}$. Let $z_n = 1$. Then

$$r_{j,k-j}((z_1,\ldots,z_{n-1})) = \sum_{l=0}^{k} u_{jl} \varepsilon_l^k \sum_{s=0}^{K} w_{ks} R(\lambda_s \varepsilon_l) = \sum_{l=0}^{k} u_{jl} \varepsilon_l^k \sum_{s=0}^{K} w_{ks} P((z_1,\ldots,z_{n-1},\lambda_s \varepsilon_l)).$$
 (8)

Let $\sigma : \{1, \dots, n-1\} \to \{1, \dots, n-1\}$ be a bijection. Then, by (8) and by the symmetry of P,

$$r_{j,k-j}((z_{\sigma(1)},\ldots,z_{\sigma(n-1)})) = \sum_{l=0}^{k} u_{jl} \varepsilon_{l}^{k} \sum_{s=0}^{K} w_{ks} P((z_{\sigma(1)},\ldots,z_{\sigma(n-1)},\lambda_{s} \varepsilon_{l}))$$

$$= \sum_{l=0}^{k} u_{jl} \varepsilon_{l}^{k} \sum_{s=0}^{K} w_{ks} P((z_{1},\ldots,z_{n-1},\lambda_{s} \varepsilon_{l})) = r_{j,k-j}((z_{1},\ldots,z_{n-1})).$$

Thus, $r_{j,k-j}$ is symmetric for every $k \in \{0, ..., K\}$ and $j \in \{0, ..., k\}$. By the induction hypothesis, every *-polynomial $r_{j,k-j}$ can be represented as an algebraic combination of *-polynomials $H_{\gamma}^{(n-1)}$. Since

$$H_{\gamma}^{(n-1)}((z_1,\ldots,z_{n-1})) = H_{\gamma}^{(n)}((z_1,\ldots,z_n)) - z_n^{\gamma_1} \bar{z}_n^{\gamma_2}$$

for every $\gamma=(\gamma_1,\gamma_2)\in\mathbb{Z}_+^2$, it follows that P can be represented as an algebraic combination of *-polynomials $H_{\gamma}^{(n)}$ and *-polynomials, defined by $\mathbb{C}^n\ni(z_1,\ldots,z_n)\mapsto z_n^{\gamma_1}\bar{z}_n^{\gamma_2}\in\mathbb{C}$, where $\gamma=(\gamma_1,\gamma_2)\in\mathbb{Z}_+^2$. Therefore,

$$P(z) = \sum_{k=0}^{K} \sum_{j=0}^{k} z_n^j \bar{z}_n^{k-j} Q_{j,k-j}(z),$$

where $Q_{j,k-j}$ is an algebraic combination of *-polynomials $H_{\gamma}^{(n)}$ for every $k \in \{0,\ldots,K\}$ and $j \in \{0,\ldots,k\}$. Since *-polynomials $H_{\gamma}^{(n)}$ are symmetric, it follows that *-polynomials $Q_{j,k-j}$ are symmetric, it follows that

$$P(z) = \sum_{k=0}^{K} \sum_{j=0}^{k} z_{m}^{j} \bar{z}_{m}^{k-j} Q_{j,k-j}(z),$$

for every $m \in \{1, ..., n\}$. Therefore,

$$\sum_{m=1}^{n} P(z) = \sum_{m=1}^{n} \sum_{k=0}^{K} \sum_{j=0}^{k} z_{m}^{j} \bar{z}_{m}^{k-j} Q_{j,k-j}(z),$$

that is,

$$nP(z) = \sum_{k=0}^{K} \sum_{j=0}^{K} \sum_{m=1}^{n} z_{m}^{j} \bar{z}_{m}^{k-j} Q_{j,k-j}(z).$$

Thus,

$$P(z) = \frac{1}{n} \sum_{k=0}^{K} \sum_{j=0}^{k} H_{(j,k-j)}^{(n)}(z) Q_{j,k-j}(z).$$

Hence, P is an algebraic combination of *-polynomials $H_{\gamma}^{(n)}$. This completes the proof.

REFERENCES

- [1] Aron R., Falcó J., García D., Maestre M. *Algebras of symmetric holomorphic functions of several complex variables*. Rev. Mat. Complut. 2018, **31** (3), 651–672. doi:10.1007/s13163-018-0261-x.
- [2] Aron R., Falcó J., Maestre M. Separation theorems for group invariant polynomials. J. Geom. Anal. 2018, **28** (1), 393–404. doi:10.1007/s12220-017-9825-0.
- [3] Kravtsiv V., Vasylyshyn T., Zagorodnyuk A. On algebraic basis of the algebra of symmetric polynomials on $\ell_p(\mathbb{C}^n)$. J. Funct. Spaces 2017, **2017** Article ID 4947925, 8 pages. doi:10.1155/2017/4947925.
- [4] Mitrofanov M.A. Approximation of continuous functions on complex Banach spaces. Math. Notes 2009, 86 (3-4), 530–541. doi:10.1134/S0001434609090302
- [5] Mujica J. Complex Analysis in Banach Spaces. North Holland, 1986.
- [6] Vasylyshyn T.V., Zagorodnyuk A.V. *Polarization formula for* (*p*, *q*)-polynomials on a complex normed space. Methods Funct. Anal. Topology 2011, **17** (1), 75–83.

Received 25.06.2018

Василишин Т.В. Симетричні *-поліноми на \mathbb{C}^n // Карпатські матем. публ. — 2018. — Т.10, №2. — С. 395–401.

Поняття *-полінома є природним узагальненням поняття полінома між комплексними векторними просторами. *-Поліном — це функція між комплексними векторними просторами X та Y, яка є сумою так званих (p,q)-поліномів. В свою чергу, для невід'ємних цілих чисел p і q, (p,q)-поліном — це функція між просторами X та Y, яка є звуженням на діагональ деякого відображення, що діє з декартового степеня X^{p+q} в Y, яке є лінійним відносно кожного зі своїх перших p аргументів, антилінійним відносно кожного зі своїх останніх q аргументів і інваріантним відносно перестановок окремо перших p аргументів і останніх q агрументів.

В даній роботі побудовано формули для знаходження (p,q)-поліноміальних компонентів *-поліномів, які діють між комплексними векторними просторами X та Y, за значеннями цих *-поліномів. Цей результат використано для дослідження *-поліномів, які діють з n-вимірного комплексного векторного простору \mathbb{C}^n в \mathbb{C} , які є симетричними, тобто, інваріантними відносно перестановок координат їхнього аргумента. Показано, що кожен симетричний *-поліном, який діє з \mathbb{C}^n в \mathbb{C} , можна подати у вигляді алгебраїчної комбінації деяких "елементарних" симетричних *-поліномів.

Результати даної роботи можуть бути використані для дослідження алгебр, породжених симетричними *-поліномами, які діють з \mathbb{C}^n в \mathbb{C} .

Kлючові слова і фрази: (p,q)-поліном, *-поліном, симетричний *-поліном.