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(L)

VASYLYSHYN T.V.

SYMMETRIC #-POLYNOMIALS ON C”

*-Polynomials are natural generalizations of usual polynomials between complex vector spaces.
A x-polynomial is a function between complex vector spaces X and Y, which is a sum of so-called
(p,q)-polynomials. In turn, for nonnegative integers p and ¢, a (p, q)-polynomial is a function be-
tween X and Y, which is the restriction to the diagonal of some mapping, acting from the Cartesian
power X? 11 to Y, which is linear with respect to every of its first p arguments, antilinear with respect
to every of its last 4 arguments and invariant with respect to permutations of its first p arguments
and last g arguments separately.

In this work we construct formulas for recovering of (p, 4)-polynomial components of *-polyno-
mials, acting between complex vector spaces X and Y, by the values of *-polynomials. We use these
formulas for investigations of *-polynomials, acting from the n-dimensional complex vector space
C" to C, which are symmetric, that is, invariant with respect to permutations of coordinates of its
argument. We show that every symmetric *-polynomial, acting from C" to C, can be represented as
an algebraic combination of some “elementary” symmetric *-polynomials.

Results of the paper can be used for investigations of algebras, generated by symmetric *-poly-
nomials, acting from C”" to C.
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INTRODUCTION AND PRELIMINARIES

x-Polynomials (see definition below), acting between complex vector spaces X and Y, were
studied in [4-6]. If X has a symmetric structure, like a symmetric basis, it is natural to consider
x-polynomials, which are invariant (symmetric) with respect to a group of operators, acting
on X, which preserve this structure.

Symmetric (invariant) analytic functions of several complex variables with respect to a
group of operators on the n-dimensional complex vector space C" were investigated by many
authors (see, e. g., [1-3]).

In this work we consider symmetric (see definition below) *-polynomials, acting from
C" to C. We investigate the structure of such *-polynomials and show that every symmetric
x-polynomial, acting from C” to C, can be represented as an algebraic combination of some
“elementary” symmetric *-polynomials. Also we establish the general result, which gives us
the method of recovering of components of a *-polynomial by the values of this *-polynomial.

Let IN be the set of all positive integers and Z be the set of all nonnegative integers.
Let X and Y be complex vector spaces. A mapping A : XP™ — Y, where p,q € Z are
such that p # 0 or g # 0, is called a (p, q)-linear mapping, if A is linear with respect to every
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of first p arguments and it is antilinear with respect to every of last g arguments. A (p,q)-
linear mapping, which is invariant with respect to permutations of its first p arguments and
last q arguments separately, is called (p,q)-symmetric. A mapping P : X — Y is called a
(p, q)-polynomial if there exists a (p, q)-symmetric (p, q)-linear mapping Ap : XP™7 — Y such
that P is the restriction to the diagonal of Ap, i.e.

P(x) = Ap(x,...

(x) = Ap(x,..., )
p+q

for every x € X. The mapping Ap is called the (p, g)-symmetric (p, q)-linear mapping, associ-
ated with P. Note that

p! q'
P(xi+...4+xm)= ), ) ' — '
e I Vs R V7773
P+t Um=P V1t tVm=p M1 Hm: V1 m
Wi Wm €Ly V1, VmEL

X AP(X1, ooy X1, ey Xy e ey Xty X1y ey X1y ey Xy e v o, X)), (1)

H1 Hm 1 Vm

for every x1,...,x, € X. Also note that
P(Ax) = APATP(x) (2)

forevery x € Xand A € C.
For convenience, we define (0, 0)-polynomials from X to Y as constant mappings.
A mapping P : X — Y is called a *-polynomial if it can be represented in the form

K k
P= Z Z Pj,k—j/ 3)
k=0j=0

where K € Z and P;;_;is a (j, k — j)-polynomial for every k € {0,...,K} and j € {0,...,k}.
Let deg P be the maximal number k € Z, for which there exists j € {0,...,k} such that
P],k_] % 0.

A x-polynomial P : C" — C, where n € N, is called symmetric if

P((Zl,. . .,Zn)) = P((za(l)/' . 'IZO'(n)))

for every (z1,...,z,) € C" and for every bijectiono : {1,...,n} — {1,...,n}.
For every v = (71,72) € Z2 let us define a (71, 2)-polynomial Hg") :C" — Cby

H(z) = Y 202, (4)
m=1

where z = (z1,...,2z,) € C". Note that H,(Yn) is symmetric.
A mapping f : S — C, where S is an arbitrary set, is called an algebraic combination of
mappings f1, ..., fy : S — C if there exists a polynomial Q : C* — C such that

f(x) =Q(Ax), -, fr(x))

for every x € S.
In this work we show that every symmetric *-polynomial, acting from C" to C, can be

represented as an algebraic combination of *-polynomials H. (”), defined by (4).
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1 THE MAIN RESULT

Let us prove formulas for recovering of (p, q)-polynomials by the values of a *-polynomial.
For complex numbers t4, ..., ty, let V;, ;. be the Vandermonde matrix:

2 -1
1t t% g 1
1ty 8 $h-
VH,otm -= :
1ty 3, ... th1

It is well-known that

det(Vi,.0,) = [ (ts—t)).

1<j<s<m

If all the numbers t1, ..., t, are distinct, then det(V},, +,) # 0.

Proposition 1. Let P : X — Y be a *-polynomial of the form (3), where X and Y are complex
vector spaces. Let A, ..., Ak be distinct real numbers. Then

k K
Z Pix_j(x) = Z Wis P(Asx)
j=0 5=0

for every k € {0,...,K} and x € X, where wy, are elements of the matrix W = (Wis), ._g
which is the inverse matrix of the Vandermonde matrix V) ).

Proof. Let x € X. Forevery s € {0,...,K}, by (3),

P(Asx) = ZZ [ k— ]}\Sx

By (2), taking into account that A is real,
—_ -
P j(Asx) = MAs ' Pyje_i(x) = MAs ' Pyjej(x) = ASP_j(x).
Therefore, for every s € {0,...,K},

P(Asx) = Z AE Z
Thus, we have the vector equality

(P(on), ey P(AKX))T = VAO/«««/)\K (PO,()(JC),Z}:O lel_j(x), e ,E]K:O P]-,K_]-(x))T.

Since Ay, . .., Ak are distinct, it follows that det(V),, ., ) # 0. Consequently, V)  ,, is invert-

ible. Let
W = (Wks )y s—g1 *= V)LO1 Ay
Then
(Poo(x), Eleg Piaj(x), ., EX g Pix—i(x)) " = W(P(Agx), ..., P(Akx)) .

Therefore,
k K
Z Pix_j(x) = Z Wis P(Asx)
j=0 s=0

for every k € {0, ...,K}. O
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Proposition 2. Letk € Z, and Pjx_; : X — Y be a (j,k — j)-polynomial for every j €
{0,...,k}, where X and Y are complex vector spaces. Let ¢, . .., € be complex numbers such
thate3, ..., e1 are distinctand |¢g| = ... = |¢x| = 1. Then

k P k
J,kJ Z IZ: €lx

foreveryj € {0,...,k} and x € X, where uj; are elements of the matrix U = (”jl)j,l:(TK/ which

is the inverse matrix of the Vandermonde matrix Ve(z) ey

Proof. Let x € X. For every j 1 €40,...,k}, by (2), Pix_i(e1x) = slsl ]P j(x). Since ¢/ =1,
it follows that é’l( —el * Therefore,P ik—i(e1x) = e?]_kP],k_j( ).
Consequently,

k k
o
et L Pie-jlerx) = L&' By (¥)
j=0 j=0
forevery I € {0,...,k}. Thus, we have the vector equality

T T
(€6 S0 Pii—j(e0%), - -, €f g Pie—j(exx)) = Va2 (Pok(x), PLi-1(x),..., Peo(x)) -

£

Since e%, e, e% are distinct, it follows that det(Vg,(z),._,E%) # 0. Consequently, Vs%,...,e% is invertible.
Let

Then

T T
(Pox(x), Pri—1(x), -, Pro(x)) " = U (ef Tig Pig—j(e0x), - -, &k Tf_o Ps—jlexx)) -

Therefore,

foreveryj € {0,...,k}. O
Let us consider *-polynomials on C".

Lemma 1. Every *-polynomial P : C" — C can be uniquely represented in the form

k

K
= Z Z Z Z “Vlf---/Vn,Vlz---rVnZill . V" _11/1 te Zfln’ (5)

k=0j=0 p1+...+pn=j vi+..+v,=k—j
yl,...,yn€Z+ Vi, Un €Z 4

wherez = (z1,...,2z4) € C",K = deg P and ay,,...u,,...v, € C.

Proof. Let P : C" — C be a *-polynomial of the form (3). If K = 0, then P = Py, where
Py € C. Thus, in this case, we have the representation of P in the form (5). Consider the case
K > 0.Every z = (z1,...,2z,) € C" can be represented as z = ), _; Zmen, where

em = (0,...,0,1,0,...,0)
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for every m € {1,...,n}. Therefore, by (1),

]' (k - ])' M1 Hn 17 =V
= Pyo + > E E E RTRETY z1 e Zy 2y 2y
k=0j=0 p1+...+pn=j vi+..+vy,=k—j n:
Wiplin €Ly V1, VnEZ L

X Ap],kfj(el,...,el,...,en,...,en,el,...,el,...,en,...,en),
[ N—_—— —— N —

&3 Hn 121 Vn

where Ap,, . is the (j, k — j)-symmetric (j, k — j)-linear mapping, associated with the (j, k — j)-
polynomial P ;. Let ao,. o = Py, and

i (k=)
!l vg! o vy!
X Apk ](el,...,el,...,en,...,en,el,...,el,...,en,...,en)

H1 Hn %1 Vn

aﬂlrnvﬂnﬂ/lpnﬂ/n

for i, ..., un,v1,..., vy € Zy suchthatl <y +... 4y, +v1+...+ v, <K Then

K Kk
=YY X Y w2

k=0j=0 p1+...+pn=j vi+..+v,=k—j
yl,...,yn€Z+ V1, Un €Z

O

Theorem 1. Every symmetric *-polynomial P : C" — C can be represented as an algebraic

(n)

combination of x-polynomials H,", where v = (7y1,72) € Z2% are such that v, + 7, < degP.

Proof. We proceed by induction on 7. In the case n = 1 for z = z; € C, by Lemma 1, we have

degP & ; degP &

Z Z“lk ]lel 2 Z"‘Jk j ]k (@)

Suppose the statement holds for n — 1 and prove it for n. Let P : C" — C be a symmetric
s-polynomial and z = (z1,...,z,) € C". Then P(z) can be represented in the form

ZZZ"Z" ‘]k i((z1, - Zn1)),

where K = deg P and rj_; : C"™ 1 — C are *-polynomials. Let us show that *-polynomials
rjx—j are symmetric. For flxed z1,...,2p-1 € C, the mapping R : z, — P((z1,...,2zn)) is
a x-polynomial, acting from C to C. Let Ao, ..., Ak be distinct real numbers. Then, by Proposi-
tion 1,
j K
Zznzn Tijk— ] er~~~rzn71>> = ZwksR()\szn> (6)
5=0
for every k € {0,.. .,K}. For k € {0,...,K}, let €,..., & be complex numbers such that

€3, ..., €2 are distinct and |eo| = ... = || = 1. Then, by Proposition 2,

(erzn) (&120) 1 (21, - Z01)) (7)
0

 f—i
ZnZn ]rj,kfj((zlr---rznfl» = Zuﬂez

k
=0 j=
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forevery j € {0,...,k}. By (6) and (7),

K

k
e
zz ]r]-,k,]-((zl,...,zn,l)) = Z uﬂs]l‘ Z WisR(As€1zn)
1=0 s=0

forevery k € {0,...,K}andj € {0,...,k}. Letz, = 1. Then

k K k K
tig—i((z1,- - 20-1)) = Z u]-le'f Z wisR(Ase) = Z u]-le'f Z wisP((z1,--.,20-1,As€1)). (8)
1=0 s=0 1=0 s=0

Leto:{1,...,n—1} — {1,...,n — 1} be a bijection. Then, by (8) and by the symmetry of P,

K
Tk i((Zoy -+ Zo(n=1))) = Y it} Y WksP((Zo(1), -+ Za(u—1) AsE1))
1=0 s=0
£ K
:;)ujlsz X%)wksp((zlr---rznflr)\sgl)) =rix—j((z1,-++,2Zn-1))-
= s=

Thus, 7; x_; is symmetric for every k € {0,...,K} and j € {0, ..., k}. By the induction hypothe-
sis, every #-polynomial 7; ; _; can be represented as an algebraic combination of *-polynomials
Ha(yn_l). Since

Y (1 zen) = B (2 2w) = 2020
for every v = (71,72) € Z2, it follows that P can be represented as an algebraic combination

of x-polynomials HSY”) and *-polynomials, defined by C" > (z1,...,z,) — z)'Zy* € C, where

v = (711,72) € Z2. Therefore,
K k . i
P(z) =Y ) 2z 'Qjx—i(2),
k=0j=0
where Q;;_; is an algebraic combination of *-polynomials Hﬂ(yn) for every k € {0,...,K} and

j € {0,...,k}. Since *-polynomials HSY") are symmetric, it follows that *-polynomials Q;x_;
are symmetric. Since #-polynomials P and Q; x; are symmetric, it follows that

K k
.
PR) = Y Y b Q)
k=0j=0

for every m € {1,...,n}. Therefore,

n n K k ; .
Pz)=Y Y Y 2hih Qi i(2),
m=1 m=1k=0j=0
that is,
K k n ki
nP(z) =Y Y Y zZhzy ' Qjx—i(2).
k=0 j=0m=1
Thus,
1 K k (n)
P(Z) = n Z Z H(]',k,]')(z)Qj,k—j(z)'
k=0 j=0

Hence, P is an algebraic combination of *-polynomials Hg"). This completes the proof. O
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IToHATTS *-MOAIHOMA € IPUPOAHMM y3araAbHEHHSIM IIOHSTTSI HOAITHOMA MiXX KOMITA€KCHVMU Be-
KTOPHMMM ITpocTOpaMit. *-IToAiHOM — Ie PYHKIIiST MiX KOMIIAEKCHVMY BeKTOPHIMI IIPOCTOPaMM
X Ta Y, sika € CyMOIO Tak 3BaHUX (p, ])-IIOAIHOMIB. B cBOIO Uepry, AAsI HEBiA'€MHIX LIIAVIX UMCEA p
ig, (p,q)-moainom — ne dpyHkuis Mix mpocropami X Ta Y, sIka € 3By>KEHHSIM Ha AlarOHAAb Ae-
SIKOTO BiAOOpakeHHsI, IO Ai€ 3 AeKapPTOBOTO CTETIeHS XPH1 B Y, sike € AiHITHMM BiAHOCHO KOKHOTO
31 CBOIX MEpIIMX p apTyMeHTiB, aHTUAIHIITHIM BiAHOCHO KOXKHOTO 3i CBOIX OCTaHHIX § apTyMeHTIB i
iHBapiaHTHMM BiAHOCHO IEPECTaHOBOK OKPeMO IepPIMX p apTyMeHTIB i OCTaHHiX § arpyMeHTiB.

B aaHilt po6oTi I06yA0BaHO (POPMYAU AASI 3HAXOAKEHHS (P, §)-TTOAIHOMIAABHMX KOMIIOHEHTIB
*-TIOAIHOMIB, SIKi AIFOTh MiXX KOMIIA@KCHMMM BeKTOpHMMM ITpocTopamu X Ta Y, 32 3HAUeHHSIMI LIIX
*-MoAIHOMiB. Lelt pe3yAbTaT BUKOPMCTAHO AASI AOCAIAJKEHHSI *-TIOATHOMIB, SIKi AIFOTb 3 11-BUMipHOTO
KOMIIAeKCHOTO BekTopHOro mpocropy C” B C, siki € cuMeTpuaHmMMM, TOO6TO, iHBApiaHTHMMM BiAHO-
CHO TIepecTaHOBOK KOOPAMHAT IXHbOro aprymenTa. ITokasaHo, 110 KOXKeH CMMeTPMYHMIA *-TIOAIHOM,
stz Aje 3 C" B C, MOXHA TIOAATH Y BUTASIAL aArebpaivHOi KOMbIHaLIl AesTkMX “eneMeHTapHUX”
CHMMETPUYHMX *-TIOAIHOMIB.

PesyabTaTii AaHOI POHOTI MOXKYTh 6YTHM BUKOPMCTAHI AASL AOCAIAKEHHS aArebp, IOpOAKEHIX
CYMEeTPUYHMMM *-TIoAiHOMamy, ski AitoTs 3 C* B C.

Kutouosi ciosa i ppasu: (p, q)-TIOAIHOM, *-TIOAIHOM, CUMETPIYHWIA *-TIOAIHOM.



