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STOROZH O.G.

ON AN APPROACH TO THE CONSTRUCTION OF THE FRIEDRICHS AND
NEUMANN-KREIN EXTENSIONS OF NONNEGATIVE LINEAR RELATIONS

Let Ly be a closed linear nonnegative (probably, positively defined) relation ("multivalued op-
erator”) in a complex Hilbert space H. In terms of the so called boundary value spaces (boundary
triples) and corresponding Weyl functions and Kochubei-Strauss characteristic ones, the Friedrichs
(hard) and Neumann-Krein (soft) extensions of L are constructed.

It should be noted that every nonnegative linear relation L in a Hilbert space H has two extremal
nonnegative selfadjoint extensions: the Friedrichs extension Lr and the Neumann-Krein extension
Lk, satisfying the following property:

(Ve > 0)(Lp+¢€1) ' < (L+e1)7! < (Lg+e1)7 !

in the set of all nonnegative selfadjoint subspace extensions L of Ly.

The boundary triple approach to the extension theory was initiated by F. S. Rofe-Beketov,
M. L. and V. I. Gorbachuk, A. N. Kochubei, V. A. Mikhailets, V. O. Dercach, M. N. Malamud,
Yu. M. Arlinskii and other mathematicians.

In addition, it is showed that the construction of the mentioned extensions may be realized in a
more simple way under the assumption that initial relation is a positively defined one.
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INTRODUCTION

Beginning with the work by R. Arens [2], the efforts of many authors were directed at
the studying of linear relations (multivalued operators), in particular, at the investigations
concerning the extension theory of the linear relations in Hilbert space (see, e.g., [4,5,8,9]). A
number of problems arising in the mentioned theory have been solved in terms of the so called
boundary value spaces (boundary triples) and corresponding Weyl functions (see Definitions
1,2 and [3,6,7,10,11]).

Let © and © be the symbols of orthogonal sum and orthogonal complement, respectively.
Explain that under (closed) linear relation in H, where H is a fixed complex Hilbert space
equipped with the inner product (-|-) and norm ||-||, we understand a (closed) linear manifold

in H? d;fH @ H and that in the theory of linear relations every linear operator is identified
with its graph. Each such relation T has the inverse T~! Y {(,y) e H*|(y,y/) € T} and
the adjoint T* = H?>© JT (= J(H*©T)), where Vhy, h, € H ](hl,hz)@(—ihz,ihl). This
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circumstance (the inverse and adjoint existence) makes the theory of linear relations extremely
useful in the study of various problems.

Remind that a linear relation S in H is said to be nonnegative (in symbols S > 0) if for all
(v,y') € S (V'|y) > 0, positively defined (in symbols S > 0) if, in addition,

indeéfinf{(u']u) | (w,u') €8, ||ul| =1} >0,

and selfadjoint if S = S*.

In this paper the role of initial object is played by a closed linear nonnegative relation Ly in
H. It is known [5] that there exist selfadjoint extensions (probably, subspace ones) Lr and Lg
of L satisfying the following property:

selfadjoint extension Ly of Ly is nonnegative iff for any ¢ > 0

vyeH ((Le+eln) 'yly) < ((Li+eln) Myly) < ((Letelw) 'yly) . )

In the case when L is a densely defined operator, this fact was proved by M. Krein [14].

The extensions Ly and Lk are called the Friedrichs and Neumann-Krein extensions of Ly,
respectively. If L is a positively defined, the first of the inequalities (1) holds under ¢ = 0, too.

The aim of this article is to construct the mentioned extensions in the terms of boundary
value spaces and corresponding Weyl functions. We widely use the results exposed in [1, 3, 6,
7,16,19], but our approach is different from ones of these papers. In particular, we (as in our
previous articles [17] and [18]) deal with Cayley transforms U(A) of Weyl functions (Strauss-
Kochubei characteristic functions in the sence of [13] and [20]). But the papers are mentioned
above devoted to the investigation of U(A) under ImA # 0, while we are interested to consider
the behaviour of U(A) in the case when A € R, first of all in the situations as A — —0 and
A — —oo0.

1 NOTATIONS AND PRELIMINARY RESULTS

Through this paper we use the following notations:

D(T), R(T), kerT are, respectively, the domain, range, and kernel of a (linear) relation (in
partial, operator) T;

D(T)={y€H|(By' € H): (y,y) €T}; R(T)={y' € H{(y € H): (y,y') € T};

kerT = {y € H|(y,0) € T};

ifAeCthenT—A={(y,y¥ —Ay)|(y,y') € T}, and so

ker(T—A) ={y € H|(y,0) € T— A} (= {y € H| (y, Ay) € T});

ker(T—A) ={(y, Ay :y € ker(T —A)};

p(T) = {A € C|ker(T —A) = {0}, R(T —A) = H} (the resolvent set of T);

1x is the identity in X.

If X, Y are Hilbert spaces then (-|-)x is the symbol of scalar product in X, B(X,Y) is the set

of linear bounded operators A : X — Y such that D(A) = X; B(X) Y B(X,X).

If A; : X — Y; (i = 1,2) are linear operators then the notation A = A; ® A, means that
Ax = < ili > for every x € X. Let s — lim denotes the strong limit.
2

d
Under Ly we understand the linear relation described in the Introduction, and L Lf L.
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Definition 1. Let H be a Hilbert space and I';, T, € B(L,H). The triple (H,I'1,T) is called
the boundary value space (BVS) for the linear relation Ly if

R(Mi@Ty) =HOH, ker(l1®&T) = Lo

and forany § = (y,y'), 2 = (z,7') € L we have

(v'|z) = (vl2') = (T1gIT22)y — (T2fIT12)

d
Through the paper we suppose that (the selfadjoint) relation L, ) kerI'; is nonnegative,
and so VA < inf L, the following operators are correctly defined:

TR s [ Lx 2\ 7. _ 2
Ly= (Lo—A) ‘e B(H), LA_<1H+ALA>G B <HH ),LA = (Ly, 1g+ALy) € B(H H)
. -3 . L)\]/ A / 2 7 A / /
ie. Yy € H Lyy = y+)\L,\y>' Vi = (y,y) € H* Lyg = Ly + (y +ALY)

N

(it is easy to see that R(L)) = Ly and L = L,). Put

N A Z
Zy= (L))", 2, = ( A%A )

Definition 2. A B(H)-valued function
M(A) =T1Z) (A <infLy)

is called the Weyl function of the relation Ly corresponding to its boundary value space
(Hr rlr FZ) .

Note that M(A) = M(A)*.

Remark 1. The notion of BVS had been introduced at first in [12] under the assumption that Ly
is a densely defined symmetric operator having equal defect numbers. In [16] this notion was
extended onto the case of nondensely defined Hermitian operators. The conception of Weyl
function corresponding to a given BVS was appeared in [6] and had found its development in
many papers (see, for example, [7, 10, 11] and references therein). It is easy to see that Defini-
tion 2 is equivalent to suitable defintions from the mentioned articles. It becomes clear after
analyzing the results of the monograph [15] (see also [17] and [18]).

Theorem 1. For arbitrary A,y € (—oo,inf Ly) M(A) — M(p) = (A — u)Z3Zy <: (A—n) Z;‘;ZA>,
in particular, p < A implies M(A) — M(p) > 0. Hence for any z < inf L, there exist

s— lim (M(A) — M(z)) " Ro (> 0),
A——0
s— lim (M(1) - M(z)) " YR (<0).
——00
Theorem 2. Let L4 = ker(A T + AyI), where A1, Ay € B(H) and

ALY AM(A) + Az (A < infLy).

IfA' € B(H) ,then A € p (L) and
(La—A) "' =(La—A)"' = ZyAT AL Z5 2)
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Theorem 3. The linear relation L, is a selfadjoint extension of L iff there exists a unitary
operator K € B(#H) such that L1 = ker [(K —1y4) 1 +i (K4 14) T].

Put .
LW =Loy+ker(L—A) (A <infLy). 3)

Theorem 4. LM = ker (T} — M(A)T).

Theorem 5. Suppose thatz < infLy, A < infL, andz # A. Then L) is a selfadjoint relation
and z € p(LW). Moreover,

—1 -1
B R (A) — —) t=s— 1 ) _
(L —2z) s Agrgoo <L z) , (Lx—2) s Ali>n_10 <L z) .

Remark 2. The results mentioned in Theorems 1-5 above are well known or are immediate
consequences of such ones (see, e. g.,[1,3,5,7,9, 16]).

2 MAIN RESULTS

Let A and z be as above. Before formulating the main results let us introduce the following
(defined on p(L,)) operator-functions by setting

R(A) = (M(A) = M(2))"", Qi(A) = (M(A) £i)R(M), @

It is easily to check by calculation that

U(A) = Q- (M), )

O+ (A) =1y + (M(z) £i) R(A), (6)

QTN = Ty — (M(2) %) (M(A) 1) . %

e LW = {9 € L| (U(A) = 13) T +i (U(A) + 13) Toff = 0}. (8)
Proof. 1Itis clear that (4) yields

(U(A) = 13) M(A) = =i (U(A) + 1) . ©)

Let us denote (temporarily) the relation from the right side of (8) by L[l Taking into ac-
count (9) we obtain the following;:

§eLlM =T - MM =0= (UA) —1y)T1g+i (UA) +15) Tof = 0 = y € LI,

Thus LY < LI But LW, LM are selfadjoint relations (see Theorem 3), therefore
L) — LI, 0O

Lemma 2. Let B and R be selfadjoint operators from B(H) and

d
Q. 1, + BRIR.

Then Q' € B(H).
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Proof. One can readily check by calculations that

B—i —-Q_\/0" i\ [0 O B—i —Q.\_ .
—(B+1i) Q, B+iB—i) \ B+iB—i —(B+i) Qp ) THW

in particular

Q0 =050, (10)

OF (B—i)— Q" (B+i) = —2ily, (11)

(B—1)Q, =Q_(B—i), (B+i)Ql =04 (B+1). (12)

It follows from (10) that ||Q_h|| = ||Qh| for each h € H. This yields that there exists an

isometry K : R(QQ—) — R(Q) such that Q1 = KQ_, consequently there exist K, K_ €
€ B(H), satisfying the equalities O* = Q% Ky, OF = Q* K_. Thus R (Q0*) = R (Q%) . Taking
into account (11) we see that R ((2* ) + R (Q)% ) = H, therefore

R(OQF)=R(OQ})=H. (13)
The equalities (13) imply

kerQ; =kerQ_ = {0}. (14)
In view of (12) and (14) we obtain ker * = ker % = {0} . To complete the proof it is sufficient
to apply (13). O

Proposition 1. There exist the unitary operators U_«, Uy € B(H) defined as follows:

U_w=15— Alirgm UA), Uy=s— )\ILHJO U(A). (15)

Moreover,
U—co = (I + (M(2) — )Rco)) (I3 + (M(2) + )Rc0)) ", (16)
Uy = (13 + (M(2) — )Ro)) (1 + (M(z) +1)Ro)) ™", (17)

where R_, and Ry are as in the Theorem 1.

Proof. It follows from Theorem 1, from (6) and from Lemma 2, applied to the operators
134 + BR + iR with B = M(z), R = R_, that s — Alir?w Q+(A) = 1y + (M(z) £i) Rwo
and the operators in the right side of the latter equality are invertible in B(7{). Further, in view
of (7) we obtain Hml(;\)H <1+ |M(z) +i]| - H(M(A) v i)*H.

On the other hand, using the elementary properties of the resolvent of a selfadjoint operator
we conclude that for each A < infLp H (M(X) + i)~! H < 1. Thus the family

{Q;l(;\)y Co <A< insz}

is uniformly bounded in B(#H ), therefore

—1
s—AE@magl(A) (:s— lim Q+(A)> = (1 + (M(z) +)R_o) 1.

A——o00
Whence using (5) we conclude that there exists the first limit in (15) and the equality (16)
holds. Similar arguments show that there exists the second limit in (15) and the equality (17)
holds.
Finally, taking into account (15) and the invertibility in B(#) of the operators in right sides
of (16)-(17), we conclude that the unitarity of U(A) under A < infL, yields the unitarity of
U_« and U,. O
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Theorem 6.
Lp={f€Ll|(U-ow—1y)T17+i (U-co + 13) 29 =0}, (18)

LK:{QEL\(Ug—ly)F19+i(U0+1H)F29:O}, (19)
where U_o, and Uy are defined according to (15).
Proof. Applying (2) under Ay = 13, A, = —M(A) and Theorem 4 we obtain
(A) -1 -1 ~1 s :

<L - z) = (L —2) ' = Z. (M(z) - M(A)) ' Z} (A,z <infLy, z # A)
(recall that L™V is defined by (3)). The latter equality together Theorem 1 and Theorem 5
implies

(Lp—2) "= (Ly—2) '+ Z.R Z!, (Lx—2z) '=(Lo—z) ' +Z.RoZ:!.  (20)

On the other hand, Theorem 3 shows that there exists an unitary operator K € B(#) such that
Ll :ker[(K—lq.[)rl+i(K+1H>r2].
Applying Theorem 2 under A; = (K —1y), Ay =i (K+ 14) we conclude that

(Lp—2) ' = (Ly—2) ' = Zo [(K = 13) M(2) +i (K+1%)] " (K — 1) Z. (21)
Comparing (20) and (21) we see that
[(K=13) M(z) + (K+130)] " (K= 13) + R0 =0,
i. e. (multiplying this identity from left by the expression contained in square brackets)
K1y + M(z)R_co + iR_co] = 13y + M(2)R_eo — iR_co.

Whence using (16) we obtain K = U_«. The relation (18) is proved. The proof of relation (19)
is analogous. O

The construction of Friedrichs and Neumann-Krein extensions of Ly may be realized in a
more simple way in the case when L, (and hence L) is a positively defined relation. Before
considering this case note that the Theorem 5 implies

-1
-1 _ . . ()L)
Ly>0=L;'=s AEI?M(L ) . 22)
Further, put
B s lim (M(4) — M(0)"". (23)
——00

It follows from the Theorem 1 that the limit in (23) exists. Moreover, B € B(?) and B < 0.
Theorem 7. Assume that L, > 0 and put
7119 = I'1§ — M(0)I27, (24)

72§ = T2§ — By = —BIj + (13 + BM(0)) I'27, (25)
where i) runs through L and B is defined according to (23). Then
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i) (H,1,72) is a BVS for Ly,
ii) Lp =kery, ={f € L[ 72§ =0}
iii) Ly =kery; = {9 € L| 119 =0}.

A

Proof. Since Lx = Lo+ kerL (see [5] and [3, Prop. 3.2.1]) the statement iii) is an immediate
consequence of (3) and Theorem 4 under A = 0. Further, thinking as in the proof of Theorem
6 we obtain

(Lw)l = L1+ Zo (M(A) — M(0)) ' Z5 (A <0),

L' = L7+ Zo [~ BM(0) + (13 + BM(0))] ' BZ; = Ly ' + ZoBZ3,

where L = ker 7,. So, item ii) follows from (22) and (23).
Furthermore, (24), (25) may be written in the following form:

()= e ) (1) (26)

It is clear that the matrix operator in the right side of (26) is invertible in B (H @& H) and

2 ,)/2 .

1 — M(0) 0 1y )\ [ 1y —B (0 1y
“B 13 +BM(©0) )\ -1 0 )\ —=M(©) 14+BM(©) )\ 14 0
implies that for any §, £ € L (I'19|T22)y, — (T20|T12)y, = (mP|722)9 — (7r29]71£)- Hence

(see [15] for the details) (#, 1, 72) is a boundary value space for L.
]
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Cropox O.I'. I1po 0dun nidxio do nobydosu posuiuperv @pidpixca ma Heiimana-Kpeiina Hegid'e mHo20 i-
HiiiHoeo 8i0HowenHq // KapnaTcbki MaTeM. my6a. — 2018. — T.10, Ne2. — C. 387-394.

Hexait Ly — 3aMKHeHe AiHiliHe HeBiA eMHe (MOXAMBO, AOAATHO BU3HAUeHe) BiaHOIIeHHs (“6a-
raTO3HaYHWII OllepaTop”) Y KOMIIAEKCHOMY TiAbbepToBOMY mpocTopi H. ¥V TepMiHax Tak 3BaHMX
IIPOCTOPiB IPaHMYHNX 3HaUeHb (TPpaHMYHMX TPilioK) i BimoBiaHMX pyHKIIiN Beliast Ta xapakTepucTu-
uaMX pyHK1i Kouybes-IlTpayca mobyaosano posmmperHs Opiapixca (KopcTke po3IIMpeHHs) Ta
Herimana-Kpeiina (M'sike po3lmpeHHs) BiAHOIIEHHs L.

3a3HauMMoO, IO KOXHe HeBiA'eMHe AiHiliHe BiaHOWIEHHS Lo y TrianbbeproBomy mpocropi H Mae
ABa eKCTpeMaAbHi HeBiA'eMHi caMOCIIpsDKeHi poslmpeHHs: posumperHst Opiapixca Ly Ta po3mm-
penrs Helimana-Kpeiina Lk, siki BOAOAIIOTh TaKOK BAACTUBICTIO:

(Ve > 0)(Lp+¢€1) ' < (L+e1)"! < (Lg +e1)7 !

Ha MHOMHI BCiX HeBiA €MHIX CAMOCIPSIKEHNX PO3IIMPeHb-BiAHOIIIEHb L BiAHOIIIEHHS L.
Po3BmBaeThes miAXia, 3aCHOBaHWMI Ha MOHSTTI TpaHMYHOL Tpivikm. Lleir miaxia 6yB 3amodarko-
Bammi @. C. Podpe-Bexerosum, M. A. Topbauyxom Ta B. I. Topbauyx, A. H. Kouybeem,
B. A. Muxaraeniem, B. O. Aepkauem, M. H. Maramyaom, I0. M. ApaiHcbkuM Ta iHIIMMM Mare-
MaTUKaMIL.
INoxa3aHo, 1m0 06y AOBa 3raAaHMX PO3IIMPEHDb MOXe 6yTH peaai30BaHO IMPOCTIIIMM IIASXOM
Y BUIIAAKY, KOAM BiAHOIIEHHSI Ly € AOAATHO BUM3HAUYCHVIM.

Kntouosi cnosa i ppasu: TiabbepTiB IPOCTip, BiAHOIIEHHSI, OTIEPaTOp, PO3IIMpPEHHS, TPOCTIip rpa-
HIYHMX 3HAYEHb.



