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GREEN-RVACHEV’S QUASI-FUNCTION METHOD FOR CONSTRUCTING

TWO-SIDED APPROXIMATIONS TO POSITIVE SOLUTION OF NONLINEAR

BOUNDARY VALUE PROBLEMS

A homogeneous Dirichlet problem for a semilinear elliptic equations with the Laplace operator

and Helmholtz operator is investigated. To construct the two-sided approximations to a positive

solution of this boundary value problem the transition to an equivalent nonlinear integral equation

(with the help of the Green-Rvachev’s quasi-function) with its subsequent analysis by methods of

the theory of semi-ordered spaces is used. The work and efficiency of the developed method are

demonstrated by a computational experiment for a test problem with exponential nonlinearity.
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INTRODUCTION

Let us consider the problem of finding a positive solution of a semilinear elliptic equation

with a homogeneous Dirichlet condition:

Lu = f (x, u), x ∈ Ω, (1)

u(x) > 0, x ∈ Ω, (2)

u|∂Ω = 0, (3)

where Lu ≡ −∆u or Lu ≡ −∆u + κ2u, Ω is a bounded Jordan-measurable domain from R
2 or

R
3 with piecewise smooth boundary ∂Ω (Ω̄ = Ω ∪ ∂Ω), ∆ is the Laplace operator, x = (x1, x2),

∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
, if Ω ⊂ R

2, and x = (x1, x2, x3), ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
, if Ω ⊂ R

3.

Let us assume that the function f (x, u) is continuous and positive for x ∈ Ω̄, u > 0.

The problem (1)–(3) is often encountered in the mathematical modeling of nonlinear sta-

tionary processes considered in thermophysics, electromagnetism, biology, chemical kinetics,

etc. [11]. In this case, the condition of positivity (2) naturally arises from the meaning of the

function u in a particular applied field. It is convenient to carry out the analysis of the problem

by the methods of the theory of nonlinear operators in semi-ordered spaces [1, 5, 9, 10], pass-

ing to the equivalent Hammerstein integral equation with the help of the Green’s functions

method. In this case, it is possible to construct a two-sided iteration process to the desired

solution [4, 14]. But, the practical application of this approach has certain limitations due to
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the fact that the analytic expression of the Green’s function must be known. It is possible to

get rid of this restriction, if the corresponding Green-Rvachev’s quasi-function [12, 14] will be

used instead of Green’s function.

The purpose of the paper is to develop the iterative methods for solving the boundary

value problem (1)–(3), which have a two-sided nature of convergence to the desired solution

and are not tied to the presence of a known Green’s function. Two-sided approximate methods

for solving nonlinear operator equations based on the theory of nonlinear operators in semi-

ordered spaces were developed in [3, 6, 13, etc.]. This paper continues the research begun

in [4, 14], and extends them to the areas of arbitrary geometry and elliptic equations with the

Helmholtz operator.

1 CONSTRUCTION OF AN EQUIVALENT INTEGRAL EQUATION

To construct an integral equation that is equivalent to the problem (1)–(3), let us use the

Green-Rvachev’s quasi-function [12, 14].

Let the boundary ∂Ω of the domain Ω consists of a finite number of pieces of lines σi(x) = 0,

i = 1, 2, . . . , r, where each σi(x) is an elementary function. Then with the help of the R-

functions method [12] one can construct in the form of a single analytic expression an ele-

mentary function ω(x), which describes the geometry of the domain Ω, that is:

a) ω(x) > 0 in Ω;

b) ω(x) = 0 on ∂Ω;

c) |∇ω(x)| 6= 0 on ∂Ω.

Also, the function ω(x) can have certain properties of differentiation due to the use of

various sufficiently complete systems of R-functions [12].

Definition 1. Let gm(r) be a fundamental solution of the equation Lu = 0 in R
m. The Green-

Rvachev’s quasi-function of the first boundary value problem for the operator L in R
m is the

function

Qm(x, s) = gm(r)− g̃m(x, s), (4)

where x = (x1, . . . , xm), s = (s1, . . . , sm), r = |x − s| =
√

m

∑
i=1

(xi − si)
2,

g̃m(x, s) = gm

(

√

r2 + 4ω(x)ω(s)

)

,

ω(x) is the function that describes the geometry of the domain Ω.

Let us note [12] that for the case when Lu ≡ −∆u, Ω is a ball of radius R in R
m, and

ω(x) = 1
2R (R2 − x2

1 − · · · − x2
m), the Green-Rvachev’s quasi-function (4) turns into the exact

Green’s function of the first boundary value problem for the Laplace operator considered in a

ball Ω.

The fundamental solutions of the Laplace equation −∆u = 0 in R
2 and R

3 have the form

g2(r) =
1

2π
ln

1

r
, g3(r) =

1

4π
· 1

r
,
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consequently, the Green-Rvachev’s quasi-function of the first boundary value problem for the

operator −∆ acquires the form

Q2(x, s) =
1

2π
ln

√

1 +
4ω(x)ω(s)

r2
in R

2, (5)

Q3(x, s) =
1

4π
·
√

r2 + 4ω(x)ω(s) − r

r
√

r2 + 4ω(x)ω(s)
in R

3. (6)

For the Helmholtz equation −∆u + κ2u = 0 in R
2 and R

3 the fundamental solutions have

the form

g2(r) =
1

2π
K0(κr), g3(r) =

1

4πr
e−κr,

where K0(z) is modified Bessel function of the second kind, and the Green-Rvachev’s quasi-

function of the first boundary value problem for the operator −∆ + κ2 acquires the form

Q2(x, s) =
1

2π

(

K0(κr)− K0

(

κ
√

r2 + 4ω(x)ω(s)

))

in R
2, (7)

Q3(x, s) =
1

4π
·
√

r2 + 4ω(x)ω(s)e−κr − re−κ
√

r2+4ω(x)ω(s)

r
√

r2 + 4ω(x)ω(s)
in R

3. (8)

From (5)–(8) and Definition 1 the following lemma on the properties of the Green-Rvachev’s

quasi-function follows.

Lemma 1. The Green-Rvachev’s quasi-function (4) has the following properties:

a) Qm(x, s) = 0 on ∂Ω;

b) is a symmetric function: Qm(x, s) = Qm(s, x);

c) has the same feature for x = s as the usual Green’s function;

d) is positive in the domain Ω: Qm(x, s) > 0, x, s ∈ Ω, x 6= s.

For the function u ∈ C2(Ω)
⋂

C1(Ω̄) such that Lu ∈ L2(Ω), the following integral repre-

sentation [7, 8] holds:

u(x) =
∫

∂Ω

[

g(x, s)
∂u(s)

∂ns
− u(s)

∂g(x, s)

∂ns

]

dsσ +
∫

Ω

g(x, s)Lsu(s)ds, x ∈ Ω, (9)

and for the functions u, g̃ ∈ C2(Ω̄) the second Green’s formula [7]

0 = −
∫

Ω

[g̃(s)Lsu(s)− u(s)Ls g̃(s)]ds +
∫

∂Ω

[

u(s)
∂g̃(s)

∂ns
− g̃(s)

∂u(s)

∂ns

]

dsσ (10)

holds.

In formulas (9), (10) ns is the outer to ∂Ω normal in the variables s, dsσ means that the

integration for s is along ∂Ω, Lsu ≡ −∆su or Lsu ≡ −∆su + κ2u, ∆s = ∂2

∂s2
1
+ ∂2

∂s2
2
, if Ω ⊂ R

2,

and ∆s =
∂2

∂s2
1
+ ∂2

∂s2
2
+ ∂2

∂s2
3
, if Ω ⊂ R

3.
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Let u be a classical solution of the problem (1)–(3), and let us choose the function g̃ in (10)

as in Definition 1. Adding the equalities (9) and (10), taking into account (4), we obtain

u(x) =
∫

Ω

Ls g̃(x, s) · u(s)ds +
∫

Ω

Qm(x, s) · Lsu(s)ds

+
∫

∂Ω

[

Qm(x, s)
∂u(s)

∂ns
− u(s)

∂Qm(x, s)

∂ns

]

dsσ.

Then, taking into account that Qm(x, s) = 0 and u(x) = 0 on ∂Ω, and making allowance

for the equation (1), we finally obtain the integral equation for the function u in the form

u(x) =
∫

Ω

Km(x, s)u(s)ds +
∫

Ω

Qm(x, s) f (s, u(s))ds, (11)

where Km(x, s) = Ls g̃(x, s).

The nonlinear integral equation (11) can be written in the form of Urysohn equation

u(x) =
∫

Ω

P(x, s, u(s))ds,

where P(x, s, u(s)) = Km(x, s)u(s) + Qm(x, s) f (s, u(s)).

If the boundary value problem (1)–(3) has a classical solution, then it also satisfies the equa-

tion (11). If the classical solution of the problem does not exist, then the equation (11) can be

used to introduce the concept of a generalized solution of the boundary value problem (1)–(3).

The equation (11) will be considered in a Banach space C(Ω̄) of the functions continuous

in Ω̄. The norm in C(Ω̄) is entered by the rule ‖u‖ = max
x∈Ω̄

|u(x)|. Let us select in C(Ω̄) the

cone K+ = {u ∈ C(Ω̄) : u(x) ≥ 0, x ∈ Ω̄} of non-negative functions. Note that the cone K+

in C(Ω̄) is normal (and even acute). With the help of the cone K+ in the space C(Ω̄) let us

introduce a semiordering by the rule:

for u, v ∈ C(Ω̄) u 6 v, if v − u ∈ K+,

that is,

u 6 v, if u(x) ≤ v(x) for all x ∈ Ω̄.

Definition 2. By a solution (generalized) of the boundary value problem (1)–(3) will be meant

a function u∗ ∈ K+, which is a solution of the integral equation (11).

2 CONSTRUCTION OF A PROCESS OF TWO-SIDED APPROXIMATIONS

Let us construct a process of two-sided approximations for finding the solution of the inte-

gral equation (11) (and consequently, the solution of the boundary value problem (1)–(3) using

the methods of the theory of nonlinear operators in semi-ordered spaces [1, 5, 9, 10].

Let us introduce a nonlinear operator T acting in C(Ω̄) by the rule

T(u)(x) =
∫

Ω

P(x, s, u(s))ds. (12)
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Let us denote

K+
m(x, s) = max{0, Km(x, s)}, K−

m(x, s) = max{0,−Km(x, s)}.

Then K+
m(x, s) ≥ 0, K−

m(x, s) ≥ 0 for x, s ∈ Ω (x 6= s),

Km(x, s) = K+
m(x, s)− K−

m(x, s), |Km(x, s)| = K+
m(x, s) + K−

m(x, s),

and operator T of the form (12) will be written in the form

T(u)(x) =
∫

Ω

K+
m(x, s)u(s)ds −

∫

Ω

K−
m(x, s)u(s)ds +

∫

Ω

Qm(x, s) f (s, u(s))ds. (13)

Suppose that the function f (x, u) allows a diagonal representation f (x, u) = f̂ (x, u, u), be-

sides, continuous on the sets of variables x, v, w non-negative function f̂ (x, v, w) monotonically

increases with respect to v and monotonically decreases with respect to w for all x ∈ Ω. Then

the operator T of the form (13) will be heterotone with the companion operator

T̂(v, w)(x) =
∫

Ω

K+
m(x, s)v(s)ds −

∫

Ω

K−
m(x, s)w(s)ds +

∫

Ω

Qm(x, s) f̂ (s, v(s), w(s))ds. (14)

Operators T and T̂ are completely continuous.

Note that for the case when the function f (x, u) increases monotonically with respect to u

for all x ∈ Ω we can choose f̂ (x, v, w) = f (x, v), and if it decreases monotonically with respect

to u for all x ∈ Ω we can set f̂ (x, v, w) = f (x, w).

In the cone K+ let us select a strongly invariant cone segment < v0, w0
> by conditions

T̂(v0, w0) ≥ v0, T̂(w0, v0) ≤ w0, which for the operator T̂ that is defined by (14) will have the

form:

∫

Ω

K+
m(x, s)v0(s)ds −

∫

Ω

K−
m(x, s)w0(s)ds

+
∫

Ω

Qm(x, s) f̂ (s, v0(s), w0(s))ds ≥ v0(x) for all x ∈ Ω̄,
(15)

∫

Ω

K+
m(x, s)w0(s)ds −

∫

Ω

K−
m(x, s)v0(s)ds

+
∫

Ω

Qm(x, s) f̂ (s, w0(s), v0(s))ds ≤ w0(x) for all x ∈ Ω̄.
(16)

Let us form an iterative process by the scheme v(k+1) = T̂(v(k), w(k)), w(k+1) = T̂(w(k), v(k)),

k = 0, 1, 2, . . . (v(0) = v0, w(0) = w0):

v(k+1)(x) =
∫

Ω

K+
m(x, s)v(k)(s)ds −

∫

Ω

K−
m(x, s)w(k)(s)ds

+
∫

Ω

Qm(x, s) f̂ (s, v(k)(s), w(k)(s))ds, k = 0, 1, 2, . . . ,
(17)
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w(k+1)(x) =
∫

Ω

K+
m(x, s)w(k)(s)ds −

∫

Ω

K−
m(x, s)v(k)(s)ds

+
∫

Ω

Qm(x, s) f̂ (s, w(k)(s), v(k)(s))ds, k = 0, 1, 2, . . . ,
(18)

v(0)(x) = v0(x), w(0)(x) = w0(x). (19)

Since the cone segment < v0, w0
> is strongly invariant for the heterotone operator T for

which the operator T̂ is a companion one, it follows that the sequence {v(k)(x)} does not de-

crease with respect to the cone K+, and the sequence {w(k)(x)} does not increase with respect

to the cone K+. Besides, the cone K+ is normal and the operator T̂ is completely continuous,

so the boundaries v∗(x) and w∗(x) of these sequences exist. Thus, the chain of inequalities

holds:

v0 = v(0) 6 v(1) 6 · · · 6 v(k) 6 · · · 6 v∗ 6 w∗
6 · · · 6 w(k)

6 · · · 6 w(1)
6 w(0) = w0.

There are two possible cases: v∗ < w∗ and v∗ = w∗. In the second case, u∗ := v∗ = w∗ is

the unique on < v0, w0
> fixed point of the operator T, that is, it is the unique on < v0, w0

>

solution of the boundary value problem (1)–(3).

The functions v∗(x) and w∗(x) are a solution of the system of equations v = T̂(v, w),

w = T̂(w, v), which in the considered case has the form

v(x) =
∫

Ω

K+
m(x, s)v(s)ds −

∫

Ω

K−
m(x, s)w(s)ds +

∫

Ω

Qm(x, s) f̂ (s, v(s), w(s))ds , (20)

w(x) =
∫

Ω

K+
m(x, s)w(s)ds −

∫

Ω

K−
m(x, s)v(s)ds +

∫

Ω

Qm(x, s) f̂ (s, w(s), v(s))ds. (21)

The equality v∗ = w∗ will hold if the system (20), (21) does not have on < v0, w0
> such

solutions that v 6= w [9, 10].

Thus, such a theorem is true.

Theorem 1. Let < v0, w0
> be a strongly invariant cone segment for the heterotone operator T

of the form (13) with the companion operator T̂ of the form (14) and the system of equations

(20), (21) does not have on < v0, w0
> solutions such that v 6= w. Then the iterative process

(17)–(19) converges in the norm of the space C(Ω̄) to the unique on < v0, w0
> continuous

positive solution u∗ of the boundary value problem (1)–(3), and a chain of inequalities holds:

v0 = v(0) 6 v(1) 6 · · · 6 v(k) 6 · · · 6 u∗
6 · · · 6 w(k)

6 · · · 6 w(1)
6 w(0) = w0. (22)

Note that the chain of inequalities (22) characterizes the iterative process (17)–(19) as a

method of two-sided approximations.

From the chain of inequalities (22) it follows that each of the cone segments < v(k), w(k)
>,

k = 0, 1, 2, . . . , is strongly invariant for the heterotone operator T of the form (13) with the

companion operator T̂ of the form (14).

Let us determine the conditions for the existence of a unique positive solution of the bound-

ary value problem (1)–(3) and two-sided convergence of the successive approximations

(17)–(19) to it, by clarifying the conditions under which the system of equations (20), (21) does
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not have on some of the strongly invariant cone segments < v(k), w(k)
>, k = 0, 1, 2, . . . , such

solutions that v 6= w.

First we use such a condition [9, 10]: if

T̂(v + u, w − u) � T̂(v, w) + u, (23)

where u > θ, v < w, v, w, v + u, w − u ∈< v0, w0
>, then the system v = T̂(v, w), w = T̂(w, v)

does not have solutions on < v0, w0
>, such that v 6= w.

Theorem 2. Let < v0, w0
> be a strongly invariant cone segment for the heterotone operator T

of the form (13) with the companion operator T̂ of the form (14) and the following condition

holds: for any numbers v, w, u such, that 0 < v < w, 0 < u < w, and for all x ∈ Ω the

following inequality is satisfied:

f̂ (x, v + u, w − u) < f̂ (x, v, w) +
u

M + M1
,

where

M = max
x∈Ω̄

∫

Ω

Qm(x, s)ds, M1 = max
x∈Ω̄

∫

Ω

[K+
m(x, s) + K−

m(x, s)]ds. (24)

Then, the iterative process (17)–(19) bilaterally converges in the norm of the space C(Ω̄)

to the unique on < v0, w0
> continuous positive solution u∗ of the boundary value problem

(1)–(3).

Proof. Let u and w − v be such functions from K+\{θ} (θ is a zero element of C(Ω̄)), that

v, w, v + u, w − u ∈< v0, w0
>. Then u(x) ≥ 0 in Ω̄ and u|∂Ω = 0. So, if the function u(x) gets

the maximum value at the point x0, then x0 ∈ Ω. Thus,

T̂(v + u, w − u)(x0)

=
∫

Ω

K+
m(x0, s)[v(s) + u(s)]ds −

∫

Ω

K−
m(x0, s)[w(s) − u(s)]ds

+
∫

Ω

Qm(x0, s) f̂ (x, v(s) + u(s), w(s)− u(s))ds

<

∫

Ω

K+
m(x0, s)v(s)ds −

∫

Ω

K−
m(x0, s)w(s)ds +

∫

Ω

[K+
m(x0, s) + K−

m(x0, s)]u(s)ds

+
∫

Ω

Qm(x0, s)

[

f̂ (s, v(s), w(s)) +
u(s)

M + M1

]

ds

≤
∫

Ω

K+
m(x0, s)v(s)ds −

∫

Ω

K−
m(x0, s)w(s)ds +

∫

Ω

Qm(x0, s) f̂ (s, v(s), w(s))ds

+
1

M + M1
max
x∈Ω̄

u(x)





∫

Ω

[K+
m(x0, s) + K−

m(x0, s)]ds +
∫

Ω

Qm(x0, s)ds





≤
∫

Ω

K+
m(x0, s)v(s)ds −

∫

Ω

K−
m(x0, s)w(s)ds +

∫

Ω

Qm(x0, s) f̂ (s, v(s), w(s))ds + u(x0)

= T̂(v, w)(x0) + u(x0),

that is, the condition (23) holds, consequently, the system of equations (20), (21) does not have

on < v0, w0
> such solutions that v 6= w and the Theorem 1 is valid.
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Another condition that ensures equality v∗ = w∗ is the existence of γ ∈ (0; 1) such that

∥

∥T̂(v, w)− T̂(w, v)
∥

∥ ≤ γ ‖v − w‖

for all v, w ∈< v0, w0
> [2].

Let there exists a number L > 0, that the function f̂ (x, v, w) for all numbers v, w such that

0 < v, w < M0, where M0 = max
x∈Ω̄

w0(x), and for all x ∈ Ω satisfies the inequality

∣

∣

∣
f̂ (x, w, v)− f̂ (x, v, w)

∣

∣

∣
≤ L |w − v| . (25)

Let us consider the difference T̂(v, w)(x) − T̂(w, v)(x):

T̂(w, v)(x) − T̂(v, w)(x) =
∫

Ω

[K+
m(x, s) + K−

m(x, s)][w(s) − v(s)]ds

+
∫

Ω

Qm(x, s)[ f̂ (s, w(s), v(s)) − f̂ (s, v(s), w(s))]ds.

Then, taking into account the inequality (25), we obtain an estimate
∥

∥T̂(w, v)− T̂(v, w)
∥

∥ = max
x∈Ω̄

∣

∣T̂(w, v)(x) − T̂(v, w)(x)
∣

∣

≤ (M1 + LM) · max
x∈Ω̄

|w(x)− v(x)| = (M1 + LM) ‖w − v‖ ,

where constants M and M1 are defined by equalities (24).

Thus,
∥

∥T̂(w, v)− T̂(v, w)
∥

∥ ≤ γ ‖w − v‖ ,

where γ = M1 + LM.

Then the equality v∗ = w∗ will be held, if γ = M1 + LM < 1, and the following theorem

holds.

Theorem 3. Let < v0, w0
> be a strongly invariant cone segment for the heterotone operator T

of the form (13) with the companion operator T̂ of the form (14) and the condition (25) holds,

besides, γ = M1 + LM < 1, where the constants M and M1 are defined by the equalities (24).

Then, the iterative process (17)–(19) bilaterally converges in the norm of the space C(Ω̄) to the

unique on < v0, w0
> continuous positive solution u∗ of the boundary value problem (1)–(3).

If the k-th iteration have been performed, then as an approximate solution of the boundary

value problem (1)–(3) the function

u(k)(x) =
w(k)(x) + v(k)(x)

2
(26)

is accepted.

Then for an approximate solution (26) there will be convenient a posteriori estimate of the

error:
∥

∥

∥
u∗ − u(k)

∥

∥

∥
≤ 1

2
max
x∈Ω̄

(w(k)(x)− v(k)(x)). (27)

The presence of an estimation of the form (27) is an unconditional advantage of the con-

structed two-sided iterative process.
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If the accuracy ε > 0 is given, then the iterative process should be carried out until the

inequality

max
x∈Ω̄

(w(k)(x)− v(k)(x)) < 2ε

will be satisfied and then with an accuracy ε it can be expected that u∗(x) ≈ u(k)(x).

If the conditions of Theorem 3 are satisfied, then an a priori estimate of the error will be:

∥

∥

∥
u∗ − u(k)

∥

∥

∥
≤ γk

2
max
x∈Ω̄

(w0(x)− v0(x)).

Then from the inequality
γk

2
max
x∈Ω̄

(w0(x)− v0(x)) < ε

we obtained that to achieve the accuracy ε it is necessary to do

k0(ε) =







ln
max
x∈Ω̄

(w0(x)−v0(x))

2ε

ln 1
M1+LM






+ 1 (28)

iterations, where the square brackets denote the integer part of the number.

3 NUMERICAL EXPERIMENTS

The construction of two-sided approximations to the solution of the boundary value prob-

lem (1)–(3) will be demonstrated on the problem with exponential nonlinearities:

Lu = eu + 2e−u, x ∈ Ω, (29)

u(x) > 0, x ∈ Ω, (30)

u|∂Ω = 0, (31)

where Lu ≡ −∆u or Lu ≡ −∆u + u, Ω = {x = (x1, x2) : 0 < x1, x2 < 1}.

The function f (x, u) = eu + 2e−u is positive and continuous with respect to the set of vari-

ables, if u > 0, and it allows a diagonal representation with the help of function

f̂ (x, v, w) = ev + 2e−w.

The problem (29)–(31) is replaced by an equivalent integral equation

u(x) =
∫

Ω

K2(x, s)u(s)ds +
∫

Ω

Q2(x, s)[eu(s) + 2e−u(s)]ds, (32)

where Q2(x, s) is determined by the formula (5), if Lu ≡ −∆u, and is determined by the

formula (7), if Lu ≡ −∆u + u, K2(x, s) = − ∂2

∂s2
1
g̃2(x, s)− ∂2

∂s2
2
g̃2(x, s),

g̃2(x, s) =
1

2π
ln

1
√

r2 + 4ω(x)ω(s)
, if Lu ≡ −∆u,

g̃2(x, s) =
1

2π
K0

(

κ
√

r2 + 4ω(x)ω(s)

)

, if Lu ≡ −∆u + u,
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ω(x) = [x1(1 − x1)]∧0[x2(1 − x2)] ≡ x1(1 − x1) + x2(1 − x2)−
√

x2
1(1 − x1)

2 + x2
2(1 − x2)

2.

With the equation (32) let us associate a heterotone operator

T(u)(x) =
∫

Ω

K2(x, s)u(s)ds +
∫

Ω

Q2(x, s)[eu(s) + 2e−u(s)]ds, (33)

for which the companion operator has the form

T̂(v, w)(x) =
∫

Ω

K+
2 (x, s)v(s)ds −

∫

Ω

K−
2 (x, s)w(s)ds +

∫

Ω

Q2(x, s)[ev(s) + 2e−w(s)]ds,

where

K+
2 (x, s) = max{0, K2(x, s)}, K−

2 (x, s) = max{0,−K2(x, s)}.

For the operator T of the form (33) a strongly invariant cone segment will be sought in the

form < v0, w0
>, where v0(x) = αu0(x), w0(x) = βu0(x), 0 < α < β, and

u0(x) =
∫

Ω

Q2(x, s)ds.

For the chosen functions v0, w0 the system of inequalities (15), (16) leads to the next system

of inequalities for determining the constants α, β: for all x ∈ Ω̄

α
∫

Ω

K+
2 (x, s)u0(s)ds − β

∫

Ω

K−
2 (x, s)u0(s)ds +

∫

Ω

Q2(x, s)[eαu0(s) + 2e−βu0(s)]ds ≥ αu0(x),

β

∫

Ω

K+
2 (x, s)u0(s)ds − α

∫

Ω

K−
2 (x, s)u0(s)ds +

∫

Ω

Q2(x, s)[eβu0(s) + 2e−αu0(s)]ds ≤ βu0(x).

If 0 < v, w < M0, where M0 = βmax
x∈Ω̄

u0(x), then

∣

∣

∣
f̂ (x, v, w)− f̂ (x, w, v)

∣

∣

∣
=

∣

∣(ev + 2e−w)− (ew + 2e−v)
∣

∣ ≤ (2 + eM0) |v − w| .

For the considering problem the iterative process (17)–(19) has the form

v(k+1)(x) =
∫

Ω

K+
2 (x, s)v(k)(s)ds −

∫

Ω

K−
2 (x, s)w(k)(s)ds

+
∫

Ω

Q2(x, s)[ev(k)(s) + 2e−w(k)(s)]ds
(34)

w(k+1)(x) =
∫

Ω

K+
2 (x, s)w(k)(s)ds −

∫

Ω

K−
2 (x, s)v(k)(s)ds

+
∫

Ω

Q2(x, s)[ew(k)(s) + 2e−v(k)(s)]ds,
(35)

k = 0, 1, 2, . . . ,

v(0)(x) = αu0(x), w(0)(x) = βu0(x). (36)
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For the problem (29)–(31), if Lu ≡ −∆u, it was found, that the system of inequalities for

determining the constants α, β is satisfied by the values α = 2.5, β = 5.8. Further we find

M = max
x∈Ω̄

∫

Ω

Q2(x, s)ds = 0.04093, M1 = max
x∈Ω̄

∫

Ω

[K+
2 (x, s) + K−

2 (x, s)]ds = 0.70819,

M0 = βmax
x∈Ω̄

u0(x) = 0.23740, L = 2 + eM0 = 3.26795, γ = M1 + LM = 0.842.

Thus, γ < 1 and by Theorem 3, the successive approximations that are formed by the

scheme (34)–(36) bilaterally converge to the solution of the problem (29)–(31) for Lu ≡ −∆u.

Let us choose ε = 10−4. Then, in accordance with (28), to achieve this accuracy, it is nec-

essary to make k0(ε) =

[

ln
(β−α)M

2ε

ln 1
γ

]

+ 1 = 38 iterations. In fact, the accuracy ε = 10−4 was

achieved at the eleventh iteration. As one can see, the theoretical error estimate turned out to

be greatly overestimated. As an approximate solution of the problem (29)–(31) for Lu ≡ −∆u,

the function u(11)(x) = v(11)(x)+w(11)(x)
2 will be accepted.

Iteration

number k
0 1 2 3 4 5

ε(k) 0.67 · 10−1 0.39 · 10−1 0.22 · 10−1 0.22 · 10−1 0.65 · 10−2 0.35 · 10−2

Iteration

number k
6 7 8 9 10 11

ε(k) 0.19 · 10−2 0.10 · 10−2 0.57 · 10−3 0.31 · 10−3 0.17 · 10−3 0.91 · 10−4

Table 1. The values of the estimate ε(k) of the approximate solution error for Lu ≡ −∆u

Table 1 gives the data how the estimate ε(k) = max
x∈Ω̄

1
2(w

(k)(x)− v(k)(x)) of the norm of the

error
∥

∥

∥
u∗ − u(k)

∥

∥

∥
of the approximate solution u(k)(x) varies depending on the iteration number

k, k = 0, 1, . . . , 11. It was found that
∥

∥

∥
u(11)

∥

∥

∥
= 0.2130.

Figure 1 shows the graph of the cross-sections of the upper w(k)(x) and the lower v(k)(x)

approximations at x2 = 0.5 for k = 0, 2, 6, 8. Figures 2, 3 show the surface of the approximate

solution u(11)(x) and its contour lines (with the step 0.02) respectively. Considering the rela-

tionship ε(k+1)

ε(k)
, k = 0, 1, . . . , 11, according to the Table 1, it was received that ε(k+1)

ε(k)
≈ 0.543, that

indicates the geometric rate of convergence of the iterative sequence with the corresponding

index. Let us note that the convergence exponent turned out to be less than the exponent γ

estimated in accordance with Theorem 3.

Let us now consider the problem (29)–(31) for Lu ≡ −∆u + u. It was found that the system

of inequalities to determine the constants α, β is satisfied by the values α = 0.1, β = 5.3.

Further we find

M = max
x∈Ω̄

∫

Ω

Q2(x, s)ds = 0.03760,

M1 = max
x∈Ω̄

∫

Ω

[K+
2 (x, s) + K−

2 (x, s)]ds = 0.60410,

M0 = βmax
x∈Ω̄

u0(x) = 0.19929, L = 2 + eM0 = 3.22053, γ = M1 + LM = 0.725.
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Thus, γ < 1 and by Theorem 3, the successive approximations that are formed by the

scheme (34)–(36) bilaterally converge to the solution of the problem (29)–(31) forLu ≡−∆u+u.

Let us choose ε = 10−4. Then, in accordance with (28), to achieve this accuracy, it is

necessary to make k0(ε) =

[

ln
(β−α)M

2ε

ln 1
γ

]

+ 1 = 22 iterations. In fact, the accuracy ε = 10−4

was achieved at the tenth iteration. As one can see, the theoretical error estimate turned

out to be greatly overestimated too. As an approximate solution of the problem (29)–(31) for

Lu ≡ −∆u + u, the function u(10)(x) = v(10)(x)+w(10)(x)
2 will be accepted.

Iteration

number k
0 1 2 3 4 5

ε(k) 0.98 · 10−1 0.49 · 10−1 0.24 · 10−1 0.12 · 10−1 0.58 · 10−2 0.28 · 10−2

Iteration

number k
6 7 8 9 10

ε(k) 0.14 · 10−2 0.67 · 10−3 0.33 · 10−3 0.16 · 10−3 0.78 · 10−4

Table 2. The values of the estimate ε(k) of the approximate solution error for Lu ≡ −∆u + u

Table 2 gives the data how the estimate ε(k) = max
x∈Ω̄

1
2(w

(k)(x)− v(k)(x)) of the norm of the

error
∥

∥

∥
u∗ − u(k)

∥

∥

∥
of the approximate solution u(k)(x) varies depending on the iteration number

k, k = 0, 1, . . . , 10. It was found that
∥

∥

∥
u(10)

∥

∥

∥
= 0.1742. We can see, the norm of the approximate

solution in the transition to the equation with Lu ≡ −∆u + u has decreased.

Figure 4 shows the graph of the cross-sections of the upper w(k)(x) and the lower v(k)(x)

approximations at x2 = 0.5 for k = 0, 2, 6, 8. Figures 5, 6 show the surface of the approximate

solution u(10)(x) and its contour lines (with the step 0.02) respectively. Considering the rela-

tionship ε(k+1)

ε(k)
, k = 0, 1, . . . , 10, according to the Table 2, it was received that ε(k+1)

ε(k)
≈ 0.488, that

indicates the geometric rate of convergence of the iterative sequence with the corresponding

index. Let us note that for case Lu ≡ −∆u + u the convergence exponent turned out to be less

than the exponent γ estimated in accordance with Theorem 3.

4 CONCLUSIONS

In the paper a method of two-sided approximations of the solution of the homogeneous

Dirichlet problem for a semilinear elliptic equation with Laplace operator −∆ and Helmholtz

operator −∆ + κ2 is proposed on the basis of the Green-Rvachev’s quasi-function method. A

computational experiment carried out for two equations with heterotone exponential nonlin-

earity demonstrated the possibilities and effectiveness of the method. The proposed approach

to the numerical solution of semilinear elliptic equations can be used in solving various applied

problems, the mathematical model of which is the problem (1)–(3). The proposed method is

more universal than the existing methods, and it allows to solve the boundary problem in do-

mains of arbitrary geometry, provided that this domain can be described by the R-function

method.
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Figure 1. Graph of the cross-sections of upper and lower approximations

w(k)(x1, 0.5), v(k)(x1, 0.5), k = 0, 2, 6, 8, for Lu ≡ −∆u
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Figure 2. Surface of the approximate solution u(11)(x) for Lu ≡ −∆u
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Figure 3. Contour lines of the approximate solution u(11)(x) for Lu ≡ −∆u
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Figure 4. Graph of the cross-sections of upper and lower approximations

w(k)(x1, 0.5), v(k)(x1, 0.5), k = 0, 2, 6, 8, for Lu ≡ −∆u + u
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Figure 5. Surface of the approximate solution u(10)(x) for Lu ≡ −∆u + u
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Сидоров М.В. Метод квазiфункцiй Грiна-Рвачова побудови двобiчних наближень до додатного роз-

в’язку нелiнiйних крайових задач // Карпатськi матем. публ. — 2018. — Т.10, №2. — C. 360–375.

Розглядається однорiдна задача Дiрiхле для напiвлiнiйних елiптичних рiвнянь з операто-

ром Лапласа та оператором Гельмгольця. Для побудови двобiчних наближень до додатного

розв’язку цiєї крайової задачi використовується перехiд за допомогою квазiфункцiї Грiна-

Рвачова до еквiвалентного нелiнiйного iнтегрального рiвняння з подальшим його аналiзом

методами теорiї напiвупорядкованих просторiв. Робота i ефективнiсть розробленого метода

продемонстрована обчислювальним експериментом для тестової задачi з експоненцiальною

нелiнiйнiстю.

Ключовi слова i фрази: додатний розв’язок, напiвлiнiйна елiптична крайова задача, гетеро-

тонний оператор, двобiчнi наближення, квазiфункцiя Грiна-Рвачова.


