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GREEN-RVACHEV’S QUASI-FUNCTION METHOD FOR CONSTRUCTING
TWO-SIDED APPROXIMATIONS TO POSITIVE SOLUTION OF NONLINEAR
BOUNDARY VALUE PROBLEMS

A homogeneous Dirichlet problem for a semilinear elliptic equations with the Laplace operator
and Helmholtz operator is investigated. To construct the two-sided approximations to a positive
solution of this boundary value problem the transition to an equivalent nonlinear integral equation
(with the help of the Green-Rvachev’s quasi-function) with its subsequent analysis by methods of
the theory of semi-ordered spaces is used. The work and efficiency of the developed method are
demonstrated by a computational experiment for a test problem with exponential nonlinearity.
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INTRODUCTION

Let us consider the problem of finding a positive solution of a semilinear elliptic equation
with a homogeneous Dirichlet condition:

Lu = f(x,u), xe€Q, (1)

u(x) >0, xeQ, (2)

ulgn =0, (3)

where £u = —Au or £u = —Au + «%u, Q) is a bounded Jordan-measurable domain from R? or

R3 with piecewise smooth boundary 0() () =QuUaIN), Ais the Laplace operator, x = (x1, x2),
A= aa—%%—aa—%,ifﬂ C R?,and x = (x1,%2,x3), A = aa—%—i-%—i—%,ifﬁ C R5.

Let us assume that the function f(x, ) is continuous and positive for x € Q, u > 0.

The problem (1)-(3) is often encountered in the mathematical modeling of nonlinear sta-
tionary processes considered in thermophysics, electromagnetism, biology, chemical kinetics,
etc. [11]. In this case, the condition of positivity (2) naturally arises from the meaning of the
function u in a particular applied field. It is convenient to carry out the analysis of the problem
by the methods of the theory of nonlinear operators in semi-ordered spaces [1,5,9, 10], pass-
ing to the equivalent Hammerstein integral equation with the help of the Green’s functions
method. In this case, it is possible to construct a two-sided iteration process to the desired
solution [4, 14]. But, the practical application of this approach has certain limitations due to
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the fact that the analytic expression of the Green’s function must be known. It is possible to
get rid of this restriction, if the corresponding Green-Rvachev’s quasi-function [12, 14] will be
used instead of Green’s function.

The purpose of the paper is to develop the iterative methods for solving the boundary
value problem (1)—(3), which have a two-sided nature of convergence to the desired solution
and are not tied to the presence of a known Green'’s function. Two-sided approximate methods
for solving nonlinear operator equations based on the theory of nonlinear operators in semi-
ordered spaces were developed in [3, 6, 13, etc.]. This paper continues the research begun
in [4,14], and extends them to the areas of arbitrary geometry and elliptic equations with the
Helmbholtz operator.

1 CONSTRUCTION OF AN EQUIVALENT INTEGRAL EQUATION

To construct an integral equation that is equivalent to the problem (1)-(3), let us use the
Green-Rvachev’s quasi-function [12, 14].

Let the boundary 9} of the domain Q) consists of a finite number of pieces of lines 0;(x) = 0,
i = 1,2,...,r, where each 0;(x) is an elementary function. Then with the help of the R-
functions method [12] one can construct in the form of a single analytic expression an ele-
mentary function w(x), which describes the geometry of the domain (), that is:

a) w(x) > 0in
b) w(x) = 0ondQ);
¢) |Vw(x)| # 0 onoQ.

Also, the function w(x) can have certain properties of differentiation due to the use of
various sufficiently complete systems of R-functions [12].

Definition 1. Let g,,(r) be a fundamental solution of the equation £u = 0 in R™. The Green-
Rvachev’s quasi-function of the first boundary value problem for the operator £ in R™ is the
function

Qu(x,8) = gm(r) — gm(x,s), 4)
wherex = (x1,...,%m),8 = (51,.-.,5m), r = |x — 8| = f (x; —sz-)z,
i=1

Gn(x,8) = gm <\/r2 + 4w(x)w(s)> ,
w(x) is the function that describes the geometry of the domain Q).

Let us note [12] that for the case when £u = —Au, Q) is a ball of radius R in R™, and
w(x) = 5x(R?—x2 — - — x2)), the Green-Rvachev’s quasi-function (4) turns into the exact
Green’s function of the first boundary value problem for the Laplace operator considered in a
ball Q).

The fundamental solutions of the Laplace equation —Au = 0 in IR?> and R® have the form

1.1 1 1
;/

(r) = Eln;' g3(r) = i
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consequently, the Green-Rvachev’s quasi-function of the first boundary value problem for the
operator —A acquires the form

Qa(x,8) = iln\/uwinu@, (5)

27T r2

1 2 +4w(x)w(s) —r .
Qalos) = g \iwz +4(w)(x)(w)(s) in R ©

For the Helmholtz equation —Au + x?u = 0 in R? and IR? the fundamental solutions have

the form
1 —Kr

1
(r) = EKO(KV)/ g3(r) = Pl

where Ky(z) is modified Bessel function of the second kind, and the Green-Rvachev’s quasi-
function of the first boundary value problem for the operator —A + k2 acquires the form

Qa(x5) = 51 (Kalwn) = Ko (/2 + dw(io(s) ) ) in 2, %

2 —KT =K/ P24+ 4w(x)w(s)
Qs(x8) = 1 V12 + 4w (x)w(s)e re RS, ®)
4r /12 +4w(x)w(s)
From (5)—(8) and Definition 1 the following lemma on the properties of the Green-Rvachev’s
quasi-function follows.

Lemma 1. The Green-Rvachev’s quasi-function (4) has the following properties:
a) Qm(x,s) =0 onaQy,
b) is a symmetric function: Qu(x,s) = Qm(s, x);
¢) has the same feature for x = s as the usual Green’s function;
d) is positive in the domain Q: Q,,(x,s) > 0,x,s € (), x # s.

For the function u € C2(Q) (N C}(Q)) such that £u € Ly(Q), the following integral repre-
sentation [7,8] holds:

1u(x) :/

o0

ou(s)

ong

g(x,s)

ong

_ u(s)ag(x,s)} dso + /g(x,s)ilsu(s)ds, xe O, 9)
Q

and for the functions u, § € C2(Q)) the second Green'’s formula [7]

- - 04 (s _, . ou(s
0= —/[g(s)Ssu(s) —u(s)Ssg(s)]ds+/ u(s)8L8) _ 5y2u8) 14, (10)

ong ong

(@) Q)
holds.
In formulas (9), (10) ng is the outer to d() normal in the variables s, dsoc means that the
integration for s is along 0Q), £su = —Asu or Lsu = —Agu + K2u, Ag = 53_522 + g—;z, if QO c R?,
1 2

PP P 3
andAs_as§+as§+as§'lfQCR'
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Let u be a classical solution of the problem (1)—(3), and let us choose the function § in (10)
as in Definition 1. Adding the equalities (9) and (10), taking into account (4), we obtain

u(x) = /Ssg(x,s) -u(s)ds —|—/Qm(x,s) - Lsu(s)ds
0 0

+/ [Qm(x,s)agr(:) - u(s)ian(x,s)] dso.
a0

ong

Then, taking into account that Q,,(x,s) = 0 and u(x) = 0 on d(, and making allowance
for the equation (1), we finally obtain the integral equation for the function u in the form

u(x) = /Km(x,s)u(s)ds+/Qm(x,s)f(s,u(s))ds, (11)
0 0

where Ky, (x,5) = £53(x, 8).
The nonlinear integral equation (11) can be written in the form of Urysohn equation

u(x) = /P(x,s,u(s))ds,
Q

where P(x,s,u(s)) = Ku(x,s)u(s) + Qu(x,s)f(s, u(s)).

If the boundary value problem (1)—(3) has a classical solution, then it also satisfies the equa-
tion (11). If the classical solution of the problem does not exist, then the equation (11) can be
used to introduce the concept of a generalized solution of the boundary value problem (1)—(3).

The equation (11) will be considered in a Banach space C(Q)) of the functions continuous
in Q). The norm in C(Q)) is entered by the rule |ju|| = max |u(x)]. Let us select in C(Q)) the

Xe

cone Ky = {u € C(Q) : u(x) > 0,x € O} of non-negative functions. Note that the cone K
in C(Q) is normal (and even acute). With the help of the cone K in the space C(Q) let us
introduce a semiordering by the rule:

foru,ve C(Q) u<vo ifv—uecky,

that is,
u<o, ifu(x)<o(x)forallxe Q.

Definition 2. By a solution (generalized) of the boundary value problem (1)—3) will be meant
a function u* € K., which is a solution of the integral equation (11).

2 CONSTRUCTION OF A PROCESS OF TWO-SIDED APPROXIMATIONS

Let us construct a process of two-sided approximations for finding the solution of the inte-
gral equation (11) (and consequently, the solution of the boundary value problem (1)—(3) using
the methods of the theory of nonlinear operators in semi-ordered spaces [1,5,9,10].

Let us introduce a nonlinear operator T acting in C(Q)) by the rule

T(u)(x) = / P(x,s, u(s))ds. (12)
Q
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Let us denote
K (x,8) = max{0,Ku(x,s)}, K, (xs) = max{0, —K;(x,s)}.
Then K}, (x,s) > 0, K;,(x,8) > 0forx,s € Q (x # s),
Kn(x,8) = K (x,8) — K, (x,8), |Kn(x,s)| =K} (x,8)+ K, (x,s),

and operator T of the form (12) will be written in the form

= /K;;(x,s)u(s)ds —/K,;(x,s)u(s)ds—{—/Qm(x,s)f(s,u(s))ds. (13)
QO Q Q

Suppose that the function f(x, u) allows a diagonal representation f(x,u) = f(x,u,u), be-
sides, continuous on the sets of variables x, v, w non-negative function f (x, v, w) monotonically
increases with respect to v and monotonically decreases with respect to w for all x € (). Then
the operator T of the form (13) will be heterotone with the companion operator

= /K%(x,s)v(s)ds - /Ka(x, s)ds +/Qm )f(s,v(s),w(s))ds. (14)
Q Q

Operators T and T are completely continuous.

Note that for the case when the function f(x, u) increases monotonically with respect to u
for all x € Q) we can choose f(x,v,w) = f(x,v), and if it decreases monotonically with respect
to u for all x € Q) we can set f(x,0,w) = f(x, w).

In the cone K4 let us select a strongly invariant cone segment < v°,w® > by conditions
T(20,w) > o0, T(w®,v°) < w?, which for the operator T that is defined by (14) will have the
form:

/K;;(x,s ds—/K s)ds
o o ) (15)
+ [ Qulxs)f(s,20(s), ud(s)ds > Px) forallx € O,
/K;Z(x,s)wo(s)ds — /K,;(x,s)vo(s)ds
Q A QO (16)
+/Qm(x,s)f(s,w0(s),vo( ))ds < w”(x) forall x € Q)

0

Let us form an iterative process by the scheme vk*1) = T(v(K), w(k)), k+1) = T (k) p(K)),
k=0,1,2,.. (v =00, w0 = w0):

ok /K+ k)(s)ds_/K;(x,s)w(")(s)ds
Q

(17)
—l—/Qm X, S f s,v(k)(s),w(k)(s))ds, k=0,1,2,...,
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w1 (x) = / K (x,8)w® (s)ds — / K (x,8)0®) (s)ds
(@) @)

(18)
+/Qm(x,s)f(s,w(k)(s),v(k)(s))ds, k=0,1,2,...,
Q

0O(x) =0 (x), w(x) =u(x). (19)

Since the cone segment < v%,w? > is strongly invariant for the heterotone operator T for
which the operator T is a companion one, it follows that the sequence {v(X)(x)} does not de-
crease with respect to the cone K, and the sequence {w®) (x)} does not increase with respect
to the cone K. Besides, the cone K is normal and the operator T is completely continuous,

so the boundaries v*(x) and w*(x) of these sequences exist. Thus, the chain of inequalities
holds:

V=00 <o <. <ol << << <o <o < <@ = P,

There are two possible cases: v* < w* and v* = w*. In the second case, u* := v* = w* is
the unique on < v°,w’ > fixed point of the operator T, that is, it is the unique on < %, w® >
solution of the boundary value problem (1)-(3).

The functions v*(x) and w*(x) are a solution of the system of equations v = T(v,w),
w = T(w,v), which in the considered case has the form

v(x) = /K%(x,s)v(s)ds - /K,;(x,s)w(s)ds —l—/Qm(x,s)f(s,v(s),w(s))ds, (20)
0 0 0

w(x) = /K;;(x,s)w(s)ds — /K;(x,s)v(s)ds +/Qm(x,s)f(s,w(s),v(s))ds. (21)
Q Q Q

The equality v* = w* will hold if the system (20), (21) does not have on < %, w® > such
solutions that v # w [9,10].
Thus, such a theorem is true.

Theorem 1. Let < v°,w’ > be a strongly invariant cone segment for the heterotone operator T
of the form (13) with the companion operator T of the form (14) and the system of equations
(20), (21) does not have on < ©v°,w° > solutions such that v # w. Then the iterative process
(17)~(19) converges in the norm of the space C(Q) to the unique on < v°,w° > continuous
positive solution u* of the boundary value problem (1)—3), and a chain of inequalities holds:

V=00 <o <. <o® gy - <o® < <o <@ =P, (22)

Note that the chain of inequalities (22) characterizes the iterative process (17)—(19) as a
method of two-sided approximations.

From the chain of inequalities (22) it follows that each of the cone segments < v(¥), w(*) >,
k =0,1,2,..., is strongly invariant for the heterotone operator T of the form (13) with the
companion operator T of the form (14).

Let us determine the conditions for the existence of a unique positive solution of the bound-
ary value problem (1)-(3) and two-sided convergence of the successive approximations
(17)-(19) to it, by clarifying the conditions under which the system of equations (20), (21) does
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not have on some of the strongly invariant cone segments < v(k), wk) > k=0,1,2,...,such
solutions that v # w.
First we use such a condition [9,10]: if

To+uw—u) % T(v,w)+u, (23)

where u > 0,v < w, v, w,v +u,w —u €< v, w’ >, then the system v = T(v,w), w = T(w,v)
does not have solutions on < v°,w° >, such that v # w.

Theorem 2. Let < v°,w® > be a strongly invariant cone segment for the heterotone operator T
of the form (13) with the companion operator T of the form (14) and the following condition
holds: for any numbers v, w, u such, that0 < v < w,0 < u < w, and for all x € Q) the
following inequality is satistied:

. . u
fx,o+uw—u) < f(x,v,w)+ Y
where
M = max /Qm(x,s)ds, M; = max / (K} (x,8) + K, (x,s)]ds. (24)

xeQ) xeQ)
QO QO

Then, the iterative process (17)<(19) bilaterally converges in the norm of the space C(Q))
to the unique on < v%,w" > continuous positive solution u* of the boundary value problem

(1))

Proof. Let u and w — v be such functions from K \{6} (0 is a zero element of C((})), that
v,w,0+u,w—uc< ov’,w’ >. Then u(x) > 0in O and ulyq = 0. So, if the function u(x) gets
the maximum value at the point x¢, then xg € Q). Thus,

T(v+u, w—u)(xo)
—/K xo,8)[v(s) + u(s) ds—/K xo, 8)[w(s) — u(s)]ds

A

+ / Qu(xa,)f(x,0(s) +u(s),w(s) — u(s))ds
< /K,’z(xo,s)v(s)ds —/Kn;(xo,s)w(s)ds+/[K,‘Z(xo,s) + K, (xo,8)]u(s)ds
0 0

—l—/Qm(xo,s) [f(s,v(s),w(s)) + ﬁsl)\/h] ds
Q

< /K,ﬁ(xo,s)v(s)ds—/K,;(xo, ds+/Qm xo,8)f (s,0(s), w(s))ds
0

Q

1 _
+ M+erflea(;<u( x) L{ [K;;(xo,s)—{—Km(xo,s)]ds—l—/Qm(xo,s)ds]

< /K;;(xo,s)v(s)ds—/K;(xo, ds—l—/Qm x0,8)f (s, 9(s), w(s))ds + u(xo)
(@) (@)

= T(v,w)(xp) + u(xp),

that is, the condition (23) holds, consequently, the system of equations (20), (21) does not have
on < v°,w® > such solutions that v # w and the Theorem 1 is valid. d
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Another condition that ensures equality v* = w* is the existence of v € (0;1) such that
|IT(v,w) = T(w, )| < 7o —w]

forallv,w e< v°, w® > [2].
Let there exists a number L > 0, that the function f (x,v,w) for all numbers v, w such that

0 < v,w < My, where My = maxw’ (x), and for all x € Q) satisfies the inequality
xeQ)

f(x,w,v)—f(x,v,w)) <L|lw—-o9. (25)
Let us consider the difference T(v, w)(x) — T(w, v)(x):

T(w,0)(x) = T(v,w)(x) = / Ky (x,8) + Ky (%, 8)][w(s) — v(s)]ds
Q
+ [ Quixs)[f(s,w(s), 2(5)) — f(5,2(5), w(s)) s,
Q

Then, taking into account the inequality (25), we obtain an estimate
|T(w,0) — T(v,w)|| = max | T(w,v)(x) — T(v,w)(x)]|

< (M + LM) - max [w(x) —o(x)| = (M + LM) [lw — o],
Xe
where constants M and M; are defined by equalities (24).
Thus,
1T (w,v) = T(o,w)|| < 7lw-ol,

where v = M + LM.
Then the equality v* = w* will be held, if v = M; + LM < 1, and the following theorem
holds.

Theorem 3. Let < v°, w’ > be a strongly invariant cone segment for the heterotone operator T
of the form (13) with the companion operator T of the form (14) and the condition (25) holds,
besides, v = Mj + LM < 1, where the constants M and M are defined by the equalities (24).
Then, the iterative process (17)—(19) bilaterally converges in the norm of the space C(Q)) to the
unique on < v°, w® > continuous positive solution u* of the boundary value problem (1)—3).

If the k-th iteration have been performed, then as an approximate solution of the boundary
value problem (1)-(3) the function

u®(x) = (26)

is accepted.
Then for an approximate solution (26) there will be convenient a posteriori estimate of the
error:

The presence of an estimation of the form (27) is an unconditional advantage of the con-
structed two-sided iterative process.

w =l < L max (0 (x) — o) (x)). 27)
xe)




368 SIDOROV M. V.

If the accuracy e > 0 is given, then the iterative process should be carried out until the
inequality
max (w® (x) — v (x)) < 2¢
xe)
will be satisfied and then with an accuracy ¢ it can be expected that 1*(x) ~ u®)(x).
If the conditions of Theorem 3 are satisfied, then an a priori estimate of the error will be:

Then from the inequality
lma_x (w’(x) —%(x)) < ¢
xe()
we obtained that to achieve the accuracy ¢ it is necessary to do
max (w(x)~°(x))

11’1 xeQ)

ko(e) = 5 +1 (28)
In My +LM

iterations, where the square brackets denote the integer part of the number.

3 NUMERICAL EXPERIMENTS

The construction of two-sided approximations to the solution of the boundary value prob-
lem (1)—(3) will be demonstrated on the problem with exponential nonlinearities:

Lu=e"+27" xeq, (29)
u(x) >0, xeqQ, (30)
Ulan =0, (31)

where Lu = —Auor Lu=—Au+u, Q= {x=(x1,x):0 < x1,x < 1}.
The function f(x,u) = e" + 2e~" is positive and continuous with respect to the set of vari-
ables, if u > 0, and it allows a diagonal representation with the help of function

f(x,0,w) = e® +2e7 7.

The problem (29)—(31) is replaced by an equivalent integral equation

u(x) = /Kz(x,s)u(s)ds + / Qa(x,8)[e"(8) + 207 4(%)]ds, (32)
0 0
where Q;(x,s) is determined by the formula (5), if £u = —Au, and is determined by the
formula (7), if Lu = —Au +u, Kx(x,s) = —%gz(x, s) — %gz(x, s),
1 2
$2(xs) = ! ! ,if Su = —Au,

2 " P a0l

1 .
(x,8) = EKO (K\/?’Z —{—4w(x)w(s)> ,if Lu=—Au+u,
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w(x) = [x1(1 - x)Aolxa(l — 22)] = 11(1 — x1) + 12(1 — x2) — /31— x1)> + x3(1 - x2)2.

With the equation (32) let us associate a heterotone operator

= /Kz(x,s ds+/Q2 X, S) u(s) 4 pp—uls )]ds, (33)

for which the companion operator has the form
= /K;(x,s)v(s)ds - /K{(x, s)ds —|—/Q2 o(s) 4 2~ (8)]gs,
Q Q

where
K;(x,s) =max{0,Kx(x,s)}, K;(x,5) =max{0, —K»(x,s)}.

For the operator T of the form (33) a strongly invariant cone segment will be sought in the
form < v¥, w® >, where v°(x) = aug(x), w¥(x) = Bug(x), 0 < a < B, and

X) = /Qz(x s)ds
0

For the chosen functions v°, w? the system of inequalities (15), (16) leads to the next system
of inequalities for determining the constants «, B: for all x € Q)

0

/K X, 8)up(s ds—ﬁ/K s)up(s ds—l—/Qz [e%0(8) 4 26~ F0(8)]ds > wug(x),

,B/K;r(x,s)uo(s)ds - oc/Kz_ (x,8)up(s)ds + / Qs (x,8)[eP0(8) 4 2e=410(8))ds < Bug(x).
Q QO Q

If 0 < v,w < My, where My = fmax ug(x), then
xe()

f(x,0,w) —f(x,w,v)’ = (" +27") — (U +2¢7 )| < (2+ M) v —w).

For the considering problem the iterative process (17)—(19) has the form

o+ /K+xs ds—/K x,s)w\"/ (s)ds
(34)
+/szs w+afw<n@
wk+( /K+ x,s)w®) (s)ds — /K;(x,s)v(k)(s)ds
(35)

g/QXS w(MQ—N%m&

k=0,12,...,
0O (x) = aug(x), w%(x) = Bug(x). (36)
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For the problem (29)—(31), if £u = —Au, it was found, that the system of inequalities for
determining the constants «, f is satisfied by the values « = 2.5, B = 5.8. Further we find

M = max /Qz(x,s)ds = 0.04093, M; = max / [KS (x,8) + K; (x,8)]ds = 0.70819,
xe) xe()
Q QO

Mo = Pmaxug(x) = 023740, L =2+¢M =326795, = M;+ LM = 0.842.

xe()
Thus, v < 1 and by Theorem 3, the successive approximations that are formed by the
scheme (34)—(36) bilaterally converge to the solution of the problem (29)—(31) for £u = —Au.
Let us choose ¢ = 10~ %. Then, in accordance with (28), to achieve this accuracy, it is nec-

(B—a)M

essary to make ko(e) = {m ¥—| +1 = 38 iterations. In fact, the accuracy ¢ = 10~* was
v

In
achieved at the eleventh iteration. As one can see, the theoretical error estimate turned out to
be greatly overestimated. As an approximate solution of the problem (29)—(31) for £u = —Au,

the function 1) (x) = w will be accepted.

Iteration
number k

g(k) 0.67-1071[0.39-1071 ] 0.22-1071 | 0.22-107" | 0.65-1072 | 0.35- 102
Iteration
number k

(k) 0.19-1072]0.10-10°2]057-10°]031-102 ] 0.17-1072 | 091 -10~*

0 1 2 3 4 5

6 7 8 9 10 11

Table 1. The values of the estimate (%) of the approximate solution error for £u = —Au

Table 1 gives the data how the estimate e(¥) = max 4 (w(¥) (x) — v%)(x)) of the norm of the
xeQ)

u* —u® H of the approximate solution 1) (x) varies depending on the iteration number

k k=0,1,...,11. It was found that Hu(“) H — 0.2130.

Figure 1 shows the graph of the cross-sections of the upper w®) (x) and the lower v(%)(x)
approximations at xp = 0.5 for k = 0,2, 6, 8. Figures 2, 3 show the surface of the approximate
solution u(M)(x) and its contour lines (with the step 0.02) respectively. Considering the rela-
tionship %, k=0,1,...,11, according to the Table 1, it was received that % ~ 0.543, that
indicates the geometric rate of convergence of the iterative sequence with the corresponding
index. Let us note that the convergence exponent turned out to be less than the exponent -y
estimated in accordance with Theorem 3.

Let us now consider the problem (29)-(31) for £u = —Au + u. It was found that the system
of inequalities to determine the constants a, 8 is satisfied by the values « = 0.1, B = 5.3.
Further we find

error )

M = max /Qz(x,s)ds = 0.03760,
xe() A

M; = max / [KS (x,8) + K; (x,8)]ds = 0.60410,

xeQ)

My = Pmaxug(x) = 0.19929, L =2+¢M =322053, = M;+ LM = 0.725.

xe)
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Thus, v < 1 and by Theorem 3, the successive approximations that are formed by the
scheme (34)—(36) bilaterally converge to the solution of the problem (29)—(31) for £u = —Au 4+ u.

Let us choose ¢ = 10~*. Then, in accordance with (28), to achieve this accuracy, it is

—a)M
In B 2‘;)

necessary to make ko(e) = ] +1 = 22 iterations. In fact, the accuracy e = 104

Ini

Y
was achieved at the tenth iteration. As one can see, the theoretical error estimate turned
out to be greatly overestimated too. As an approximate solution of the problem (29)-(31) for

£u = —Au + u, the function 110 (x) = w will be accepted.

[teration 0 1 ’ 3 4 5
number k
(k) 098-10711049-1071 | 024-1071 | 012-107 | 0581072 | 0.28 - 102
Tteration
6 7 8 9 10
number k
(k) 0.14-1072]0.67-1073]033-102 | 0.16-1072 | 0.78 - 10~*

Table 2. The values of the estimate e(¥) of the approximate solution error for £u = —Au + u

Table 2 gives the data how the estimate ¢} = max %(w(k) (x) — 00 (x)) of the norm of the
xe()

error ’ u* —u) H of the approximate solution 1 ¥) (x) varies depending on the iteration number

k,k=0,1,...,10. It was found that Hu(w) H = 0.1742. We can see, the norm of the approximate
solution in the transition to the equation with £u = —Au + u has decreased.

Figure 4 shows the graph of the cross-sections of the upper w®) (x) and the lower v(*)(x)
approximations at xp = 0.5 for k = 0,2, 6, 8. Figures 5, 6 show the surface of the approximate
solution %19 (x) and its contour lines (with the step 0.02) respectively. Considering the rela-
tionship “3(:(—:)1), k=0,1,...,10, according to the Table 2, it was received that S(:(:;) ~ 0.488, that
indicates the geometric rate of convergence of the iterative sequence with the corresponding
index. Let us note that for case £u = —Au + u the convergence exponent turned out to be less

than the exponent <y estimated in accordance with Theorem 3.

4 CONCLUSIONS

In the paper a method of two-sided approximations of the solution of the homogeneous
Dirichlet problem for a semilinear elliptic equation with Laplace operator —A and Helmholtz
operator —A + x? is proposed on the basis of the Green-Rvachev’s quasi-function method. A
computational experiment carried out for two equations with heterotone exponential nonlin-
earity demonstrated the possibilities and effectiveness of the method. The proposed approach
to the numerical solution of semilinear elliptic equations can be used in solving various applied
problems, the mathematical model of which is the problem (1)—(3). The proposed method is
more universal than the existing methods, and it allows to solve the boundary problem in do-
mains of arbitrary geometry, provided that this domain can be described by the R-function
method.
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w(k)(xl 7075)7 U(k)(xl 7075)

Figure 1. Graph of the cross-sections of upper and lower approximations
w®) (x1,0.5), v (x1,0.5), k = 0,2,6,8, for Lu = —Au

Figure 2. Surface of the approximate solution u(1V)(x) for £u = —Au
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Figure 3. Contour lines of the approximate solution () (x) for £u = —Au

w®(2;,0,5), v (z,,0,5)

A
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Figure 4. Graph of the cross-sections of upper and lower approximations
w<k)(x1,0.5), o) (x1,0.5),k=0,2,6,8, for Lu = —Au+u
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Figure 6. Contour lines of the approximate solution 119 (x) for £u = —Au + u
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Cuaopos M.B. Memod keasigpyrxyiii I'pina-Peavuosa no6ydosu 08o6iurux HabauiceHsb 00 000amHoeo pos-
6’93Ky Heninilinux kpatiosux 3adau // Kapnarceki MmaTem. my6a. — 2018. — T.10, Ne2. — C. 360-375.

Po3srasiaaeTbest OAHOpiAHA 3apava Aipixae AASI HAMiBAIHIHMX eAIITMYHMX PiBHSIHD 3 OepaTo-
pom Aamnaca Ta orepaTtopoM I'eAbMroabst. AAst o6yA0BM ABOGIUHMX HabOAVDKEHb AO AOAATHOTO
PO3B’sI3KY IIi€i KpalioBoi 3apadi BMKOPMCTOBYEThCS TIepexip 3a Aomomororo kpasidpyHkii I'pina-
PBauoBa A0 €KBiBaA€HTHOIO HEAIHIIHOTO iHTErpaAbHOrO PiBHSHHSI 3 HOAAABIIMM JIOTO aHAAi30M
MeTOAaMM Teopil HalliBYIIOPSIAKOBaHMX IpocTopiB. PoboTa i edpexTHBHICTE po3pobAeHOTO MeToAa
IIPOAEMOHCTPOBaHa OOUMCAIOBAABHMM €KCIIEPMMEHTOM AAS TECTOBOI 3apadi 3 eKCIIOHEHITiaAbHOO
HEeAIHIVHICTIO.

Kntouosi cnoea i ppasu: AOMATHVIA PO3B’S30K, HAIIIBAIHIHA eAiTHYHA KpalioBa 3aAada, reTepo-
TOHHMIA oTlepaTOp, ABObiuHI HabAVDKeHHS, kBasidpyHkIIist ['piHa-PBadosa.



