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ON THE CROSSINGS NUMBER OF A HYPERPLANE BY A STABLE RANDOM
PROCESS

The numbers of crossings of a hyperplane by discrete approximations for trajectories of an a-
stable random process (with 1 < a < 2) and some processes related to it are investigated. We
consider an a-stable process is killed with some intensity on the hyperplane and a pseudo-process
that is formed from the a-stable process using its perturbation by a fractional derivative operator
with a multiplier like a delta-function on the hyperplane. In each of these cases, the limit distri-
bution of the crossing number of the hyperplane by some discret approximation of the process is
related to the distribution of its local time on this hyperplane. Integral equations for characteristic
functions of these distributions are constructed. Unique bounded solutions of these equations can
be constructed by the method of successive approximations.
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INTRODUCTION

Let (x(t), M;,Py) denote a standard Markov process on R? (4 > 1). Consider a fixed
hyperplane S = {x € R?: (x,v) = r}, in R? and two open sets

D ={xeR%:(x,v)<r}, D,={xeR%:(x,v)>r},

where v € R? is a given unit vector and 7 € R is a given constant.

Our goal is to describe a changes number of the sets D_ and D before a fixed time t > 0
by the trajectories of the process (x(t));>0 started at fixed point x € R%.

Consider for m, n € IN the random variable

=B (o (5) ()

where v(x,y) = Ip_(x)1p, (v) + Ip, (x)Ip_(y).

The variable ¢ [(:t)] equals to the number of crossings of the hyperplane S by the ordered set
of points in R%: x(0), x(1/n),...,x([nt]/n).

We are going to find out a sequence of normalizing multipliers {c,, : n > 1} such that the
limit distribution of the sequence {cng[(,’j}] : n > 1} exists and to describe it. It is obvious that
¢y, — 0,asn — oo,

The limit theorems of this type were initiated by I. I. Gikhman in connection with some
problems of mathematical statistics. I. I. Gikhman considered sequences of one-dimensional
Markov chains approaching a diffusion process with smooth local characteristics (see [1,2]).
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1 SOME AUXILIARY RESULTS

We will use the following corollary of one A. V. Skorokhod’s theorem (see [3, Th. 1]).

Lemma 1. A [imit distribution of the sequence of random variables c;,¢ [(:t)} exists if and only if

(n)

a limit distribution exists for the variables Crtlg)s where

) _ ,év" (x <§)) . oa(x) = Exo (x(O),x G)) ,

and these limit distributions coincide, if only they exist.

(n)

So, we will consider the random variables Cnll ]
For any fixed t > 0, x € R?, n € N we consider the characteristic function
un(t,x,0) = Exexp {i(?cn;y[(:t)}} , 0€eER,
of the random variable Cnﬂ[(:t)}.
The next equation for the function uy(t, x, 6)

[nt]/ , -
un(t,x,e) - 1 +n/0n ndT /]Rd <1 — e_ZGCnUﬂ(y)) un(T’yle)g <M,x/y> dy (1)

follows from the identity exp {}_}" ;ax} = 1+ Y1, (1 —e %) exp {Z}”:k a]-} , that holds true
for each set of complex numbers a1, ay, ..., a, and each natural number m. Here the function
(8(t,%,Y))t>0,xere yere denotes the transition probability density of the process (x(t))>o-

If the transition probability density of the process (x(t));>0 is given by the equality

gt x,y) = (2m) /w exp{i(A,y — x) — ctA[*}dA, t>0, x € R yeRY,

for fixed parameters ¢ > 0 and a« € (1,2], then the process (x(t))¢>o is called rotationally
invariant a-stable random process. If & = 2, this process is the Brownian motion. In this case,
our problems have been addressed in many publications (see, for example, [4,5] and others).
Therefore, we will not consider this case. So, we will further assume that 1 < a < 2, although
most of our results remain correct also for a« = 2.

Consider the function f(t,x) = fot dt [4 (7, x,y) doy. It is a W-function for the process
(x(t))>0 satisfying the inequality f(t,x) < N-4:+171/% So, there exists a W-functional ()0
of the process (x(t))¢>o such that El; = f(t, x) (see [8, Th. 6.6]). This functional is called the
local time on S for the process (x(t))¢>o.

Using the following representation of the functional (I;);>0:

Iy = hli%Br dT / g(h, x(7),y) doy in mean-square,

and the Feynman-Kac formula, one can prove that the characteristic function of the random
value Iy, that is v(t, x,0) = E, exp{ifl; }, satisfies the following equation

v(t, x,0) —1—{—16/ clr/g —7,x,y)0(t,y,0) do,. (2)
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2 THE MAIN RESULTS

The first statement concerns to the rotationally invariant a-stable random process.

Theorem 1. The limit distribution with respect to the measure IP, of the random variables

sequence n~1+1/ “g(:t)] for fixed t > 0 and x € R? has the characteristic function (u(t, x,0))gcr,
which is the unique bounded solution of the integral equation

u(t,x,0) —1+1%9/d1'/g —7,x,y)u(t,y,0)doy,

where » = ZC [t I'(1 —1/w). This distribution coincides with the distribution of the multiplied
by s local t1me on the hyperplane S of the process (x(t))>0.

Next, let a continuous bounded function (7(x)),cs with non-negative values be given. Con-
sider the function (G(¢, x, y))t>0,xe]Rd,y€1Rd which is a solution of to each one of the following
equations

G(t,x,y) =g(tx,y) / dr/g —1,%,2)G(7,2,y)r(z) do,
G(t,x,y) =g(t x,y) / dr/ G(t—1,x,2)8(7,2z,y)r(z) do.

The function G is the transition probability density of the process (x(f));>o killed on the hy-
perplane S at some stopping time { (see [6]). The function (r(x))yeg is the killing intensity of
the process (x(t));>o. It is clear that

P,({C > t}) = / (txy)dyzl—/dT/ery) r(y) doy.

Theorem 2. The limit distribution with respect to the measure IP, of the random variables

sequence n~1+1/ "‘@f:t)] for fixed t > 0 and x € R? has the characteristic function (u(t, x,0))gcR,
which is the unique bounded solution of the integral equation

t
u(t,x,0) =1 —I—i%H/ dT/ G(t—t,xy)u(t,y,0)doy,
0 S

where »x = ZCW I'(1 —1/wa). It is the distribution of the multiplied by s local time on the
hyperplane S for the process (x(t));>o killed at the stopping time (.

And the last, let a continuous bounded function (g(x))yes be given. Introduce an operator
B, determined by its symbol (i|G|*~*(§, 2¢v)) zca- Define the function (G(t, x, Y))i>0xeRY yeRd
by the following formula

G(t,x,y) =gt x,y) + /Ot dr/sg(t —7,%,2)Byg(7, -, y)(2)q(z) do.

This function is “a transition probability density” of some pseudo-process with a mem-
brane on the hyperplane S (see [7]). The generator of this pseudo-process can be written in the
following form: A + g(x)ds(x)B,, where A is the generator of the process (x(t));>o (that is a
pseudo-differential operator whose symbol is given by the function (—c|¢|*)zcRa)-
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Consider the function (u(t, x,0));>( yere gcr defined by the equality

u(t,x,0) = ;1152‘0 I, exp {ien—lﬂ/aq[(:t” def

[1t] 1
Jim /Rd /]RdHeXP 19” /e (xk)} G <Erxk1/xk> dxy,

n

where xy = x and 9, (x) = E,v <x(0),x <l>) L Jriv(x, )G (%,x,y) dy. This function is
“the characteristic function” of the the random variables sequence n~1+1/4¢ [(:t)] limit “distribu-

tion” for fixed ¢t > 0 and x € R¥.
Here we use quotes with notions that apply to the pseudo-process, similar to the ordinary
random process. These notions must be understood in some special way described above.

Theorem 3. The function (u(t,x,6))gcRr for fixed t > 0 and x € R? is the unique bounded
solution of the integral equation

u(t,x,0) —1+1%9/ dT/g —7,%,9)u(t,y,0)(1 — g*(y)) doy,

where » = #F(l —1/a).

3 PROOF OF THE MAIN RESULTS

The proofs of these results are executed according to the same scheme. Consider the first
result (i.e. it is for the rotationally invariant a-stable random process).

First of all, one can prove two technical lemmas. The first one prompts us that we must
choose ¢, = n~1*1/% And the second one allows to pass from equation (1) to some simpler
one.

Lemma 2. Let the real-valued function (¢(x)),.ge be such that sup fs |@(x)|do < oo, where
p€ER

Sy, = {x € R?: (x,v) = p}, and there exist the nontangentional limits ¢(x—) and ¢(x+) from
the side of D_ and D in each pointx € S.

Then the following relation (with » = Ey|(x(1),v)| = 2"1/“ r(1—1/a))

limnl// n(x) dx—%/q) +(Py+>d(7

n—oo

holds true. In addition, the inequality [n'/% [, 04 (x)@(x) dx| < % sup fsp |@(x)| do is fulfilled.
peR

Let a measurable function (§(t,x));>0cgre be such that  sup  [i(t, x)| < oo for any
B t€[0,T],xeR?
T > 0. Consider its transformation ¥, for n € IN given by

tx—n /dr/ on(y )g(t — T, x,y)dy, t>0, x e R
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Lemma 3. For given numberse > 0, L > 0, T > 0, there exists a number 6 > 0 such that the

inequality ¥, (¢, x') — ¥, (t,x)| < eisheld forallt € [0,T],t € [0,T], x € R, ¥’ € R, n € N

and all measurable functions { with the property ~ sup  |(t, x)| < L if only the inequality
te[0,T],xeR4

|t —t'| + |x — x| < ¢ is fulfilled.

Next, using Lemma 3 one can easily prove that solutions of equation (1) for the character-

istic function u,(t, x,0) of n —1+1/ ”‘17[( )] and solutions of the following equation

t
uy(t,x,0) =1+ ienl/”‘/o dat /N vn(y)uy, (T,y,0)8(t —T,x,y) dy

satisfy the relation lim, e sup sup sup |un(t,x,0)—u}(t,x,0)| =0forany T > 0,6, € R
x€RA 0<t<T 61 <0<6,
(k=1,2),0, < 6,.
As the corollary of Lemma 2 one can say that the characteristic function (u(t,x,0))gcRr (¢
and x are fixed) of the limit distribution with respect to the measure [P, for the sequence of the

random variables n~ 11/ "‘g’,‘ (and n= 11/ "‘17[(:2} also) satisfies the following equation
t
u(t,x,0) =1+ iG%/ dT/g(t —7,x,y)u(t,y,0)doy. (3)
0 S

A solution of equation (3) can be constructed by the method of successive approxima-
tions, that is we have u(t, x,0) = Y5  u®)(t, x,0)(i0)*, where ul®(t,x,0) = 1, u®)(t, x,0) =

fydrt [t — 7, x,y)u*V(z,y,6) do.

This follows from the estimation |u(¥)(t,x,0)| < Ck r((rl(fiis) tkf, getting by the induction,
where C > 0 is some constant, =1 —1/a.
The solution of equation (3) is unique in the class of bounded functions, because the differ-

ence between each two solutions of equation (3) satisfies the following equation

w(t,x,0) 19%/ dr/g —7,x,y)w(t,y,0)do,

(COT(B)* 1k
Wt p for each k € IN.

Comparing equations (3) and (2) we get that the distribution of sI/; and the limit distribu-

and we have inequalities |w(t, x,0)| <

tion of n—1+1/4¢g [(:t)] (with respect to the measure IPy) are equal.
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AOCAiAXKeHO UrcAa ITepeTHHIB IilepIIAOIIMHNA AVCKPeTHUMM HabAVKeHHSIMI TPaeKTOpilt a-CTilt-
KOro BUMaaxoBoro mpomnecy (1 < a < 2) Ta AesKMX IIOB'SI3aHMX 3 HMM NpoLeciB. Po3rasaaroThes
X-CTiVIKVIA BUIIAAKOBMIA IIpOLleC 3 YOMBAHHSIM 3 AQHOKO iHTEHCHBHICTIO Ha TilepILAOIIVHI Ta IICeB-
AOHPOIIeC, YTBOPEHMIA 3 A-CTiIKOTO BMITAAKOBOTO IIpOIIeCy 36ypeHHsIM J0ro oIepaTopoM ApoboBoi
TIOXiAHOI 3 MHOXKHIKOM TUITY AeAbTa-(pYHKIIII Ha rinepnaommyHi. B KoXXHOMY 3 IMX BUIIAAKiB rpaHu-
YHMIA PO3MOALA KiABKOCTI IIepeTHHIB riepIIAOIIMHN A€SIKOI AVICKPETHOIO aIllpOKCHMAIIi€lo poIecy
TIOB’SI3aHMI 3 PO3MOAIAOM JIOTO AOKAABHOTO Uacy Ha Iilf rimepriromyHi. [TobyaoBaHi iHTerpaabHi
PIBHSIHHSI AASI XapaKTePUCTUYHMX (PYHKIIII IIMX PO3MOAIAiB. EAVHI 06MeXXeHi po3B’sI3KY IMX PiB-
HSTHb MOXHa OAep KaTi METOAOM ITOCAIAOBHVIX HaOAVKEHb.

Kntouosi cnosa i hppasu: x-cTabirbHMIL IpOIIeC, AOKAABHIIA Yac, ICeBAO-IIPOIIeC.



