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KOPYTKO B.I.1 , SHEVCHUK R.V.2,3

ON FELLER SEMIGROUP GENERATED BY SOLUTION OF NONLOCAL PARABOLIC

CONJUGATION PROBLEM

The paper deals with the problem of construction of Feller semigroup for one-dimensional in-

homogeneous diffusion processes with membrane placed at a point whose position on the real line

is determined by a given function that depends on the time variable. It is assumed that in the inner

points of the half-lines separated by a membrane the desired process must coincide with the ordi-

nary diffusion processes given there, and its behavior on the common boundary of these regions is

determined by the nonlocal conjugation condition of Feller-Wentzell’s type. This problem is often

called a problem of pasting together two diffusion processes on a line.

In order to study the described problem we use analytical methods. Such an approach allows

us to determine the desired operator family using the solution of the corresponding problem of

conjugation for a linear parabolic equation of the second order (the Kolmogorov backward equation)

with discontinuous coefficients. This solution is constructed by the boundary integral equations

method under the assumption that the coefficients of the equation satisfy the Hölder condition

with a nonzero exponent, the initial function is bounded and continuous on the whole real line, and

the parameters characterizing the Feller-Wentzell conjugation condition and the curve defining the

common boundary of the domains, where the equation is given, satisfies the Hölder condition with

exponent greater than 1
2 .
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INTRODUCTION

Consider on a plane (s, x) the set

St = {(s, x) : 0 ≤ s < t ≤ T, − ∞ < x < ∞},

and denote by St the closure of St. Suppose that St contains a continuous curve x = h(s), 0 ≤
s ≤ T, which separates St into two domains:

S
(1)
t = {(s, x) : 0 ≤ s < t ≤ T, − ∞ < x < h(s)}

and

S
(2)
t = {(s, x) : 0 ≤ s < t ≤ T, h(s) < x < ∞}.

Put D1s = (−∞, h(s)) and D2s = (h(s), ∞).
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Consider in ST two uniformly parabolic operators with bounded coefficients

∂

∂s
+ L

(i)
s ≡ ∂

∂s
+

1

2
bi(s, x)

∂2

∂x2
+ ai(s, x)

∂

∂x
, i = 1, 2. (1)

The problem is to find a solution u(s, x, t) of the equation

∂u

∂s
+ L

(i)
s u = 0, (s, x) ∈ S

(i)
t , i = 1, 2, (2)

which satisfies the ’initial’ condition

lim
s↑t

u(s, x, t) = ϕ(x), x ∈ R, (3)

two conjugation conditions

u(s, h(s) − 0), t) = u(s, h(s) + 0, t), 0 ≤ s ≤ t ≤ T, (4)

γ(s)u(s, h(s), t) +
∫

D1s∪D2s

[u(s, h(s), t) − u(s, y, t)]µ(s, dy) = 0, 0 ≤ s ≤ t ≤ T, (5)

and two fitting conditions

ϕ(h(t)− 0) = ϕ(h(t) + 0), (6)

γ(t)ϕ(h(t)) +
∫

D1t∪D2t

[ϕ(h(t)) − ϕ(y)]µ(t, dy) = 0. (7)

The initial function ϕ(x) in (3) is assumed to be bounded and continuous on R (in this case

condition (6) holds automatically), the function γ(s) and the Borel measure µ(s, ·) in (5) are

nonnegative and such that γ(s) + µ(s, D1s ∪ D2s) > 0 for all s ∈ [0, T].

The problem (2)–(7) arises, in particular, in the theory of diffusion processes in the construc-

tion of a one-dimensional model of the diffusion phenomenon with a membrane, or, what is

the same, in solving using the analytical methods the so-called problem of pasting together

two diffusion processes on a line [3, 4, 8, 9]. In the considered case, the membrane is supposed

to be moving, and it is placed at the point x = h(s), which is at the same time the point of past-

ing together two given diffusion processes. If we assume that the solution u(s, x, t) ≡ Tst ϕ(x)

of (2)–(7) is a two-parameter Feller semigroup associated with some inhomogeneous Markov

process on a line, then the validity for it of equation (2) implies that this process coincides in

Dis with the diffusion processes given there by the differential operators L
(i)
s , i = 1, 2, and

initial condition (3) is in agreement with the equality Tss = I, where I is the identity opera-

tor. Next, conjugation condition (4) is the reflection of the Feller property of the process and

equality (5) is the Feller-Wentzell conjugation condition which has two terms. The local term

is responsible for disappearance of the diffusing particle and the nonlocal one for the jump-

like nature of the exit of process from the boundary of the region. Recall that in the general

case the Feller-Wentzell conjugation condition contains also the derivatives of the unknown

function in both variables, which correspond to the properties of the partial reflection at the

common boundary of the regions and the phenomenon of ’viscosity’ [1, 6, 11].

The classical solvability of problem (2)–(7) is proved under the assumption that the coeffi-

cients of equation (2) satisfy the Hölder condition with a nonzero exponent, the initial function
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ϕ in (3) is bounded and continuous on the whole real line, and the parameters γ, µ characteriz-

ing the Feller-Wentzell conjugation condition (5) and the curve x = h(s) defining the common

boundary of the domains S
(1)
t and S

(2)
t satisfy the Hölder condition with exponent greater than

1
2 . In the investigations we use the fundamental solutions of the parabolic equations and the

heat potentials generated by them [2, 5, 8]. As a result of their application, problem (2)–(7)

is reduced to a system of two singular Volterra integral equations of the second kind which

solution is obtained by the method of successive approximations.

Note that a similar problem was considered earlier in [9] for the case where the membrane

is placed at a fixed point of the line. We also mention works [7, 10], which present the results

concerning the construction of diffusion processes with jumps at the points of the boundary

of the region by the methods of stochastic [7] and functional analysis [10].

Assume that the following conditions I–V are satisfied.

I. Equation (2) is a parabolic equation in the domain ST, i.e., there exist positive constants

b and B such that

0 < b ≤ bi(s, x) ≤ B < ∞, i = 1, 2, (s, x) ∈ ST.

II. The coefficients bi(s, x) and ai(s, x), i = 1, 2, are continuous in (s, x) and belong to the

Hölder class H
α
2 ,α(ST), 0 < α < 1 (to recall the definitions of Hölder classes see [5]).

III. The initial function ϕ(x) belongs to the space of bounded continuous functions, which

we will denote by Cb(R). The norm in this space is defined by the equality ‖ϕ‖ =

sup
x∈R

|ϕ(x)|.

IV. In condition (5) the measure µ(s, ·) is nonnegative, µ(s, D1s ∪ D2s) = 1, s ∈ [0, T] and for

all f ∈ Cb(R) the integrals

G
(i)
f (s) =

∫

Dis

f (y)µ(s, dy), i = 1, 2,

belong to the Hölder class H
1+α

2 ([0, T]).

V. The functions γ(s) and h(s) are continuous and belong to H
1+α

2 ([0, T]).

In view of IV condition (5) can be rewritten as follows

(γ(s) + 1)u(s, h(s), t) =
∫

D1s∪D2s

u(s, y, t)µ(s, dy). (8)

Conditions I, II provide the existence of a fundamental solution for each of the equations

in (2) (see [5,8]), i.e., the existence of a function Gi(s, x, t, y), i = 1, 2 (0 ≤ s < t ≤ T; x, y ∈ R),

which satisfies equation (2) for fixed t ∈ (0, T], y ∈ R as a function of (s, x) ∈ [0, t)× R and

has the form

Gi(s, x, t, y) = Zi0(s, x, t, y) + Zi1(s, x, t, y), i = 1, 2, (9)
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where

Zi0(s, x, t, y) = [2πbi(t, y)(t − s)]−
1
2 exp

{
− (y − x)2

2bi(t, y)(t − s)

}
, (10)

Zi1(s, x, t, y) =

t∫

s

dτ
∫

R

Zi0(s, x, τ, z)Qi(τ, z, t, y)dz, (11)

and the function Qi(s, x, t, y) is a solution of some singular Volterra integral equation of the

second kind.

Note that

∣∣Dr
sD

p
x Zi0(s, x, t, y)

∣∣ ≤ C(t − s)−
1+2r+p

2 exp

{
−c

(y − x)2

t − s

}
, (12)

∣∣Dr
sD

p
x Zi1(s, x, t, y)

∣∣ ≤ C(t − s)−
1+2r+p−α

2 exp

{
−c

(y − x)2

t − s

}
, (13)

where i = 1, 2, 0 ≤ s < t ≤ T, x, y ∈ R, C i c are positive constants; in the sequel, various pos-

itive constants will be denoted by symbols C or c; r and p are nonnegative integers satisfying

2r + p ≤ 2, Dr
s is the partial derivative with respect to s of order r, D

p
x is the partial derivative

with respect to x of order p.

Given a fundamental solution Gi(s, x, t, y), i = 1, 2, and a function h(s), we define the

integrals

ui0(s, x, t) =
∫

R

Gi(s, x, t, y)ϕ(y)dy, i = 1, 2, (14)

ui1(s, x, t) =

t∫

s

Gi(s, x, τ, h(τ))Vi(τ, t)dτ, i = 1, 2. (15)

Here ϕ and Vi, i = 1, 2 are given functions, 0 ≤ s < t ≤ T, x ∈ R. In the theory of parabolic

equations the function ui0(s, x, t) is called the Poisson potential, and the function ui1(s, x, t) the

parabolic simple-layer potential.

We recall some properties of functions ui0(s, x, t) and ui1(s, x, t), i = 1, 2. Let ϕ ∈ Cb(R).

Then from the properties of the fundamental solution Gi(s, x, t, y), i = 1, 2, it follows that the

potential ui0 exists and satisfies equation (2) and the ’initial’ condition

lim
s↑t

ui0(s, x, t) = ϕ(x), x ∈ R, i = 1, 2, (16)

in the domain (s, x) ∈ [0, t)× R for a fixed t ∈ (0, T] as a function of arguments (s, x).

In addition, for the function ui0(s, x, t), i = 1, 2, the inequality

∣∣Dr
s D

p
xui0(s, x, t)

∣∣ ≤ C(t − s)−
2r+p

2 ‖ϕ‖, (17)

(where r and p are positive integers for which 2r + p ≤ 2) holds in each of the domains

0 ≤ s < t ≤ T, x ∈ R.

Consider integral (15). If we assume that the density V(τ, t) is continuous for τ ∈ [s, t) and

has a weak singularity with exponent ≥ −1
2 when τ = t, then the function ui1(s, x, t), i = 1, 2,
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is bounded and continuous in 0 ≤ s ≤ t ≤ T, x ∈ R, it satisfies equation (2) in the domain

(s, x) ∈ [0, t)× (R \ h(s)) and the initial condition

lim
s↑t

ui1(s, x, t) = 0, x ∈ R, i = 1, 2. (18)

An important property of the function ui1 is reflected in the so-called theorem on the jump

of the co-normal derivative of the parabolic simple-layer potential (see, for instance, [5, 8]). In

the present paper this assertion is not used, and therefore we do not provide it.

1 EXISTENCE AND UNIQUENESS

We find a solution of (2)–(7) in the form of sum of potentials ui0 and ui1 with unknown

densities Vi(s, t), i = 1, 2:

u(s, x, t) =
∫

R

Gi(s, x, t, y)ϕ(y)dy

+

t∫

s

Gi(s, x, τ, h(τ))Vi(τ, t)dτ, (s, x) ∈ S
(i)
t , i = 1, 2. (19)

Using conjugation conditions (4), (5) and (8), we get the following system of Volterra inte-

gral equations of the first kind for Vi(s, t):

(γ(s) + 1)

t∫

s

Gi(s, h(s), τ, h(τ))Vi (τ, t)dτ

−
2

∑
j=1

t∫

s

Vj(τ, t)dτ
∫

Djs

Gj(s, y, τ, h(τ))µ(s, dy) = Φi(s, t), i = 1, 2, (20)

where

Φi(s, t) =
2

∑
j=1

∫

Djs

uj0(s, y, t)µ(s, dy) − (γ(s) + 1)ui0(s, h(s), t), i = 1, 2.

Consider the function Φi(s, t) in (20). Let us prove that

lim
s↑t

Φi(s, t) = 0, i = 1, 2; (21)

|Φi(s, t)− Φi(s̃, t)| ≤ C‖ϕ‖(t − s)−
1+α

2 (s − s̃)
1+α

2 , s̃ < s. (22)

Assertion (21) can be easily verified using property (16) of the Poisson potential ui0 and

fitting condition (7):

lim
s↑t

Φi(s, t) =
2

∑
j=1

∫

Djt

ϕ(y)µ(t, dy) − (γ(t) + 1)ϕ(h(t))

=
∫

D1t∪D2t

[ϕ(y)− ϕ(h(t))]µ(t, dy) − γ(t)ϕ(h(t)) = 0.
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To prove inequality (22), we write the difference Φi(s, t) − Φi(s̃, t) as a sum I1 + I2 + I3,

where

I1 =
2

∑
j=1

∫

Djs

[uj0(s, y, t)− uj0(s̃, y, t)]µ(s, dy),

I2 = (γ(s̃) + 1)ui0(s̃, h(s̃), t)− (γ(s) + 1)ui0(s, h(s), t),

I3 =
2

∑
j=1

( ∫

Djs

uj0(s̃, y, t)µ(s, dy)−
∫

Djs̃

uj0(s̃, y, t)µ(s̃, dy)

)
,

and study separately each term of this sum.

Since for s̃ < s

|uj0(s, y, t)− uj0(s̃, y, t)|
= |uj0(s, y, t)− uj0(s̃, y, t)| 1+α

2 |uj0(s, y, t)− uj0(s̃, y, t)| 1−α
2

≤
∣∣∣∣∣
∂uj0(ŝ, y, t)

∂ŝ

∣∣∣∣
ŝ=s̃+θ(s−s̃)

· (s − s̃)

∣∣∣∣∣

1+α
2

(|uj0(s, y, t)|+ |uj0(s̃, y, t)|) 1−α
2

≤ C‖ϕ‖
[
(t − s̃ − θ(s − s̃))−1(s − s̃)

] 1+α
2 ≤ C‖ϕ‖

[
((t − s)

+ (s − s̃)(1 − θ))−1(s − s̃)
] 1+α

2 ≤ C‖ϕ‖(t − s)−
1+α

2 (s − s̃)
1+α

2 , 0 < θ < 1,

inequality (22) holds for the term I1. Recalling that the functions γ and h are Hölder continuous

(see assumption V) and using previous considerations, we arrive at inequality (22) for I2. For

I3 we have the estimate

|I3| ≤ C‖ϕ‖(s − s̃)
1+α

2 ,

which is an obvious consequence of assumption IV. Thus,

|I1 + I2 + I3| ≤ C‖ϕ‖(t − s)−
1+α

2 (s − s̃)
1+α

2 , s̃ < s,

what had to be proved.

In order to regularize system of Volterra integral equations of the first kind (20), we apply

to both sides of each of its equations the integro-differential operator E , which acts by the rule

E(s, t)Φi =

√
2

π

∂

∂s

t∫

s

(ρ − s)−
1
2 Φi(ρ, t)dρ, 0 ≤ s < t ≤ T, i = 1, 2. (23)

Consider first the action of the operator E on the right hand side of the i-th equation of

system (20), i = 1, 2.

In view of (21) and (22), for the function Φ̂i(s, t) ≡ E(s, t)Φi we easily get the following

formula:

Φ̂i(s, t) =
1√
2π

t∫

s

(ρ − s)−
3
2 [Φi(ρ, t)− Φi(s, t)]dρ

−
√

2

π
(t − s)−

1
2 Φi(s, t), i = 1, 2. (24)
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Besides, for the function Φ̂i(s, t) in each domain of the form 0 ≤ s < t ≤ T the inequality

|Φ̂i(s, t)| ≤ C‖ϕ‖(t − s)−
1
2 (25)

holds.

Now, we apply the operator E to the left hand side of the i-th equation of system (20),

i = 1, 2. As a result, we obtain the expression, which after changing the order of integration

and using formulas (9), (10) can be represented in the form

− Vi(s, t)√
bi(s, h(s))

+

√
2

π

∂

∂s

2

∑
j=1

t∫

s

Nij(s, τ)Vj(τ, t)dτ, i = 1, 2, (26)

where

Nii(s, τ) =

τ∫

s

(ρ − s)−
1
2

[
(Zi0(ρ, h(ρ), τ, h(τ)) − Zi0(ρ, 0, τ, 0)) + γ(ρ)Gi(ρ, h(ρ), τ, h(τ))

+ Zi1(ρ, h(ρ), τ, h(τ)) −
∫

Diρ

Gi(ρ, y, τ, h(τ))µ(ρ, dy)

]
dρ, i = j,

Nij(s, τ) = −
τ∫

s

(ρ − s)−
1
2 dρ

∫

Djρ

Gj(ρ, y, τ, h(τ))µ(ρ, dy), i 6= j.

To simplify the derivatives of integrals depending on parameters in expression (26), we

show that

lim
s↑τ

Nij(s, τ) = 0. (27)

In proving this fact, a certain complexity is only a study of the function

Lj(s, τ) ≡
τ∫

s

(ρ − s)−
1
2 dρ

∫

Djρ

Zj0(ρ, y, τ, h(τ))µ(ρ, dy),

which appears in the expression for Nij(s, τ) immediately after we rewrite Gj according to

formula (9). For all other terms in formula for Nij(s, τ) the relation (27) is easily established by

using the inequalities (12), (13) and condition V.

Write the function Lj(s, τ) as follows

Lj(s, τ) = Lj1(s, τ) + Lj2(s, τ), (28)
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where

Lj1(s, τ) =
1√

2πbj(τ, h(τ))

τ∫

s

(ρ − s)−
1
2 (τ − ρ)−

1
2 dρ

×
[ ∫

Djρ

exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − ρ)

}
µ(ρ, dy)

−
∫

Djs

exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − ρ)

}
µ(s, dy)

]
,

Lj2(s, τ) =
1√

2πbj(τ, h(τ))

τ∫

s

(ρ − s)−
1
2 (τ − ρ)−

1
2 dρ

×
∫

Djs

exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − ρ)

}
µ(s, dy).

Since the functions fτ,ρ(y) = exp
{

(y−h(τ))2

2bj(τ,h(τ))(τ−ρ)

}
belong to Cb(R) for all 0 ≤ s < ρ < τ <

t ≤ T and are bounded by 1 on this set, and since condition IV holds, we have

|Lj1(s, τ)| ≤ C(τ − s)
1+α

2 , j = 1, 2. (29)

Let us study the function Lj2(s, τ). Write it in the form

Lj2(s, τ) =
1√

2πbj(τ, h(τ))

∫

Djs

[
exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − s)

}

− exp

{
− (y − h(s))2

2bj(τ, h(τ))(τ − s)

}]
Rj(s, τ, y)µ(s, dy)

+
1√

2πbj(τ, h(τ))

∫

Djs

exp

{
− (y − h(s))2

2bj(τ, h(τ))(τ − s)

}
Rj(s, τ, y)µ(s, dy), (30)

where Rj(s, τ, y) denotes the integral

Rj(s, τ, y) =

τ∫

s

(ρ − s)−
1
2 (τ − ρ)−

1
2 exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − s)
· ρ − s

τ − ρ

}
dρ,

which after the substitution z = ρ−s
τ−ρ reduces to

Rj(s, τ, y) =

∞∫

0

z−
1
2 (1 + z)−1 exp

{
− (y − h(τ))2

2bj(τ, h(τ))(τ − s)
· z

}
dz,

and thus, satisfies the inequality

|Rj(s, τ, y)| ≤ C. (31)
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Denote by L
(1)
j2 the first term in the right hand side of equality (30) and by L

(2)
j2 the second

one.

If we express, using the Lagrange formula, the difference of exponents in the square brack-

ets of the expression for L
(1)
j2 through the value of its derivative at the intermediate point

x = y − h(s) + θ(h(s) − h(τ)), and then take this derivative, we get

L
(1)
j2 (s, τ) =

1√
2πbj(τ, h(τ))

∫

Djs

x

bj(τ, h(τ))(τ − s)

× exp

{
− x2

2bj(τ, h(τ))(τ − s)

}
(h(τ)− h(s))Rj(s, τ, y)µ(s, dy).

From this equality and estimate (31) and condition V it follows that

|Lj1(s, τ)| ≤ C(τ − s)
α
2 . (32)

Then (31) implies

|Lj2(s, τ)| ≤ C

(
µ
(

s, Dδ
js

)
+ exp

{
− δ2

2B(τ − s)

})
, (33)

where Dδ
js = {y ∈ Djs : |y − h(s)| < δ}, δ is any positive number, B is the constant from I.

Combining (28)–(30), (32), (33), we conclude that

lim
s↑τ

Lj(s, τ) = 0.

This completes the proof of (27).

With relation (27) in mind, we put the derivative under the integral sign in expression (26)

and then equate this expression to (24). After elementary simplifications, we get the system of

Volterra integral equations of the second kind, which is equivalent to (20)

Vi(s, t) =
2

∑
j=1

t∫

s

Kij(s, τ)Vj(τ, t)dτ + Ψi(s, t), i = 1, 2, (34)

where

Ψi(s, t) = −
√

bi(s, h(s))Φ̂i(s, t),

Kij(s, τ) =

√
2

π

√
bi(s, h(s)) · ∂

∂s
Nij(s, τ).

The function Ψi in (34) satisfies inequality (25), but kernels Kij(s, τ) do not have the inte-

grable singularity. For Kij(s, τ) we can only get the estimate

Kij(s, τ) ≤ C(τ − s)−1, 0 ≤ s < τ < t ≤ T. (35)

Estimate (35) is caused by the integral

∫

Dδ
js

∂Zj0(s, y, τ, h(τ))

∂y
µ(s, dy), (36)
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which is in the expression for the derivative of Lj

∂

∂s
Lj(s, τ) =

τ∫

s

(ρ − s)−
3
2

[ ∫

Djρ

Zj0(ρ, y, τ, h(τ))µ(ρ, dy)

−
∫

Djs

Zj0(ρ, y, τ, h(τ))µ(s, dy)

]
dρ

−

√
πbj(τ, h(τ))

2

( ∫

D
(δ)
js

∂Zj0(s, y, τ, h(τ))

∂y
µ(s, dy)

+
∫

R\D
(δ)
js

∂Zj0(s, y, τ, h(τ))

∂y
µ(s, dy)

)
.

All other components of the expression for Kij(s, τ) admit inequalities the right hand sides of

which have the form C(δ)(τ − s)−1+ α
2 , where C(δ) is a positive constant depending on δ.

Despite the fact that the kernels Kij(s, τ) do not have an integrable singularity, a solution

of system of equations (34) exists and can be found by the ordinary method of successive

approximations:

Vi(s, t) =
∞

∑
n=0

V
(n)
i (s, t), 0 ≤ s < t ≤ T, i = 1, 2, (37)

where

V
(0)
i (s, t) = Ψi(s, t),

V
(n)
i (s, t) =

2

∑
j=1

t∫

s

Kij(s, τ)V
(n−1)
i (τ, t)dτ, n = 1, 2, . . .

The convergence of series (37) is the consequence of the following inequality, which is

proved by induction according to the scheme applied in [9] in the study of system of equa-

tions (34) for the case when h ≡ 0:

∣∣∣V(n)
i (s, t)

∣∣∣ ≤ C‖ϕ‖(t − s)−
1
2

n

∑
k=0

Ck
na(n−k)(m(δ))k , n = 0, 1, . . . , (38)

where

a(k) =

(
2c(δ)T

α
2 Γ

(
α
2

))k
Γ
(

1
2

)

Γ
(

1+kα
2

) , k = 0, 1, . . . , n,

m(δ) = max
s∈[0,T]

µ(s, Dδ
1s ∪ Dδ

2s) < 1 (for sufficiently small δ).

From inequality (38) it also follows that the function Vi(s, t), i = 1, 2, admits the estimate

|Vi(s, t)| ≤ C‖ϕ‖(t − s)−
1
2 , 0 ≤ s < t ≤ T. (39)



ON FELLER SEMIGROUP GENERATED BY SOLUTION OF NONLOCAL PARABOLIC CONJUGATION PROBLEM 343

Thus, we have constructed the solution u(s, x, t) of problem (2)–(7) of form (19), (37), which,

in view of estimates (12), (13), (17), (39), belongs to the class C1,2(S
(1)
t ∪ S

(2)
t ) ∩ C(St) and satis-

fies the inequality

|u(s, x, t)| ≤ C‖ϕ‖(t − s)−
1
2 . (40)

The assertion on the uniqueness of the constructed solution of problem (2)–(7) follows from

the maximum principle [5].

The obtained result allows us to state the following theorem:

Theorem 1. Let the conditions I–V hold. Then problem (2)–(7) has a unique solution belonging

to C1,2(S
(1)
t ∪ S

(2)
t ) ∩ C(St). Besides, this solution admits representation (19), (37) and estimate

(40).

2 CONSTRUCTION OF FELLER SEMIGROUP

Denote by C0(R) the subspace of Cb(R), which consists of all functions ϕ ∈ Cb(R) for

which the condition (7) holds. Since the subspace C0(R) is closed in Cb(R), it is a Banach

space.

We introduce the two-parameter family of linear operators Tst : C0(R) → C0(R), 0 ≤ s <

t ≤ T, by the following rule:

Tst ϕ(x) = u(s, x, t, ϕ), (41)

where u(s, x, t, ϕ) is a solution of (2)–(7) with the function ϕ in (3).

Note that the operators Tst have the following properties in C0(R):

a) if a sequence of functions ϕn ∈ C0(R) is such that sup
n

‖ϕn‖ < ∞ and lim
n→∞

ϕn(x) = ϕ(x)

for all x ∈ R, then lim
n→∞

Tst ϕn(x) = Tst ϕ(x) for all 0 ≤ s < t ≤ T, x ∈ R;

b) the operators Tst are positivity preserving (0 ≤ s < t ≤ T), i.e, Tst ϕ ≥ 0 for every

ϕ ∈ C0(R) such that ϕ ≥ 0;

c) the operators Tst are contractive (0 ≤ s < t ≤ T), i.e., they do not increase the norm of

the element;

d) Tst = TsτTτt, 0 ≤ s < τ < t ≤ T (the semigroup propery).

The proof of property a) is based on well known assertions of calculus on passage of the

limit under the summation and integral signs (here this concerns series (37) and integrals on

the right hand side of equality (19)). This property allows us to prove the next properties of

the operator family Tst, without loss of generality, under the assumption that the function ϕ

has a compact support.

Let us prove property b). Let ϕ ∈ C0(R) be a nonnegative function with a compact support.

Denote by m the minimum of Tst ϕ(x) in (s, x) ∈ St. If we assume that m < 0, then from the

minimum principle [5] it follows that the value m is attained only when s ∈ (0, t) and x = h(s).

Fix s0 ∈ (0, t) for which Ts0t ϕ(h(s0)) = m. Then

γ(s0)Ts0t ϕ(h(s0)) +
∫

D1s0
∪D2s0

[Ts0t ϕ(h(s0))− Ts0t ϕ(y)]µ(s0 , dy) < 0,
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which contradicts (5). The contradiction we arrived at indicates that m ≥ 0, what had to be

proved.

The proof of property c) is similar to the proof of b).

The semigroup property of operators Tst is a consequence of the assertion on the

uniqueness of the solution of problem (2)–(7). Indeed, to find u(s, x, t) = Tst ϕ(x), provided

lims↑t u(s, x, t) = ϕ(x), one can solve the problem first in the time interval [τ, t], and then solve

it in the time interval [s, τ] with that ’initial’ function u(τ, x, t) = Tτt ϕ(x), which was obtained;

in other words, Tst ϕ(x) = Tsτ(Tτt ϕ)(x), ϕ ∈ C0(R), or Tst = TsτTτt.

Properties a)–d) of operators Tst imply the following assertion.

Theorem 2. Let the conditions of Theorem 1 hold. Then the two-parameter family of operators

Tst, 0 ≤ s < t ≤ T, defined by (41), describes the inhomogeneous Feller process on the line R,

which coincides in D1s and D2s with given diffusion processes generated by operators L
(1)
s and

L
(2)
s respectively, and its behavior at point x = h(s) is determined by conjugation condition (5).
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Копитко Б.I., Шевчук Р.В. Про напiвгрупу Феллера, породжену розв’язком нелокальної параболiчної

задачi спряження // Карпатськi матем. публ. — 2018. — Т.10, №2. — C. 333–345.

У статтi розглядається задача побудови напiвгрупи Феллера для одновимiрного неоднорi-

дного дифузiйного процесу з мембраною, розташованою в точцi, положення якої на числовiй

прямiй визначається за допомогою заданої функцiї, що залежить вiд часової змiнної. При цьо-

му припускається, що у внутрiшнiх точках пiвпрямих, роздiлених мiж собою мембраною, шу-

каний процес має збiгатися iз заданими там звичайними дифузiйними процесами, а його по-

ведiнка на спiльнiй межi цих областей визначається заданою нелокальною умовою спряження

типу Феллера-Вентцеля. Дану задачу ще називають задачею про склеювання двох дифузiйних

процесiв на прямiй.

З метою вивчення сформульованої проблеми в роботi застосовано аналiтичнi методи. Та-

кий пiдхiд дозволяє визначити шукану сiм’ю операторiв з допомогою розв’язку вiдповiдної за-

дачi спряження для лiнiйного параболiчного рiвняння другого порядку (оберненого рiвняння

Колмогорова) з розривними коефiцiєнтами. Цей розв’язок побудовано методом граничних iн-

тегральних рiвнянь за припущення, що коефiцiєнти рiвняння задовольняють умову Гельдера

з ненульовим показником, початкова функцiя є обмеженою i неперервною на всiй числовiй

прямiй, а параметри, якi характеризують умову спряження Феллера-Вентцеля та крива, що

визначає спiльну межу областей, де задане рiвняння, задовольняють умову Гельдера з пока-

зником бiльшим, нiж 1
2 .

Ключовi слова i фрази: напiвгрупа Феллера, дифузiйний процес, параболiчна задача спря-

ження.


