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COUPLED FIXED POINT RESULTS ON METRIC SPACES DEFINED BY BINARY
OPERATIONS

In parallel with the various generalizations of the Banach fixed point theorem in metric spaces,
this theory is also transported to some different types of spaces including ultra metric spaces, fuzzy
metric spaces, uniform spaces, partial metric spaces, b-metric spaces etc. In this context, first we
define a binary normed operation on nonnegative real numbers and give some examples. Then we
recall the concept of T-metric space and some important and fundamental properties of it. A T-
metric space is a 3-tuple (X, T, ¢), where X is a nonempty set, ¢ is a binary normed operation and T
is a T-metric on X. Since the triangular inequality of T-metric depends on a binary operation, which
includes the sum as a special case, a T-metric space is a real generalization of ordinary metric space.
As main results, we present three coupled fixed point theorems for bivariate mappings satisfying
some certain contractive inequalities on a complete T-metric space. It is easily seen that not only
existence but also uniqueness of coupled fixed point guaranteed in these theorems. Also, we provide
some suitable examples that illustrate our results.
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1 INTRODUCTION

It is well known that the Banach contraction principle is a fundamental result in metrical
tixed point theory. After this classical result, many authors have extended, generalized and
improved this theorem using different contractive conditions (see [1, 3,4, 6]). On the other
hand, fixed and common fixed point results in different types of spaces including ultra metric
spaces, fuzzy metric space, uniform space, partial metric space, b-metric space etc, have been
developed (see [2,5,8,9,12]). An interesting generalization of metric space named as T-metric
space has been recently introduced by [11] (see also [10]). Briefly, the concept of T-metric space
is based on the fact that the triangle inequality in the metric definition depends on a binary
operation.

This study was organized as follows: first, we recall the definition of T-metric and some
properties of it. Finally, we prove some coupled fixed point theorems for single valued map-
pings in complete T-metric spaces satisfying different contractive type condition.

Here we will emphasize the concept of ultra metric because of it will be mentioned in the
next. Let (X, d) be a metric space. If the metric d satisfies strong triangle inequality:

d(x,y) < max{d(x,z),d(z,y)} Vx,y,z € X,

then d is called an ultra metric on X and the pair (X, d) is called an ultra metric space. An ultra
metric space (X, d) is said to be spherically complete if every shrinking collection of balls (that
is, every nested decreasing sequence of balls) in X has a nonempty intersection.
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2 A BINARY NORMED OPERATION AND T-METRIC SPACES

In this section, we define a binary normed operation and give some examples.
A binary normed operation is a mapping ¢ : [0,00) x [0,00) — [0,00) which satisfies the
following conditions:

(i) ¢ is associative and commutative,
(ii) ¢ is continuous,
(iii) a00 =aforalla € [0, c0),
(iv) aob < codwhenevera < cand b < d for each a,b,c,d € [0, ).

Some typical examples of ¢ are as follows: leta, b € [0, o)

(@) a1 b =max{a,b},
(b) aorb=a2+ 12,
(c) acsb=a+,

(d) acyb=ab+a+0,
(e) aosb = (va+vb)~

Straightforward calculations lead to the following relations among normed binary opera-
tions given above
aorb<aoyb<aozb<acogb

and
l}l<>3b§ﬂ<>5b.

The following lemma defines a normed binary operation exploiting some properties of a self
map on [0, o).

Lemma 1. Let f : [0,00) — [0,00) be any continuous, increasing and onto mapping. Let
©:]0,00) x [0,00) — [0,00) be defined by

aob=f71(f(a) + (b))
fora,b € [0,00). Then ¢ is a normed binary operation.
Proof. It follows immediately. O

Example 1. Let f : [0,00) — [0,00) defined by f(x) = e* — 1. Obviously f is a continuous
and increasing map. Therefore by Lemma 1, a o b = In(e® + ¢ — 1) defines a normed binary
operation.

We have the following simple observations about a normed binary operation.

Lemma 2. The following statements hold for any normed binary operation.
i)Ifr,r’ > 0,thenr <ror.
ii) For 6 € (0,r), there exists &' € (0,r) such thaté' ¢ < r.
iii) For all ¢ > 0, there exists 6 > 0 such that ¢ < e.
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Proof. i) Since ' > 0, using properties (iii) and (iv) of a normed binary operation ¢, we have
ror' >ro0=r.

. . . . 1

i) If we assume that every ¢’ > 0 gives 6’ ©J > r. In particular, if we set &' = s we get
s 6 > r which on taking the limit as n — oo implies that 0 © 6 > r which is a contradiction.

Hence by part (i) of this lemma we obtain &' < ¢’ ¢ < r.

1 1 1
iii) Assume the contrary, i.e., forall § > 0,606 > e. For 6 = — L we have — ¢ — > ¢ which on

n
taking the limit as n — oo gives 0 > ¢, which is a contradiction. Hence iii) follows O
Now, we recall the concept of T-metric.

Definition 1 ([10]). Let X be a nonempty set. A T-metric on X is a function T : X> — R that
satisfies the following conditions, for each x,y,z € X,

1. T(x,y) > 0and T(x,y) = 0ifand only ifx =y,
2. T(x,y) = T(y,x),

3. T(x,y) <T(x,z)oT(y,z).

The 3-tuple (X, T, ¢) is called a T-metric space.

Example 2 ([11]). i) Every ordinary metric d is a T-metric witha o b = a + b.
ii) Every ultra metric d is a T-metric witha o b = max{a, b}.

iii) Let X = R and T(x,y) = +/|x —y| forall x,y € R. If we take a ©b = +/a? + b2, then we
have

T(xy) = /lx—yl <\l —z +]z—y| = W\x—zmwz—w = T(x,2) 0 T(z,y).

Therefore, the function T is a T-metric on X.
iv) Let X = R and T(x,y) = (x —y)? for every x,y € R. If we takeaob = (\/a + v/b)?,
then we get

2
T(xy) = (x—yP =x—yP <(x—z|+ 2= y2=(/|x — 2P+l = y12) =T(x,2) e T(z,y).
Hence, the function T is a T-metric on X.
Remark 1 ((11]). Fora fixed 0 < a < g, if there exist B,y such that0 < a < B+ < g, then

tana < tan B + tany + tan S tan 7.

Example 3 ([11]). Let X = [0,1] and T(x,y) = tan(g|x —y|) for every x,y € X. If we take
aob = a+ b+ ab, then by Remark 1 we obtain

T(xy) = tan(Glx—yl)

= T(x,z)0T(z,y).

T T T T
tan(z\x —z|) —l—tan(z\z —y|) +tan(Z\x —z])tan(zlz —vy|)

So, the function T is a T-metric on X.
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Let (X, T, ¢) be a T-metric space. For r > 0 define
Br(x,r) ={y € X: T(x,y) <r}.
Definition 2 ((11]). Let (X, T, ¢) be a T-metric spacer > 0 and A C X.

1. The set Br(x,r) is called the open ball of a center x and a radius r.

2. If for all x € A there exists r > 0 such that Br(x,r) C A, then the subset A is called an
open subset of X.

3. The subset A of X is said to be T-bounded if there exists r > 0 such that T(x,y) < r for
allx,y € A.

4. A sequence {x,} in X converges to x if T(x,,x) — 0 asn — oo and we write lim x, = x.
n—oo

That is for each ¢ > 0 there exists ny € IN such that T(x,, x) < ¢ for alln > ny.

5. A sequence {x,} in X is called a Cauchy sequence if for each ¢ > 0, there exists np € N
such that T(x,, xy) < € for alln,m > ny.

6. The T-metric space (X, T,©) is said to be complete if every Cauchy sequence is conver-
gent.

Let T be the set of all open subsets of X, then 7 is a topology on X (induced by the T-metric
T). Note that if A and B are open subsets of X and x € A N B, then there exist €1, e, > 0 such
that Br(x,e1) C A and Br(x,e3) C B. Let e = min{eq, €2} > 0, then by Lemma 2 (iii), there
exists 6 > 0 such that 6 ¢ < ¢. In this case, we have Br(x,0 ¢d) C Br(x,e1) N Br(x,e2) C
AN B, hence AN Bis open.

Lemma 3 ([11]). Let (X, T, ) be a T-metric space. If r > 0, then the open ball Br(x,r) with a
center x € X and a radius r is an open set.

Lemma 4 (11]). Let (X, T, ©) be a T-metric space. If a sequence {x,} in X converges to x, then
X is unique.

Lemma 5 ([11]). Let (X, T, ¢) be a T-metric space. Then every convergent sequence {x,} in X
is a Cauchy sequence.

Definition 3 ((11]). Let (X, T, ¢) be a T-metric space. T is said to be continuous if
lim T(xu, yn) = T(x,y),

whenever
lim T(x,,x) = lim T(y,,y) = 0.

n—oo n—oo

Lemma 6. Let (X, T,¢) be a T-metric space. Then T is a continuous function.

Proof. Assume that lim,_,co T(Xp, X) = limy—e0 T(y4,y) = 0. By the triangular inequality we
have

T(xn, yn) < T(xn, x) 0 T(x,y) o T (Y, Yn)-

Hence we get
lim sup T(xn/yn) < T(x/y)

n—oo
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Similarly, we obtain
T(x,y) < T(x,x1) © T(xn,yn) © T(Yn,y)

and so
T(x,y) < r}gn inf T(xy, Yn).
Therefore
lim T(xp,yn) = T(x,y).

n—oo

Henceforth, we assume that ¢ is a binary operation on [0, ) X [0, o) such that
i)a(aob) = aaoab for every a« € RT,
ii) there exists 1 > O such that 1010 ---01 < n'.
—_—
n

Example 4. Letaob = max{a,b},aob= a2 +b2,a0b=a+bandaob = (y/a+ VD)2 We
takeh > 0,h > %,h > 1and h > 2 respectively in (ii). Butifa b = a + b 4+ ab, then is not

necessary that ¢ satisfies the above conditions.

3 COUPLED FIXED POINT THEOREMS IN T-METRIC SPACES

Now, we remember the concept of a coupled fixed point on a T-metric space.

Definition 4 ([7]). Let X be a nonempty set and F : X x X — X be a function. An element
(x,y) € X x X is said to be a coupled fixed point of the map F if F(x,y) = x and F(y,x) = y.

Example 5. Let X = R. Define a map F on X x X by F(x,y) = xy?. It is easy to see that
(1,—1) € X x X is a coupled fixed point of the mapping F.

Theorem 1. Let (X, T, ©) be a complete T-metric space. Suppose that themap F : X x X — X
satisfies the following contractive condition for all x,y, u,v € X

T(F(x,y),F(u,v)) < kT(x,u)IT(y,v), (1)
where k, | are nonnegative constants with k ¢ < 1. Then F has a unique coupled fixed point.

Proof. Choose xg,1o € X and set x; = F(xg,yo) and y; = F(yo, Xo). We can define sequences
{xn} and {yn} by xp11 = F(xu,yn) and yu41 = F(yn, Xn). By (1) we have

T(xn,xn+1) = T(F(xnflryn*1>/F(xnfyn))

< kT(xn-1,%0) O 1T (Yn—-1,Yn). 2)
Similarly
T(Yn ynt1) = T(FWn-1,%n-1), F(Yn, xn))
< kT(Yn—1,Yn) o IT(x4—1, Xn). 3)
Letting

dn — T(xn/ anrl) <& T(ynr yi’l+1>/ (4)
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we get
dy = T(xnr xn+1> © T(ynr ynJrl)
< KT(xp—1,%0) 1T (Yn—1,Yn) ©kT (Yy—1,yn) o 1T (X1, xn)
= (ko D)[T(xn-1,%n) © T(Yn-1,Yn)]
= (kol)dy—1. 5)
Consequently, if we set § = k ¢, then for each n € IN we obtain
dy < 8dy 1 < 8%y < --- < 5"dy. (6)

If dy = 0 then T(xp,x1) ¢ T(yo,y1) = 0. Hence, we get xo = x1 = F(xo,y0) and yp = 11 =
F(yo, x0), i-e., (x0, Yo) is a coupled fixed point of F. Now suppose that dy > 0. For each n > m
we have

T(xp, xm) < T(xp, Xp—1) 0 T(xp_1,Xp—2) 0 T(Xpa1, Xm)-

In the same manner, we get

T(Yn,Ym) < TWYn,Yn-1) © T(Yn-1,Yn-2) ¢+ © T(Yms1,Ym)-
Thus

T(xn, Xm) T(xn/xm) OT(yn/ym)
dy_10dy o0 ody
(6" 10" 20 06™)dy

Mdy(1o---01)
—_—

IAIA N INA

My (1o---01)
———

n

< 5md0nh — 0.

Hence for ¢ > 0 we can find ny € IN such that for all n > m > ng we get T(x,, xp) < e.
Similarly, we can get T(yn, ym) < €. It follows that {x,} and {y,} are Cauchy and by the
completeness of X, {x,} and {y, } converge to u* and v* in X respectively. Thus

lim T(x,, u*) = lim T(y,,v*) = 0. (7)

n—o0 n—o0
Using the triangular inequality and (1) we get
T(F(u*,0%),u*) < T(F(u*,v"),xp41) 0 T(xps1,u")
= T(F(u*,v"),F(xn,yn)) ¢ T(xp41,u")
< KT(xp,u™) o IT(yy, 0*) © T(xy41, u™).
Letting n — oo, then from (7), we obtaln T(F(u*,v*),u*)) = 0 and so F(u*,v*) = u*. In the
same maner, we have F(v*,u*) = v*; i.e., (u*,v ) is a coupled fixed point of F. Now, if (u/,v")
is another coupled fixed point of F we get
T(u',u*) = T(F(u',v'), F(u*,0*)) <kT(u',u*) oIT(v,v*)
and
T(v',0*) = T(F(v',u), F(v*,u*)) < kT(v',0*) o IT (', u*).
Then
T, u*)o T, 0*) < (ko )[T(u',u*) o T(v,0%)].
As kol < 1, we have T(u',u*) o T(v',v*) = 0 and so u’ = u* and v' = v*. The proof of
Theorem 1 is completed. O
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Example 6. Let X = R and T(x,y) = +/|x —y| forall x,y € R. If we takeaob = va? + b2,
2y _ 1 for all x,y € X. For all

then the function T is a T-metric on X. Let F(x,y) =
x,y,u,v € X, we obtain

T(E (), Fu) = L5020 =2)
ﬁ<¢|x—u|+z|y—v|>

o %T(y,v).

IN

= LT(x,u)

V5

Hence for k = 1 andl = Q, we get k<1 < 1. It follows that all conditions of Theorem 1

V5 V5
5

hold, and (—5, —=) € X x X is the unique coupled fixed point of the mapping F.

5)
Example 7. Let X = R and T(x,y) = (x —y)? forall x,y € R. If we takeaob = (y/a+/b)?,
x—{;)2y —1 for all x,y € X. For all

then the function T is a T-metric on X. Let F(x,y) =
x,y,u,v € X, we obtain

T(F(x,y),F(u,v)) = <x;”+2ygv>2
X — U2 N2
< 2(%7) +a (YY)

2 8
= 2 lx =l + oy~ o)?
< (Fh—ul+ 2y o))
2 8
= gT(x,u)ogT(y,v).

Hence for k = % and | = 285, we getkol = 1 < 1. It follows that the all conditions of

Theorem 1 hold, and < - §> € X x X is the unique coupled fixed point of the mapping F.

2" 2
Theorem 2. Let (X, T, ¢) be a complete T-metric space. Suppose that the mapping F : X x X —
X satisfies the following contractive condition for all x,y,u,v € X

T(F(x,y),F(u,v)) <kT(F(x,y),x) oIT(F(u,v),u), (8)
where k, | are nonnegative constants with k ¢l < 1. Then F has a unique coupled fixed point.

Proof. Choose xg,1o € X and set x; = F(xg,yo) and y; = F(yo, Xo). We can define sequences
{xn} and {yn} by x,41 = F(xn, yn) and y, 11 = F(Yn, Xn). By (8), we have

T( (xnflrynfl)rF(xn/yn»
kT( (xn 1/ Yn— 1) Xn— 1)<>ZT( (xnr]/n)rxn>
KT (xp, Xp—1) © 1T (Xy41, Xn)-

T(xn, Xnt1)

IN
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If T(xp11,%n) > T(xn, x,—1) then

kT (xp, xp—1) 1T (Xp41, Xn)
(ko )T (xy41, Xn)
T(x}’l+11 Xn>,

T(xn, Xp+1)

ANVANRVAN

which is a contradiction. Hence

T(xp, xp41) < (ko D)T(xy—1,xn) = 6T (X1, Xn).

Similarly
T(yn Yn+1) < (ko DTYn-1,Yn) = 6T (Yn-1,Yn).

So,ifm >n

T(xp, xm) < (xn,an) O T(xXps1, Xp42) 0 -0 T(Xp—1, Xm)
< 0"T(xg,x1) 08" T (xg, x1) 0+ -0 8™ 1T (x0, x1)
= 0"T(x0,x1)(10606%0---08m "1
< O"T(xp,x1)(1ol0l0---01)
m-—n
< 0"T(xp,x1)(lololo---01)
m

< 6T (xg, x1)m".
It is easy to see that for all m > n there exists s > 0 such that m < »n®. Thus
T(xp, Xm) < 6"T(xg, x1)n"™ — 0.

Hence for ¢ > 0 we can find ny € IN such that for all m > n > ng we get T(x,, xp) < e
Similarly, we can get T(yn, ym) < €. It follows that {x,} and {y,} are Cauchy and by the
completeness of X, {x,} and {y, } converge to u* and v* in X respectively. Thus

lim T(x,,u*) = lim T(y,,v*) =0. 9)

n—oo n—oo

Applying the triangular inequality and (8) we get

T(F(u*,0"),u”) < T(F(u*,0"),xp41) 0 T(Xps1,u")
= T(Fu",v"), F(xn,yn) © T(xXp11,u")
< KT, 0%),0%) o IT(F (X, ), %) © T(ns1, 7).

Letting n — oo and from (9) we obtain T(F(u*,v*),u*)) < kT(F(u*,v*),u*)) which implies
that T(F(u*,v*),u*)) = 0and so F(u*, v*) = u*. In the similar manner, we have F(v*, u*) = v*,
i.e; (u*,v*) is a coupled fixed point of F. Now, if (u/,v") is another coupled fixed point of F,
then

T, u*) = T(F@',v),Fu*,v"))

F(u',9"),u") o IT(F(u*,v"),u*)
u',u') o IT(u*, u*) = 0.

A
~ o=
5 S

This implies that T(#/,u*) = 0 and so #’ = u*. Siimilarly v = v*. The proof of Theorem 2 is
completed. O
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Theorem 3. Let (X, T, ©) be a complete T-metric space. Suppose that the mapping F : X x X —
X satisfies the following contractive condition for all x,y,u,v € X

T(F(x,y),F(u,v)) <kT(F(x,y),u) oIT(F(u,v),x), (10)

where k, | are nonnegative constants with kol 1 < 1. Then F has a unique coupled fixed
point.

Proof. Choose xg,1o € X and set x; = F(xg,yo) and y; = F(yo, Xo). We can define sequences
{xn} and {yn} by x,41 = F(xn, yn) and y,1+1 = F(yn, xn). By (10), we have

T(xn, xn+1) = T(F(xp—1,Yn-1), F(xn,yn))
KT(F(xy—1,Yn-1),%n) ©IT(F(Xn,Yn), Xn—1)
KT (xp, xn) 1T (Xp41, Xn—1)

T(Xpy1,%n-1)

IT(xp41,%n) © T (X0, Xp—1)-

IN

IN

If T(xp41,%xn) > T(xn, xy—1) then

IT(xp 41, Xn) O 1T (X411, Xn)
(1o D)T(xp41,%n)
(kolol)T(xp11,Xn)
T(xXp41,Xn)-

T(xn, Xp+1)

AN VAN VAN VAN

which is contradiction. Hence
T(xn, Xp41) < (Lo D)T(xp—1,xn) = 6T (Xp—1,Xn),

Similarly
(ynz]/n—i-l) (l Ol) (yn—lr]/n) = 5T(]/n—1z]/n);
whered =10l <kolol <1.So,if m > n,

T(xp, xm) < (xn,an) o T(xXps1,Xn42) 0 -0 T(Xp—1, Xm)
< O"T(xg,x1) 00" 1T (xg,x1) 0+ 0 8™ 1T (x0, x1)
= 0"T(x0,x1)(10608%0---05m 1)
< 0"T(xp,x1)(lololo---01)
mtn
< 0"T(xp,x1)(lololo---01)

m

< 6T (xg, x1)m".
It is easy to see that for all m > n there exists s > 0 such that m < »n®. Thus
T(xp, xm) < 8"T(xg, x1)n"™ — 0.

Hence for ¢ > 0 we can find ny € IN such that for all m > n > ng we get T(x,, xp) < €.
Similarly, we can get T(yn, ym) < €. It follows that {x,} and {y,} are Cauchy and by the
completeness of X, {x,} and {y,} converge to u* and v* in X respectively. Thus

lim T(x,, u*) = lim T(y,,v*) = 0. (11)

n—oo n—o0
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Using the triangular inequality and (10) we get

( )rXnt1) © T(Xpi1,u")
(F(u*,0"), F(xn, yn) © T(xp41,u")
< KT(F(u*,v%),x4) IT(F(xn,yn), u*) o T(xp41, u™).

*

T(F(u*,0%),u*) <

T(F(u*,v
T(F

Letting n — oo, then from (11) we obtain T (F(u*,v*),u*)) < kT(F(u*,v*),u*)). This implies
that T(F(u*,v*),u*)) = 0and so F(u*, v*) = u*. In the similar manner, we have F(v*, u*) = v*;

i.e., (u*,v*) is a coupled fixed point of F. Now, if (u’,v’) is another coupled fixed point of F,
then

T, u*) = T(F(/,o"),F(u*,0%))
kKT(F(u',7"),u*) o IT(F(u*,0*),u’)
KT (u',u*) o IT(u*,u')
(ko )T (u',u*)

< (kolol)T(u',u*)

< T, u*).

IN

This implies that T(u/, u*) = 0 and so 1’ = u*. Similarly ' = v*. The proof of Theorem 3 is
completed. O

Ifwesetaob=a+Dband T(x,y) = d(x,y) in Theorem 1 we have

Corollary 1. Let (X, d) be a complete metric space. Suppose that the mapping F : X x X — X
satisfies the following contractive condition for all x,y,u,v € X

d(F(x,y),F(u,v)) < kd(x,u)+1d(y,v),
where k, | are nonnegative constants with k + 1 < 1. Then F has a unique coupled fixed point.
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ITapareAbHO AO pi3HMX y3araAbHeHb Teopemu banaxa mpo Hepyxomy TOUKY B METPUYHMX ITPO-
CTOpax, Lk TeOpisl € 3aCTOCOBHOIO AO Pi3HMX TUITiB IIPOCTOPIB, 30KpeMa, TaKMX sIK yAbTPpaMeTPIJHi
IIPOCTOPH, HEUIiTKi MeTPpUUHi IIPOCTOpYM, piBHOMIPHI IPOCTOpHM, YaCTKOBO MeTpMYHI IpocTopH, b-
MeTpWUHi IPOCTOPM Ta iH. Y IbOMY KOHTEKCTi CHOUaTKy MM BM3Ha4aeMO HiHapHY HOpMOBaHY OIle-
pallifo Ha HeBiA'€MHIMX AIMICHMX UMCAaX 1 AA€MO Kinbka mpmkaaaiB. Toai Mu srapyeMo moHSTTS 1-
METPUYHOTO IIPOCTOPY Ta J0ro BaXXKAMBI i pyHAAMEHTaAbHI BAACTMBOCTI. T-MeTPpUYHIIA IPOCTip —
e Habip (X, T, <), Ae X € HEIOPO>XHBOI MHOXIHOIO, ¢ — GiHapHOIO HOpMOBAHOIO omepauicio i T €
aesikoro T-merpuxoro Ha X. OCKiAbKM HEPiBHICTD TPUKYTHMKA AAST T-MeTPUKI 3aAeXWTh Bia 6iHap-
HOI orepatlii, AAsI IKOI YaCTKOBMM BUIIaAKOM € CyMa, T-MeTpUJHMIA IPOCTIp € CIpaBXXHiM y3araAb-
HEHHSM 3BMUYAlfHOTO METPUYHOIO MpOCTOPY. [ OAOBHMMM pe3yAbTaTaMy, SIKi MM IIPEACTABASIEMO, €
TPV TEOPEMM AASI TTap HEPYXOMMX TOYOK AASI ABOXBUMIPHMX BiAOOpakeHb, IO 3aA0BOABHSIIOTD Ae-
sIKi HepiBHOCTI CTVCKY B TOBHMX T-MeTPUIHMX IpOCTOpax. AeTko 6aumTy, 10 He TiIABKY iCHyBaHHS,
ane i eAMHICTD Tapy HEPYXOMMX TOUOK rapaHTy€eThCST LIMMM TeopeMaMu. Tako>X My IpeACTaBASIEMO
AesIKi MPMAATHI IIPMKAAAM, IO IAIOCTPYIOTh HAIlli pe3yAbTaTH.

Kntouosi cnoea i ppasu: 6iHapHa HOpMOBaHa omepallisi, T-MeTpUIHIII IPOCTip, apa HePyXOMIX
TOYOK.



