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HILBERT POLYNOMIALS OF THE ALGEBRAS OF SL;-INVARIANTS

We consider one of the fundamental problems of classical invariant theory, the research of
Hilbert polynomials for an algebra of invariants of Lie group SL,. Form of the Hilbert polynomials
gives us important information about the structure of the algebra. Besides, the coefficients and the
degree of the Hilbert polynomial play an important role in algebraic geometry. It is well known
that the Hilbert function of the algebra SL,-invariants is quasi-polynomial. The Cayley-Sylvester
formula for calculation of values of the Hilbert function for algebra of covariants of binary d-form
C; =C[V; @ C2]5L2 (here V; is the d + 1-dimensional space of binary forms of degree d) was ob-
tained by Sylvester. Then it was generalized to the algebra of joint invariants for n binary forms. But
the Cayley-Sylvester formula is not expressed in terms of polynomials.

In our article we consider the problem of computing the Hilbert polynomials for the algebras
of joint invariants and joint covariants of n linear forms and n quadratic forms. We express the

Hilbert polynomials ’H(Il("), i) = dim(Cl(n))i, ’H(Cl(n), i) = dim(C}"))i, ’H(Iz("), i) = dim(Ié"))i,
H(CZ("), i) = dim(Cz(”>)i of those algebras in terms of quasi-polynomials. We also present them in
the form of Narayana numbers and generalized hypergeometric series.

Key words and phrases: classical invariant theory, invariants, Hilbert function, Hilbert polynomi-
als, Poincaré series, combinatorics.
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INTRODUCTION

Let K be a field of characteristic zero. Let V; be the d 4 1-dimensional module of binary
forms of degree d. Let Vg = V;, ® Vy, © ... @V, d := (dq,dy, ...dy). Denote by K[V4]% the
algebra of polynomial SL,-invariant functions on Vj. It is well known that Zy := K[V4]°L2 is
finitely generated and graded:

Zg:=(Za)o® (Za)1®...®(Za)i® ...,

here (Zq); is a vector K-space of invariants of degree i. The dimension of the vector space (Zq);
is called the Hilbert function of the algebra Z4. It is defined as a function of the variable i :

H(Id, l) == dlm(Id)z

It is well known that the Hilbert function of an arbitrary finitely generated graded K-
algebra is a quasi-polynomial (starting from some i), see [7,13,15]. Since the algebra of in-
variants Z4 is finitely generated, we have

H(Zq,i) = ho(i)i" +hy()i" 1+ ...,
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where (i) is some periodic function with values in Q. The quasi-polynomial 7 (Zg, i) is called
the Hilbert polynomial of algebra of invariants Zg.

For the case of one binary form (n = 1) there exists classical Cayley-Sylvester formula for
calculation of values of Hilbert function of Z; :

H(Id, l) = wd(i, O) — wd(i, 2),

where wy (i, k) is the number of non-negative integer solutions of the system:

di — k
014200 +...+day = 12 ,
0+ ap+ .. +ag =1
Also (see [8,14]) we have

)] (et (=) (1 gt
”H(Idrl)—["]< Q=g (1=g%)...(1—q") >

where [qﬂ denotes the coefficient of q%. Generalizations of these formulas to the algebra 7y
was obtained in [1-4].

However, all these results are combinatorial formulas. They are not expressed in terms of
Hilbert polynomials in i. Note that, it is hard to calculate for those formulas even for small
values of dj and i.

Although, Maple-procedure for computing of the Hilbert polynomials of the algebras of
SLy-invariants for small values of d was being offered in [5].

A partial characterization of Hilbert polynomials for non-standard graded algebras was
obtained in [6].

Consider a direct sum of # linear forms nV; = V; @ V; @ ... @ V. In the language of clas-

n times
sical invariant theory the algebras Il(n) := C[nV1]°"2 and Cl(n) := C[nV; @ C?]° are called
the algebra of joint invariants and the algebra of joint covariants for the n linear forms respectively.
Let V, be the complex vector space of quadratic binary forms endowed with the natural action
of the special linear group SL;. Consider the corresponding action of the group SL; on the
algebras of polynomial functions C[nV,] and C[nV, @ C?], where nVs := Vo, @V, @ -+ @ V3.

n times
Denote by Iz(n) = C[nV,]°"2 and by Cz(n) = C[nV, @ C?]5!2 the corresponding algebras of in-
variant polynomial functions. In the language of classical invariant theory the algebras Iz(n)

and Cz(n) are called the algebra of joint invariants and the algebra of joint covariants for the n quadratic
forms respectively.

The algebras Cl("),Il(”), Cé”) and Iz(”) are graded:
¢/ = ("o + (") it 1
Cz(n) = (Cz(n))o + (Cz(n))1 4+ Z(n))i + -, Iz(n)

14+ ( (1'1(”))0+(Il(”))1+...+(Il(”))i+...’
4 T+ (T )+ (@i,

where each of the subspaces (Cl("))i, (Il(”) )is (Cz("))i and (Iz(") )i is finite dimensional. The func-
tions

C
C



HILBERT POLYNOMIALS OF THE ALGEBRAS OF SL,-INVARIANTS 305

are called the Hilbert polynomials of the algebra of joint covariants for the # linear forms, the
Hilbert polynomial of the algebra of joint invariants for the # linear forms, the Hilbert polyno-
mial of the algebra of joint covariants for the n quadratic forms and the Hilbert polynomial of
the algebra of joint invariants for the n quadratic forms, respectively. The formal power series

"z =Y He iz, pa@,z) =Y wa, iz,
i=0 i=0

") z) = Z’H(Cz(n),i) Z, P(Iz(n),z) = ZH(IZ(n),i) Zt
i=0 ]

are called the Poincaré series of the algebras Cl(n), Il(n), Cz(n) and Iz(n) respectively.

In the present paper we obtain explicit formulas for computation of the Hilbert polynomial
of those algebras. We present some results in terms of generalized hypergeometric functions. A
generalized hypergeometric function is given by a hypergeometric series, i.e., a series for which
the ratio of successive terms can be written as follows

qu[bl,...,bq

where (a)y =a(a+1)...(a+ k— 1) is the Pochhammer symbol or rising factorial.

If any a; is a non-positive integer (0, —1, —2,...), then the series has only a finite number of
terms and in fact is a polynomial of degree 4;. If any by is a non-positive integer (excepting the
previous case with by < a;), then the denominators become 0 and the series is undefined.

In the present paper we compute the Hilbert polynomials of the algebras of joint covariants
and invariants for the 7 linear and quadratic forms:

(”) ) = Nn+k 1, k+1, ifi =2k,
ifi:2k+1,
n+k—1 fi— ok

Tan+k k+-1s ifi =2k + 1,

ntk—1\2 /n+i—2k—2\3k —i+1 g
k n—2 k+1 7 !

N~

[4]

0

n+k—1 n+i—2k—1
k n—1 !

where N, = 1(#)(,”,), (1 < k < n) is the Narayana number.

g

—_
~

ifi =1,

2]

NI ~.

2 /

||M
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We also express the Hilbert polynomials H(Iz(n), i), H(Cz(n), i) in terms of generalized hy-

pergeometric function:
N 1 Tl+l_2 E n/n/_%/_i_Tl/_%“{'%

i)=1-n) i 41 _nti=2 _ nti=3 iyl

’ 2 2 /373

i1

(n) N Tl+l—1 n/nr_%r_zr %
H(Cz ,z)-( i )41:3[1 _n+i—1 _ nti-2

H(IT,

i
2 70 T2

1 HILBERT POLYNOMIALS OF THE ALGEBRAS OF JOINT INVARIANTS AND COVARIANTS OF n
LINEAR FORMS

Poincaré series for the algebras of joint invariants and covariants of n linear forms was
derived by L. Bedratyuk in [2]. Using them, author found the following explicit formula for

Poincaré series those algebras in [11]:
)\ Nua(z?) ) Wy_1(z%) + nzN,_1(z%)
P(1y7)2) = (1 _nZZ)Zn—B and P(C,",z) = — 1- ZZ)annl

4

where
n 1<n—1>< n )Zk_l and W, (z) Z”: <Z>sz

Ny(z) = Z Z
= k\k—=1/\k—-1 =
are the Narayana polynomials. Let us use these formulas to obtain the Hilbert polynomials of

the algebras Il(”) and Cl(").
To prove Theorem 1, we need the following lemma.

Lemma 1 ([9,11,16]). Let m, k, s be non-negative integers. Then the generalized Le Jen Shoo

identity holds:

mindkmt i\ 428\ [k — i+ 2m -+ 2s _ (mAk+s\ (m+k+2s
i )Uiss 2m + 25 ~\ m+s m+s )

Theorem 1. The following formulas hold

Nk per, ifi =2k,
0, ifi =2k +1,
k—1\2 o
iy we, n=1""% N, ifi=2k,
! ANk ko1, Ifi=2k+1,

1
where N,, = - (Z) <k i 1) are the Narayana numbers.

Proof. (i) Let us expand function
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into the Taylor series about z = 0:

::i;?<n;3><n— > 2(211—3?—1—1’—1)221-

oo min{k,n—3} ) 2n+k—l— 1
:kg ) < >< < >i+1z

i=0

_i 42k mm{kn 3} n—1 2n+k_1_
=Y 1' t+1 k=i |

Using Lemmal (m =n—3and s = 1), we have:

> 1 (m+k—-2\(n+k—-1
P(Ifn)’z)zkzon—l< n—2 >< n—2 )ZZk'

Statement (i) follows immediately from the definitions of Poincaré series, Hilbert polynomials
and Narayana numbers.

Note that the identity P(Il("),z) = (ﬁ”;fz)(;i% holds for n > 3. Then statement (i) holds
for n > 3. Consider the case n = 2.We obtain that (x1,y1) are coordinates for the first V; and
(x2,y2) are coordinates for the second one, both with respect to the canonical representation

of SL,. There is a single quadratic invariant y;x, — x1y2. Hence

1
PIY2) = s =1+ 2+ 420+
We have , .
(2) N 2 7T1 . ‘ 2 17T
H(Z,”,i) = cos 5 = N2+[%]—1, 21€08" .

This proves that statement (7) holds for n > 2.
(ii) As above we use Poincaré series of the algebra C (n > 1):

nlip—1 =2 n—2 n

Z ZZk Z Z2k—0—1

E()7 B0

_ ”i <n ; 1>222k i ((Zn — 13 +i— 1)22i
R A G A &

_ i min{g_l} <n — 1) <2n +k—i— 2>sz
k=0 =0 ¢ k—i

1) in{kn—2 .
N me{Zﬂ ) (n f2) < n ) (k—z+2n —z>22k+1_
Py i i+1 2n—2
Using Lemma 1, we get:

© 4k —1\2 . n+k—1\ /n+k
pefh = £ (") () (1)

k=0

P, z) =
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This proves (ii) for n > 1. Using a Maple-procedure for computing the Hilbert polynomials
of the algebra Cl(l), see [5], we get H(Cl(l),i) = 1. By formulas (ii) we have H(Cl(l),i) = 1, too.
Hence, (ii) holds for n > 1. O

S

{ ] { ] "2 0082 I +(i+ 1)m71(i — 1)].71 sin? I

Corollary 1.

O M) = oy

2 2

(ii) H(Cl(n)'l 1’1—1 ;2 Z Z

m=1j=1

4

2m+j72

where [} ] are the unsigned Stirling numbers of the first kind.

Proof. (i) Let us express the Narayana numbers in terms of the unsigned Stirling numbers of

the first kind: |
Mg ("5 () - e e
=1, m-n=1p, _ -1
o o | w3 ]Zl[ J ()

2 i

In Theorem 1(i), we proved that ’H(Il("), i)=N cos? Z asn > 1. Since cos?> Z = 0

n+[4]-1,n-1
as i is odd, it follows that
n—1n-1 : j=1 . .qm-1 .
(n) ~ 1 n—1|[n—-1 i i 2 ITC
w5 )| ) () B e

1 — n—17[n-11"1G+2)y-t i .
_(n—l)!(n—Z)!mX::l];{ " }[ ; ]Wcos 7,1fn>1.

(ii) The proof of (ii) is completely analogous to that of (i). O

2  HILBERT POLYNOMIALS OF THE ALGEBRAS OF JOINT INVARIANTS AND COVARIANTS OF n
QUADRATIC FORMS

The Poincaré series of the algebras of joint invariants and covariants of n quadratic forms
are needed for the sequel. They were derived by L.Bedratyuk in [2]. Using them, the author
obtained the following formulas in [12]:

Wn—l(zz) Wn—l(zz) — nZNn—l(Zz)
(1_2)11(1_22)211—1 (1 — Z)”(l — ZZ)Zn—l
Theorem 2. Hilbert polynomials of the algebras of joint invariants and covariants of n quad-
ratic forms are calculated by the following formula:

. (n). [%] n+k n+i—2k—1

(Z) 2 /l = n—1 ’
k:O

i]: n—i—k 1 n+i—2k—=2\3k —i+1
(i) H(T,i k:O n—2
1, iti =1,

P(Cz(n),z) = and P(Iz(n),z) =

k+1 7 ifi>1, where n > 1.
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Proof. This theorem can be proved basically in the same way as Theorem 1.

(n)

(i) Let us expand the Poincaré series of the algebra C,
We have:

into the Taylor series about z = 0.

:i <n+lg_1>222ki<n+:—1)zi
i=0

k=0
o [3]
=)

<n—|—k—1> <n~|—i—2k—1>zi
i=0k=0 i—2k
(ii) Using Theorem 1 (i), we get

- (B (= B (AR EC )

—

k=0 k=0 =
oo [i/2] [i/2]

B n+k—1\" (n+i—2k-1\ ; n+k—1 +k\ (n+i—-2k—-1\ ;4
LTV R )
_i “/2 +k 1 ni—2k—1 _“Zi/z] nrk—1\ (n4k) (ni—2k—=2\\
_: n—1 = k n—1 n—1 z

By the flmtlons of Poincaré series and Hilbert polynomials,
(T, = WZZ] nrk—1\2 (n+i—2k—1\ “Z‘i)/z] nk=1\ (n+k) (nti-2k-2\
= k n—1 = k n—1 n—1
Note that ("*1~22) = 0, as k > [%] We have

[i/2) 2 . [i/2) .
(n) ~ n+k—1 n+i—2k—1 B n+k—1\ /n+k\ (n+i—2k—2
AL )= ), < k ) ( n—1 D k n—1 n—1

k=0 k=0
[g n+k 1\? (n+i—2k—2\ 3k —i+1
B n—2 k+1
We used the Poincaré series 7, ") and C, ™ for n > 1 Using Maple-procedure for computing
the Hilbert polynomials of the algebras Cz( ) and I (see [5]), we get

1) ;-1 L
H(Z, ,z)—2cos(m)+2—cos<2>,

I i
H(C, ,l)—2+4cos(m)+4 = {2] +1.

This completes the proof of Theorem 2. O

(n)

Let us express H(Z, ’,i) in terms of a polynomial.

17:11 <n+k 1) < ]—1> {nml] (k)i

( > <n:ﬁl> {nﬂ (i—2k)" 1 (3k—i+1).

Corollary 2.

Nl~.

I'n

i) M=

0
|

-
=
X
2
:~,
-
irf ﬁm

NI~

»
Il

0
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Proof. (i) By Theorem 2(i) we have:

. n+k—1\%/n+i—2k—1
H(Cz()”):Z( k )( i~ 2k )

Let us express (”+f:§],§_1) in terms of the unsigned Stirling numbers of the first kind:

<n+i—2k—1> T a1 =26

i—2k (n—1)!
—1m-1 n— 1] < 1)
( 2k)m j— 1
(n— 1 mZ:l ]Z(:J { i
(ii) The proof of (ii) is completely analogous to that of (i). O

Let us express the Hilbert polynomial of the algebras of joint covariants and invariants for
n quadratic forms in terms of generalized hypergeometric function:

Corollary 3.
, . n+i—1 nn,—L —=1 _n .
(i) %(Cz(n),l) = < ; )41:3[1 _n+§1 2n+2l 32' 1], ifn > 2,
.. . | —2 nn_l _;1’_1_}_% ‘
(ii) H(Ié”),z):(l—n)<n+l, >5F4 e 22 nii_3 3 ; 3 1 1], ifn>3andi > 1.
! L="" """ 5+3

Proof. (i) By the above

w o Bk N\ o2kt
HG" ) ;( k i— 2k '

Let us remark that ("ﬂ?:gllj 1y = 0 as 2k > i. It means that:

Do & mrk—1\*/n+i-2k—1
2 kgo k i—2k
~1\2 n+i—2k—1

Let us express } ;- (””,; D7("H~%71) in terms of a generalized hypergeometric function in a
way analogous to that used in [10]. Let us denote

L (k-1 2(m+i—-2k—1

ke k i— 2k '
n+i—1

()

A1 _ (k+n)?(k — %)(k— Tl)
ar (k4 1)2(k — =L (k- 2H=2)

We have
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It now follows that

) . 1
(n) N 7’l+1—1 nln/_%/_lT
H(Cz ’l) - ( i 4k 1 _n+é?1 _n+£?2

(ii) The proof of (ii) is completely analogous to that of (i). O
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T.10, Ne2. — C. 303-312.

Mu posrasiaaemMo oAHY 3 PyHAAMEHTAABHMX IIPOOAEM KAACMYHOI Teopil iHBapiaHTiB — AOCAi-
AKeHHsT MHOTOUAeHiB 'iabbepTa arrebpm imBapianTis rpymm Ai SL,. @opma MHOTOUAEHIB 'iAbbep-
Ta Hece BaXXAMBY iHdpOopMaliio po cTpyKTypy Hiei arre6pu. Kpim Toro xoedpimieHT i cremiHb MHO-
rouneHiB ['iAbbepTa BiAIrpaloTh BaXKAMBY pOAb B aATeOpaiuHilt reoMeTpii. BiaoMo, 110 mounHaoum
3 aesikoro i pyHkist I'iabbepTa arrebpu SL,-iHBapiaHTiB € kBasiMHOrouAeHOM. Dopmyra Keani-
CiabBecTpa AAST OOUMCAeHHS 3HaueHb (pyHKIII [1AbbepTa aare6pm KoBapiaHTiB biHapHOI d-dpopmu
Cy = C[V; ® C?) L2 (TyT V; — xommrexcHMit d + 1-BUMipHMIT BeKTOpHMIA POCTip b6iHapHMX dpopm
crernens d) 6yaa 3ampornoHoBaHa Ile CiAbBECTPOM i Mi3Hillle y3araAbHeHa Ha aATeOpy CIIABHMX iH-
BapiaHTiB CKiH4YeHOI KiabkocTi 6iHapHMX doopMm. ITpoTe 11i dopMyan He BupaxaloTh PyHKIIL ['iab-
bepTa sIK MHOTOYAEH Bia, i.

B Hamiit cTaTTi MM PO3TASIAAEMO 3aAady OOUMCAeHHS B sIBHiMI dpopmi MHOrouaeHiB I'iabbepTa
aATebp CIiABHMX iHBapiaHTIB Ta CHIABHMX KOBapiaHTIiB 11 AiHIHIX POpM i 1 KBaapaTUIHMX pOpM.

Mu Bupasuan mHorouserm ['iabbepTa 1mx aarebp ’H(Il(n), i) = dim(C}"))i, ’H(C}"), i) = dim(Cl(n))i,
H(Iz(n), i) = dim(Ién)),-, H(Cén), i) = dim(Cé")),- y BUTSIAI KBa3iMHOTOUAEHIB Bia i, a TAKOX HOAA-
AM iX y TepMiHax BiAOMIX KOMGIHATOPHIUX CTPYKTYP, Takmx sik umcao HapasiHa Ta y3araabHeHII1
rinepreoMeTpUYHIIA PSIA.

Kntouosi croea i hpasu: xaacwaHa Teopist iEBapiaHTiB, iHBapianTN, dyHKIIs I'iAB6EpTa, MHOTO-
unenn 'iabbepTa, kBaziMHOrOouAery, psiau [lyankape, koMmbiHaTopuKa.



