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INVARIANT IDEMPOTENT MEASURES

The idempotent mathematics is a part of mathematics in which arithmetic operations in the reals
are replaced by idempotent operations. In the idempotent mathematics, the notion of idempotent
measure (Maslov measure) is a counterpart of the notion of probability measure. The idempotent
measures found numerous applications in mathematics and related areas, in particular, the opti-
mization theory, mathematical morphology, and game theory.

In this note we introduce the notion of invariant idempotent measure for an iterated function
system in a complete metric space. This is an idempotent counterpart of the notion of invariant
probability measure defined by Hutchinson. Remark that the notion of invariant idempotent mea-
sure was previously considered by the authors for the class of ultrametric spaces.

One of the main results is the existence and uniqueness theorem for the invariant idempotent
measures in complete metric spaces. Unlikely to the corresponding Hutchinson’s result for invariant
probability measures, our proof does not rely on metrization of the space of idempotent measures.

An analogous result can be also proved for the so-called in-homogeneous idempotent measures
in complete metric spaces.

Also, our considerations can be extended to the case of the max-min measures in complete metric
spaces.

Key words and phrases: idempotent measure (Maslov measure), iterated function system, invari-
ant measure.
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INTRODUCTION

The idempotent mathematics is a part of mathematics in which arithmetic operations on
the reals are replaced by idempotent operations (e.g., max, min; see [9]). According to an infor-
mal correspondence principle, every substantial notion of the (ordinary) mathematics has its
counterpart in the idempotent mathematics. In this way we obtain the notion of idempotent
measure, which is an idempotent analogue of that of probability measure. The idempotent
measures found numerous applications, e.g. in the optimization theory, mathematical mor-
phology, and game theory (see [2,12-15]).

Different aspects of the theory of idempotent measures are considered in [1,5,8,22]. In
particular, the topology of spaces of the idempotent measures on some compact metric spaces
is investigated in [5]. However, the theory of idempotent measures is considerably less devel-
oped than that of probability measures.

The mathematical foundations of the theory of deterministic fractals were created by Hut-
chinson [16]. In particular, he introduced the notions of invariant (self-similar) set and invari-
ant measure for an iterated function system (IFS) of contractions on a complete metric space.
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The existence of invariant measures is proved in [16] by using the Banach contraction principle
for suitable metrization of the set of probability measures on a metric space. The invariant
measures impose an additional structure on the invariant set for the given IFS.

In [4], the authors considered a modification of the notions of invariant set and invariant
probability measure, namely, the notions of in-homogeneous set and in-homogeneous proba-
bility measure (see also [17,18]). The inhomogeneous sets and measures are used, in particular,
in image compression (see, e.g., [19]).

The aim of this note is to introduce the invariant idempotent measures for given IFS. In
the case of idempotent measure, we use the weak* convergence for proving the existence of
invariant element. This approach seems to be fairly general and we anticipate new results in
this direction (see the concluding remarks).

Note also that the invariant idempotent measures on ultrametric spaces are introduced and
investigated in [11].

1 PRELIMINARIES

As usual, C(X) denotes the Banach space of continuous functions on a compact space X.
We endow C(X) with the sup-norm. For any ¢ € R, by cx we denote the constant function on
X taking the value c.

By A we denote the closure of a set A in a topological space.

Let Rmax = R U {—o0}. We use the following operations ®, @ of idempotent mathematics
(seee.g., [9]): xOy =x+y,and x ®y = max{x,y}, x,¥ € Rmax (convention: (—c0) @ x = x©®
(—00) = —00, (—0) B x = x B (—o0) = x). Also we consider the operations ®: R x C(X) —
C(X),A®¢=Ax+ ¢, and ®&: C(X) x C(X) — C(X),(¢ ® ) = max{e, P}

Definition 1.1. A functional ji: C(X) — R is called an idempotent measure (a Maslov mea-
sure) if

1 u(ex) =c,
2. u(c® @) =co ¢, and

3. uledy) =ulp) ©uyp)

(see, e.g., [22] and references therein for the history and motivations of the notion of Maslov
measure and Maslov integral).

By I(X) we denote the set of all idempotent measures on X.

Let dy (or 6(x)) denote the Dirac measure concentrated at x € X, i.e., 6x(¢) = ¢(x), ¢ €
C(X). Clearly, 6y € I(X). A more complicated example of an idempotent measure is y =
@ a; © Oy, where x; € X and &; € Ripax, 1 =1,...,1n,and ®}_ja; = 0.

We endow the set I(X) with the weak* topology. In the case of compact metrizable space
X, this topology is completely described by the convergent sequences: (y;)$°, converges to u
if and only if lim; , pi(¢) = u(¢), for all ¢ € C(X).

Given a map f: X — Y of compact Hausdorff spaces, the map I(f): I(X) — I(Y) is
defined by the formula I(f)(p)(¢@) = u(¢f), for every u € I1(X) and ¢ € C(Y). That I(f) is
continuous and that I is a covariant functor acting in the category Comp of compact Hausdorff
spaces and continuous maps was proved in [22].
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If f: A — X is an embedding of compact Hausdorff spaces, then so is the map
I(f): I(A) — I(X). We identify I(A) and the subspace I(f)(I(A)) via this embedding. The
support supp () of an idempotent measure y € I(X) is the minimal (with respect to inclusion)
closed subset A in X such that € I(A). According to [7] one can define the space I(X) also
in non-compact case. If X is a Tychonov space, then let

I(X) = {u € I(BX) | supp(p) C X C X},

where BX stands for the Stone-Cech compactification of X.

Recall that a map f: X — Y of a metric space (X, d) into a metric space (Y, ) is called a
contraction if there exists ¢ € (0,1) such that o(f(x), f(v)) < cd(x,y), forall x,y € X.

By exp X we denote the hyperspace of a topological space X, i.e., the set of all nonempty
compact subsets of X. If (X, d) is a metric space, then exp X is endowed with the Hausdorff
metric dy,

d(A,B) =inf{e > 0| A C O:(B), BC Os(A)},

where O,(C) stands for the r-neighborhood of a set C in X.

2 RESULT

Let X be a complete metric space and let fi, ..., f, be an Iterated Function System (there-
after IFS) on X. We assume that all f; are contractions. Let also «,...,a, € R be such that
@Z-lexi =0.

We denote by ¥ the identity map of exp X and, for i > 0, define ¥;: expX — expX
inductively: ¥;(A) = U1 (Fi—1(A)).

Let ®y: I(X) — I(X) be the identity map. For i > 0, define ®;: I(X) — I(X) inductively:
D;(n) = j=t.70 I(fj)(®i—1(p)). Thus, ®; = DDy - - - Dy (i times). It is easy to check that the
maps P; are well-defined. In this case, we say that u € I(X) is an invariant idempotent measure
if ®;(u) = pforeveryi =0,1,... (equivalently, @ (u) = p).

Now, let T € I(X) and letay, ..., a,, « € Rbe such that (& ,a;) & a = 0. Let &y = &y and
define ®;: 1(X) — I(X) inductively: &;(u) = 10 © I(f;))(®i—1(1)) ® « © 7. Following the
terminology of [17, 18] we say that /i € I(X) is an inhomogeneous invariant idempotent measure if
p=di(p).

Theorem 1. There exists a unique invariant idempotent measure for the IFS f,..., f, and
a1, .., 0y € Rwith®! ,a; = 0. This invariant measure is the limit of the sequence (®; (1)),
for arbitrary y € 1(X).

o0

Proof. Let u € I(X). We are going to prove that the sequence (®;(u)(¢))?>, converges for
arbitrary ¢ € C(X).

We first note that, without loss of generality, one may assume that X is compact. Indeed,
for every i > 0, we see that

(e 9]

supp (®;(u)) C ¥i(supp(p)) C |J ¥;(supp(n))
j=0

and the latter set is compact by [16].



INVARIANT IDEMPOTENT MEASURES 175

Let ¢ € C(X) and let ¢ > 0. There exists 7 > 0 such that, for every A C X, diam(A) < 5
implies diam(@(A)) < e. There exists N € N such that for every k > N,

diam(f;, ... f;, (X)) <,
forevery iy, ..., i € {1,...,n}. Then

PN (1) (9) = P (0, ©--- Owiy) © u(@fiy .- fiy)

i1ein
=(wj, ©- - O wjy) O e f - fiy)
for some ji, ..., jn. By the choice of N,

p(x) —e < plofiy .- fiy) < (x) +e (1)
for every x € fj ... fj (X). There is j such that a; = 0. Then, for every k > 1,

®N+k(y)((l)> > (Oéjl ORRRNO, ‘X]'N> © H((Pfjl f]Nf] f])
k

Then also ¢(x) —& < pu(ofj, - f]Nf] fi) < ¢(x) +¢, forevery x € f; .. f]Nf] Jfi(X) C
k k
fir - - - fin (X). We conclude that @y (1) (@) > Py (1) (@) — 2e and, since the sequence (®;(u))
is bounded, we conclude that there exists the limit of this sequence.
Now we are going to prove that the limit does not depend on the choice of u. Let also
v € I(X). Again, without loss of generality, one may assume that X is compact. Indeed, one
could let

X = |J ¥j(supp(p) Usupp(v)).
=0
Replacing u by v in (1) we obtain ®n.x(u)(¢) > Pn(v)(¢) — 2¢ and therefore
Hmy oo Pk (1) (@) = limy 0o Pnak(p) > On (V) (@) — 2¢. From the latter inequality we obtain

lim @(1) (p) > lim @y(v)() —2¢

and, because of arbitrariness of ¢ > 0, limy o, P(1) (@) > Imy_ 00 PN (V) ().
Switching y and v we obtain the reverse inequality and therefore the equality.
Finally, the uniqueness of the invariant idempotent measure is an obvious consequence of
the above established fact that the limit lim;_,, ®;(¢) does not depend on the choice of .
U

Example 1. Let X = [0,1] and let f1, f,: X — X be given by the formulas: fi(t) = t/3,
f2(t) = (t+2)/3. The invariant set that corresponds to the IFS f1, f, is exactly the middle-
third Cantor set.

Leta; = 0and ay = —1. Let u = dy. Then, for everyn > 1,

m=00&s @ (- k)®5<i2>.

‘ . 3
1<ii<-+-<ix<n 1

Then the invariant idempotent measure corresponding to { f1, f2; a1, a2} is

. k2
lim =006 P (k)@&(Z :

l
1<iy <<y 137
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One can similarly prove the following result.

Theorem 2. There exists a unique inhomogeneous invariant idempotent measure for the IFS
fi,..., fnanday, ..., ay,a € R with (@?erxi) @ a = 0. This inhomogeneous invariant measure
is the limit of the sequence ($;(1))$>,, for arbitrary y € I1(X).

3 MAX-MIN MEASURES

Let R = Rpax U {00} = RU{—o00,c0}. In the sequel, ® is used for min.
A functional pi: C(X) — R is called a max-min measure if the following are satisfied:

1 u(ex) =c¢;
2. uleay) =ule) duyp);
3. ule® @) =cxu(e)

(see, e.g., [6] for details).

By J(X) we denote the set of all max-min measures on a compact Hausdorff space X. The
set J(X) is endowed with the weak*-topology. A base of this topology consists of the sets of
the form

{ne]JX) | |ulei) —vigi)| <e i=1,...,n},

wherev € J(X), ¢; € C(X),i=1,...,n,n € N. Every map f: X — Y of compact Hausdorff
spaces induces a map J(f): J(X) — J(Y) defined as follows: J(f)(u)(¢) = u(¢f). Itis proved
in [6] that | is a functor acting in the category Comp. Similarly as above, one can consider the
spaces J(X) for Tychonov (in particular, metrizable) spaces X.

Let X be a complete metric space and let f1, ..., f, be an IFS on X. We assume that all f; are
contractions. Let also a1, ..., a, € R be such that DI a; = oo.

Let ®): J(X) — J(X) be the identity map. For i > 0, define ®’: J(X) — J(X) inductively:
Qi) = 10 ® J(fi)(®i—1(n)). We say that u € J(X) is an invariant max-min measure if
@ (u) = pforeveryi =0,1,... (equivalently, ] (1) = p).

The following can be proved similarly as Theorem 1.

Theorem 3. There exists a unique invariant max-min measure for the IFS fy,..., f, and
&1, ..., 0, € Rwith®!_ a; = oo. This invariant measure is the limit of the sequence (®(u))$2,,
for arbitrary y € J(X).

The notion of inhomogeneous invariant max-plus measure can be defined similarly to that
of inhomogeneous invariant idempotent measure. One can also formulate (and prove) a coun-
terpart of Theorem 3 for the inhomogeneous invariant max-plus measures.

4 REMARKS AND OPEN QUESTIONS

Our construction is in a sense parallel to that of the invariant probability measure from [16].
The latter implicitly exploits the structure of monad for the probability measure functor P
(more specifically, the so-called multiplication map P? — P) and, in our case, the definition of
@ is based on the monad structure for the functor I (see [22]).



INVARIANT IDEMPOTENT MEASURES 177

The proof of existence of the invariant probability measure implicitly uses the existence
of a ‘nice’ functorial metrization of the spaces of probability measures of metric spaces.
In particular, this metrization satisfies the property that the mentioned multiplication map
P2(X) — P(X) is nonexpanding and it is well-known that the Kantorovich metrization is as
required [16,21]. Note that a metrization of the spaces I(X) is constructed in [5]. However, it is
not known whether the multiplication map I?(X) — I(X) is non-expanding, for a metric space
X. Taras Banakh informed the authors that one can construct a metrization of the spaces I(X)
which allows for applying Banach’s contraction principle. As far as we know, his result is not
published. Remark that the existence of invariant objects for IFSs in some general assumptions
was considered in [3].

Some other generalizations can be made for the so called Lawson monads in the category
Comp introduced by T. Radul [20].

Note that in [10] the first-named author considered the invariant inclusion hyperspaces for
IFSs in complete metric spaces.
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IneMIIOTEHTHa MaTeMaTHKa € YaCTMHOIO MaTeMaTVKM, B sIKili apudpMeTHdIHi orepariii Ha MHO-
KMHI AIVICHMX UMCeA 3aMiHIOIOTHCSI iA€MITIOTEHTHMMM OIlepallisiMi. Y iAeMIIOTeHTHil MaTeMaTHIli
TIOHSITTSI iAeMIIOTeHTHOI Mipu (Mipy MacAoBa) € BiATOBiAHMKOM HOHSITTSI IMOBipHicHOI Mipn. Iaem-
IIOTEHTHi Mipy 3HAWIIIAY UMCAEHHI 3aCTOCYBaHHS B MaTEMAaTHIIl Ta CyMiXHIMX 06AACTSIX, 30KpeMa, B
Teopil onTuMi3zalii, MaTeMaTH4HIl Mopdroaorii Ta Teopil irop.

Y miji 3aMiTIi MU 3alIpOBaAXyEeMO MOHSTTS iHBapiaHTHOI iA@MIIOTeHTHOI MipM AAsI iTepOBaHOI
cucTeMu (pyHKIIN y TOBHOMY MeTpUMYHOMY npocTopi. Lle iaeMIOTeHTHIMIT aHAAOT TIOHSITTS iHBapi-
aHTHOI iMOBipHicHOI Mipy, o3HaueHOi ['aT4iHCOHOM. 3ayBakMO, IO TIOHSITTSI iHBapiaHTHOI iAeMIIO-
TeHTHOI Mipy paHillle PO3rAsIAAAOCS aBTOPaMU AAST KAACy YABTPaMeTPUYHMX ITPOCTOPIB.

OAHIMM 3 OCHOBHMX pe3yAbTaTiB € TeOpeMa iCHyBaHHsI Ta EAMHOCTi AAS iHBapiaHTHMX iAeMIIOTeH-
THMX Mip y IOBHMX MeTpMUHMX HpocTtopax. Ha BiaMiHY Bia BiATIOBiAHOTO pe3yAbTaTy 'aTuiHcoHa
AASL iHBapiaHTHMX iMOBIpHICHMX Mip, Hallle AOBeAEHHSI He OIMpPAEThCsl Ha MeTPM3alilo IPOCTOPYy
iAeMIIOTeHTHMX Mip.

AHaAOTiUHMIA pe3yAbTaT MOXHA TaKOX AOBECTU AASI TaK 3BaHMX HEOAHOPIAHMX iA@MIIOTEeHTHIX
Mip y OBHMX METPUYUHMX ITPOCTOPAX.

Taxox Han MipKyBaHHS MOXXHa IOLIMPUTM Ha BAIIAAOK Max-min Mip y MOBHMX METPIMYHIX
IIpOCTOpax.

Kntouosi cnosa i ppasu: iremroreHTHa Mipa (Mipa MacaoBa), cucTeMa iTepoBaHNMX BiaO6pakeHb,
iHBapiaHTHa Mipa.



