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TRANSLATION, MODULATION AND DILATION SYSTEMS IN SET-VALUED

SIGNAL PROCESSING

In this paper, we investigate a very important function space consists of set-valued functions

defined on the set of real numbers with values on the space of all compact-convex subsets of complex

numbers for which the pth power of their norm is integrable. In general, this space is denoted by

Lp(R, Ω(C)) for 1 ≤ p < ∞ and it has an algebraic structure named as a quasilinear space which

is a generalization of a classical linear space. Further, we introduce an inner-product (set-valued

inner product) on L2(R, Ω(C)) and we think it is especially important to manage interval-valued

data and interval-based signal processing. This also can be used in imprecise expectations. The

definition of inner-product on L2(R, Ω(C)) is based on Aumann integral which is ready for use

integration of set-valued functions and we show that the space L2(R, Ω(C)) is a Hilbert quasilinear

space. Finally, we give translation, modulation and dilation operators which are three foundational

set-valued operators on Hilbert quasilinear space L2(R, Ω(C)).
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INTRODUCTION

The translation, modulation and dilation operators play an important role in signal pro-

cessing. These operators are usually applied to electromagnetic signals such as radio, lasers,

optics and computer networks. For example, the translation operator provides parallel dis-

placement for a discret-time signal. The modulation operator changes the wealths of a sound

wave. As it is well known, converting an analog signal to a digital signal leads to ambiguous

computation errors. In such circumstances to perform signal processing we need the area of

interval-valued signal processing, more generally set-valued signal processing (see [1–3]). In

this work, we introduce translation, modulation and dilation operators on L2(R, Ω(C)) which

is a special space of set-valued functions.

Unfortunately, the space L2(R, Ω(C)) have an algebraic structure which is not a linear

space. This structure is called as a “quasilinear space” by Aseev in 1986 [5]. Therefore, he

present an approach for the function spaces of set-valued mappings. Let us give the definition

of a quasilinear space which is presented by Aseev [5].

A set X is called a quasilinear space if a partial order relation ”�”, an algebraic sum oper-

ation, and an operation of multiplication by real numbers are defined in it in such a way that
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the following conditions hold for all elements x, y, z, v ∈ X and all α, β ∈ R:

x � x,

x � z if x � y and y � z,

x = y if x � y and y � x,

x + y = y + x,

x + (y + z) = (x + y) + z,

there exists an element (zero) θ ∈ X such that x + θ = x,

α(βx) = (αβ)x,

α(x + y) = αx + αy,

1x = x,

0x = θ,

(α + β)x � αx + βx,

x + z � y + v if x � y and z � v,

αx � αy if x � y.

Note that the concept of quasilinear space has been only introduced over the field R. As

distinct from Aseev’s definition, in next section we will introduce the quasilinear spaces over

general field K which consists of real or complex numbers.

Any linear space is a quasilinear space with the partial order relation ”x � y ⇐⇒ x = y”.

Perhaps the most popular example of a nonlinear quasilinear space is the set of all non-

empty closed intervals of real numbers sembolized by ΩC(R), and it is a quasilinear space

with the inclusion relation “⊆”, the algebraic sum operation

A + B = {a + b : a ∈ A, b ∈ B}

and the real-scalar multiplication λA = {λa : a ∈ A} .

In fact ΩC(R) is the set of all nonempty compact convex subsets of real numbers and it

is a subset of Ω(R), the set of all nonempty compact subsets of real numbers which is an

another important example of a nonlinear quasilinear space. In general, Ω(E) and ΩC(E) are

the sets of all nonempty closed bounded and nonempty convex closed bounded subsets of any

normed linear space E, respectively. Both are a quasilinear space with the inclusion relation,

the real-scalar multiplication and with a slight modification of addition as follows:

A + B = {a + b : a ∈ A, b ∈ B},

where the closure is taken on the norm topology of E.

The investigation of ΩC(R) or more general Ω(C) contributes interval and convex analysis

and they are excellent tools for mathematical formulation of many real-life situations, for ex-

ample signal processing. Therefore we are interested in the space of Ω(C)-valued functions in

this article.

We know the Banach space Lp(R) for 1 ≤ p < ∞ the space of all functions f for which

| f |p is integrable, is one of the fundamental vector spaces in functional analysis. In this pa-

per we will try to investigate the space Lp(R, Ω(C)) of all functions F : R → Ω(C) such that
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∫
R

‖F(x)‖p
Ω

dx do exist (1 ≤ p < ∞ ). We can see that the set Lp(R, Ω(C)) is a normed quasi-

linear space and the special case L2(R, Ω(C)) is a Hilbert quasilinear space. We use a new

kind inner-product for set-valued functions to construct a norm structure of L2(R, Ω(C)). The

inner-product will be introduced by an integral in the sense of Aumann [8].

1 PRELIMINARIES

We will start by giving the definition of quasilinear space which is different from Aseev’s

definition. In this definition we will consider the quasilinear spaces over a general field K. The

elements of K are real or complex numbers. We think that this approach is suitable mathe-

matical background of some applications, e.g., interval analysis and signal processing.

A set X is called a quasilinear space over field K if a partial order relation “�”, an algebraic

sum operation, and an operation of multiplication by real or complex numbers are defined in

it in such a way that the following conditions hold for any elements x, y, z, v ∈ X and any

α, β ∈ K:

x � x,

x � z if x � y and y � z,

x = y if x � y and y � x,

x + y = y + x,

x + (y + z) = (x + y) + z,

there exists an element θ ∈ X such that x + θ = x,

α(βx) = (αβ)x,

α(x + y) = αx + αy,

1x = x,

0x = θ,

(α + β)x � αx + βx,

x + z � y + v if x � y and z � v,

αx � αy if x � y.

(1)

K is called the scalar field of the quasilinear space X, and X is called a real quasilinear

space if K = R and is called a complex quasilinear space if K = C. Mostly K will be C in this

work.

Any real linear space is a quasilinear space with the partial order relation defined by “x � y

if and only if x = y”. In this case, quasilinear space axioms is the linear space axioms.

Lemma 1 ([5]). Suppose that each element x in quasilinear space X has an inverse element

x′ ∈ X. Then the partial order in X is determined by equality, the distributivity conditions

hold, and consequently X is a linear space.

Hence in a real linear space, the equality is the only way to define a partial order such that

conditions (1) hold.

It will be assumed in what follows that −x = (−1) · x. Also, note that −x may not be x′.
Any element x in a quasilinear space is regular if and only if x − x = θ, that is, if and only if

x′ = −x.
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Now, let us record some basic necessary results from [5]. In a quasilinear space X, the

element θ is minimal, i.e., x = θ if x � θ. An element x′ is called inverse of x ∈ X if x + x′ = θ.

The inverse is unique whenever it exists. An element x possessing inverse is called regular,

otherwise is called singular.

Definition 1 ([6]). Suppose that X is a quasilinear space and Y ⊆ X. Then Y is called a sub-

space of X whenever Y is a quasilinear space with the same partial order on X.

Theorem 1 ([6]). Y is subspace of quasilinear space X if and only if for every x, y ∈ Y and

α, β ∈ K, α · x + β · y ∈ Y.

Proof of this theorem is quite similar to its classical linear algebraic analogue.

Let X be a quasilinear space and Y be a subspace of X. Suppose that each element x in

Y has inverse element x′ ∈ Y then by Lemma 1 the partial order on Y is determined by the

equality. In this case Y is a linear subspace of X. An element x in quasilinear space X is said

to be symmetric if −x = x and Xsym denotes the set of all symmetric elements. Also, Xr stands

for the set of all regular elements of X while Xs stands for the sets of all singular elements and

zero in X. Further, it can be easily shown that Xr , Xsym and Xs are subspaces of X. They are

called regular, symmetric and singular subspaces of X, respectively. Furthermore, it isn’t hard to

prove that summation of a regular element with a singular element is a singular element and

the regular subspace of X is a linear space while the singular one is nonlinear at all.

Example 1. In ΩC(R),

{{0}} ∪ {[a, b] : a, b ∈ R and a < b}

is the singular subspace of ΩC(R). Further {{a} : a ∈ R} is the set of all degenerate intervals

or the set of all singletons of R constitutes the regular subspace Xr . It is a linear subspace of

ΩC(R) and (ΩC(R))r is the copy of R in ΩC(R). In fact, for any normed linear space E, each

singleton {a} , a ∈ E, can be identified with the element a and hence E can be considered as

the (regular) subspace of both ΩC(E) and Ω(E). Further, the regular subspace of both ΩC(E)

and Ω(E) is isometrically isomorphic to E, namely, (ΩC(E))r ≡ E and (Ω(E))r ≡ E.

Let X be a real or complex quasilinear space. The real-valued function on X is called a norm

if the following conditions hold:

‖x‖ > 0 if x 6= 0,

‖x + y‖ ≤ ‖x‖+ ‖y‖ ,

‖αx‖ = |α| ‖x‖ ,

if x � y, then ‖x‖ ≤ ‖y‖ ,

if for any ε > 0 there exists an element xε ∈ X such that

x � y + xε and ‖xε‖ ≤ ε then x � y,

here x, y, xε are arbitrary element in X and α is any scalar.

A quasilinear space X with a norm defined on it, is called normed quasilinear space. It follows

from Lemma 1 that if any x ∈ X has inverse element x′ ∈ X, then the concept of normed

quasilinear space coincides with the concept of real normed linear space. Notice again that x′
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may not be exist but if x′ exists then x′ = −x. Hausdorff metric or norm metric on X is defined

by the equality

h(x, y) = inf
{

r ≥ 0 : x � y + a
(r)
1 , y � x + a

(r)
2 and

∥∥∥a
(r)
i

∥∥∥ ≤ r, i = 1, 2
}

.

Since x � y + (x − y) and y � x + (y − x), the quantity h(x, y) is well-defined for any

elements x, y ∈ X, and it is not hard to see that the function h satisfies all the metric axioms.

Also we should note that h(x, y) may not equal to ‖x − y‖ if X is not a linear space; however

h(x, y) ≤ ‖x − y‖ for every x, y ∈ X.

Lemma 2 ([5]). The operations of algebraic sum and multiplication by real or complex numbers

are continuous with respect to the Hausdorff metric. The norm is continuous with respect to

the Hausdorff metric.

Example 2 ([5]). For a normed linear space E, a norm on Ω(E) is defined by

‖A‖Ω = sup
a∈E

‖a‖E .

Hence ΩC(E) and Ω(E) are normed quasilinear spaces. In this case the Hausdorff (norm)

metric is defined as usual:

h(x, y) = inf{r ≥ 0 : x ⊆ y + Sr(θ), y ⊆ x + Sr(θ)},

where Sr(θ) is a closed ball of E and x, y are elements of ΩC(E) or Ω(E). Further, ΩC(E) is a

closed subspace of Ω(E).

Definition 2 ([5]). A normed quasilinear space X is called an Ω-space if there exists an element

BX 6= θ such that

if ‖x‖X ≤ ‖BX‖X , then x � BX.

If X is a real normed linear space, then Ω(X) is an Ω-space.

Now, let us give a useful type of quasilinear spaces called consolidate quasilinear space.

Definition 3 ([6]). Let X be a quasilinear space, M ⊆ X and x ∈ M. The set

FM
x = {z ∈ Mr : z � x}

is called floor in M of x. In the case of M = X it is called only floor of x and written briefly Fx

instead of FX
x .

Floor of an element x in linear spaces is the singleton {x}. Therefore, it is nothing to discuss

the notion of floor of an element in a linear space.

Definition 4 ([6]). A quasilinear space X is called consolidate quasilinear space whenever

sup Fy do exists for every y ∈ X and

y = sup Fy = sup {z ∈ Xr : z � y} .

Otherwise, X is called non-consolidate quasilinear space.
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Especially, we should note that the supremum in this definition is defined according to the

partial order relation “�” on X. Hence, we will use the notion of “sup
”�“

” in place of general

notation ”sup” to emphasize this case.

Example 3 ([6]). For any normed linear space E, Ω (E) and ΩC (E) are consolidate normed

quasilinear space.

Aseev launched a theory in [5] that we see it as the beginning of quasilinear functional

analysis. However, there was a lot of deficiencies in the theory. One of them is the definition of

inner-product. Now we will give the definition of inner-product in a quasilinear space which

coinsides with its linear analogue [6,7]. Later we will present some fundamental properties of

inner-product and Hilbert quasilinear spaces. Firstly, let us introduce a definition.

Definition 5. For two quasilinear spaces (X,≤) and (Y,�) , Y is called compatible contains X

whenever X ⊆ Y and the partial order relation ≤ on X is the restriction of the partial order

relation � on Y. We briefly use the symbol X⊆Y in this case. We write X / Y whenever X⊆Y

and Y⊆X.

Remark 1. X / Y means X and Y are the same sets with the same partial order relations

which make them quasilinear spaces. However, we may write X = Y for X / Y whenever the

relations are clear from context.

Definition 6. Let X be a quasilinear space. Consolidation of X is the smallest consolidate

quasilinear space X̂ which compatible contains X, that is, if there exists another consolidate

quasilinear space Y which compatible contains X then X̂ ⊆ Y.

Clearly, X̂ = X for some consolidate quasilinear space X. We do not know yet whether each

quasilinear space has a consolidation. This notion is unnecessary in consolidate quasilinear

spaces, hence it is redundant in linear spaces. Further, ̂ΩC(Rn)s = ΩC(R
n).

For a quasilinear space X, the set FX̂
y =

{
z ∈

(
X̂
)

r
: z � y

}
is the floor of y in X̂.

Now, let us give an extended definition of inner-product given in [7]. We can say that the

inner product in the following definition may be seen a set-valued inner product on quasilinear

spaces.

Definition 7. Let X be a quasilinear space having a consolidation X̂. A mapping 〈 , 〉 : X ×
X → Ω(K) is called an inner-product on X if for any x, y, z ∈ X and α ∈ K the following

conditions are satisfied :

If x, y ∈ Xr then 〈x, y〉 ∈ ΩC(K)r ≡ K,

〈x + y, z〉 ⊆ 〈x, z〉+ 〈y, z〉 ,

〈αx, y〉 = α 〈x, y〉 and 〈x, αy〉 = α 〈x, y〉 ,

〈x, y〉 = 〈y, x〉 ,

〈x, x〉 ≥ 0 for x ∈ Xr and 〈x, x〉 = 0 ⇔ x = 0,

‖〈x, y〉‖Ω = sup
{
‖〈a, b〉‖Ω : a ∈ FX̂

x , b ∈ FX̂
y

}
,

if x � y and u � v then 〈x, u〉 ⊆ 〈y, v〉 ,

if for any ε > 0 there exists an element xε ∈ X such that

x � y + xε and 〈xε, xε〉 ⊆ Sε (θ) then x � y.
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A quasilinear space with an inner product is called an inner product quasilinear space.

Remark 2. For some x ∈ Xr , 〈x, x〉 ≥ 0 means 〈x, x〉 is non-negative, that is, the order ”≥” in

the definition is the usual order on ΩC(K)r ≡ K. It should not be confused with the order ”�”

on X.

Example 4 ([6,7]). Let X be a linear Hilbert space. Then the space Ω(X) is a Hilbert quasilinear

space by the inner product defined by

〈A, B〉Ω = {〈a, b〉X : a ∈ A, b ∈ B}

for A, B ∈ Ω(X). Further, there is no need the closure for the definition of inner product on

Ω(C), since {〈a, b〉
C

: a ∈ A, b ∈ B} is closed subset of C. Namely, the inner product on Ω(C)

is given by

〈A, B〉Ω = {〈a, b〉
C

: a ∈ A, b ∈ B} .

Every inner product quasilinear space X is a normed quasilinear space with the norm de-

fined by

‖x‖ =
√
‖〈x, x〉‖Ω

for every x ∈ X. This norm is called inner product norm. Further xn → x and yn → y in a inner

product quasilinear space then 〈xn, yn〉 → 〈x, y〉.

Lemma 3 ([6]). Let X be a inner product quasilinear space. Then

‖〈x, y〉‖Ω ≤ ‖x‖X ‖y‖X

for x, y ∈ X.

A inner product quasilinear space is called Hilbert quasilinear space if it is complete according

to the inner-product (norm) metric. For example, Ω(C) is a Hilbert quasilinear space.

Definition 8 ([5]). Let X and Y be quasilinear spaces. A mapping T : X → Y is called a

quasilinear operator if it satisfies the following conditions:

T(x1 + x2) � T(x1) + T(x2),

T(αx) = αT(x) for any α ∈ R,

if x1 � x2, then T(x1) � T(x2).

Definition 9. Let X and Y be quasilinear spaces. A mapping T : X → Y is called a linear

operator if it satisfies the following conditions:

T(x1 + x2) = T(x1) + T(x2),

T(αx) = αT(x) for any α ∈ R,

if x1 � x2, then T(x1) � T(x2).

Hence linear operators can be obtained by adding an extra condition to the first condition

of quasilinear operators.
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Remark 3. We will see that quasilinear operators may not conserve quasilinear structure. Due

to this obstacle we introduce the linear operator notion acting on quasilinear spaces. Obvi-

ously, any linear operator between quasilinear spaces is a quasilinear operator, but not con-

versely. If X and Y are linear spaces then the definition of quasilinear operators coincides with

the usual definition of a linear operators.

Definition 10 ([5]). Let X and Y be a normed quasilinear spaces. A quasilinear operator T :

X → Y is said to be bounded if there exists a number k > 0 such that ‖Tx‖ ≤ k ‖x‖ for any

x ∈ X.

2 AUMANN INTEGRAL

We will need the integral of set-valued functions when we deal with the space Lp(R, Ω(C)),

1 ≤ p < ∞. For this purpose we will introduce the integral of a set-valued function and give

some properties of this integral.

Integrals of set-valued functions are given by Robert J. Aumann in 1965. It is as follows [8]:

Let I be the unit interval [0, 1]. For any t in I, let F(t) be a nonempty subset of R
n. Suppose

that L be the set of all point-valued functions f from I to R
n such that f is integrable over I

and f (t) ∈ F(t) for all t in I. Define

∫

I

F(t)dt =





∫

I

f (t)dt : f ∈ L





i.e., the set of all integrals of members of L.

Throughout the section we will use the notations: The triple (Γ,A, µ) is a complete σ-finite

measure space, X is a complete separable metric space and F : Γ  X represents a set-valued

function that assigns to each t ∈ Γ a subset F(t) ⊆ X.

Let us give the main definitions and theorems with respect to the integral of a measurable

set-valued function.

Definition 11 ([9]). A set-valued function F : Γ  X is called with closed, open or compact

valued if F(x) is a closed, open or compact set in X, for each x ∈ Γ, respectively.

Definition 12 ([9]). A set-valued function F : Γ X is called measurable if for any open subset

O ⊂X,

F−1(O) = {x ∈ Γ : F(x) ∩O 6= ∅}

is element of A.

Measurability of set-valued functions is closely associated with the concept of measurabil-

ity of its selections.

Definition 13 ([9]). For a given set-valued function F : Γ X, a measurable function f : Γ → X

satisfying

for all x ∈ Γ, f (x) ∈ F(x)

is called a measurable selection of F.
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Theorem 2 ([9]). Let F : Γ  X be closed valued. Then there exists a measurable selection

of F.

We denote by Lp(Γ, X, µ), 1 ≤ p < ∞ the Banach space of all measurable functions f :

Γ → X such that
∫
Γ

‖ f‖p dµ < ∞. If Γ = K, where K = R or K = C and µ is the Lebesque

measure then we find Lp(Γ, X, µ) = Lp(R). For 1 ≤ p < ∞, Sp(F) is the set of all selections

f ∈ Lp(Γ, X, µ) of a measurable set-valued function F : Γ X [10], i.e.,

Sp(F) = { f : Γ → X :
∫

Γ

‖ f‖p dµ < ∞, and f (x) ∈ F(x) for x ∈ Γ}.

Definition 14 ([4]). A set-valued function F : Γ  X is called integrably bounded if there

exists a nonnegative function f ∈ L1(Γ, R, µ) such that

F(x) ⊂ f (x)B almost everywhere in Γ,

where B is the unit ball of X.

Aumann gave the definition of an integral of a set-valued function in the following way:

Definition 15 ([4]). The integral of F on Γ is the set of integrals of integrable selections of F :

∫

Γ

Fdµ =





∫

Γ

f dµ : f ∈ S1(F)



 .

We will say that F is integrable set-valued function in the sense of Aumann if the set {
∫
Γ

f dµ :

f ∈ S1(F)} is not empty. Aumann integral of F will be shown as
(A)∫

Γ

Fdµ.

Proposition 1 ([9]). If G : Γ  X is Aumann integrable and G(x) ⊆ F(x) almost everywhere

on Γ. Then the set-valued function F is also Aumann integrable and

(A)∫

Γ

G(x)dx ⊆
(A)∫

Γ

F(x)dx.

Proposition 2 ([9]). If F, F1, F2 : Γ X are Aumann integrable then F1 + F1 and λF are Aumann

integrable and
(A)∫

Γ

(F1 + F2)(x)dx =

(A)∫

Γ

F1(x)dx +

(A)∫

Γ

F2(x)dx

and
(A)∫

Γ

(λF)(x)dx = λ

(A)∫

Γ

F(x)dx.

Proposition 3 ([9]). If F : R →Ω(X) is Aumann integrable and the integral of F is compact

then ∥∥∥∥∥∥

(A)∫

Γ

F(x)dx

∥∥∥∥∥∥
Ω

≤
(A)∫

Γ

‖F(x)‖Ω dx.
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Theorem 3 ([4]). Let F : Γ Rn be a measurable and closed-valued function. If µ is nonatomic

and F is integrably bounded, then the Aumann integral of F is compact.

Now let us present the Dominated Convergence Theorem for the Aumann integrals.

Theorem 4 ([11]). If Fn : Γ → Ω(C) n = 1, 2, ... are measurable closed valued functions,

{‖Fn(.)‖}∞
n=1 is uniformly integrable and Fn(x) → F(x) with respect to the Hausdorff met-

ric then
(A)∫

Γ

Fn(x)dx →
(A)∫

Γ

F(x)dx.

3 THE HILBERT QUASILINEAR SPACE L2(R, Ω(C))

In this chapter we will concentrate on the quasilinear structure of the Lp(R, Ω(C)) space,

1 ≤ p < ∞. We will show that Lp(R, Ω(C)) spaces are normed quasilinear space over the

field C and later we construct a set-valued inner-product on L2(R, Ω(C)) by way of Aumann

integral.

For 1 ≤ p < ∞, the space Lp(R, Ω(C)) consists of all set-valued measurable functions

F : R →Ω(C) such that the Lebesque integral

∫

R

‖F(x)‖p
Ω

dx

is well defined, where the notion of measurability of F is the measurability in Definition 12.

Note that this integral is a classical Lebesque integral.

Among the Lp(R, Ω(C)) spaces, the case p = 2 has a special importance: We will say that

L2(R, Ω(C)) is an inner-product quasilinear space with respect to the inner-product which is

defined via Aumann integral

〈F, G〉 =
(A)∫

R

〈F(x), G(x)〉Ω dx. (2)

Firstly, let us indicate L2(R, Ω(C)) is a consolidate quasilinear space and so it has a consoli-

dation. Therefore, we can define a set-valued inner-product function on this space. After the

definition of inner-product on L2(R, Ω(C)) we will denote the norm on L2(R, Ω(C)) with

‖F‖ =

∥∥∥∥∥∥
{
∫

R

| f (x)|2 dx : f ∈ S2(F)}

∥∥∥∥∥∥

1/2

Ω

and we will show that this norm comes from the inner-product given by the equality (2). There-

after, we will show that the inner-product norm on L2(R, Ω(C)) coincides with the expression



∫

R

‖F(x)‖2
Ω dx




1/2

,
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namely, the equality

‖F‖ =



∫

R

‖F(x)‖2
Ω dx




1/2

is also a norm on L2(R, Ω(C)). Further, we will prove that L2(R, Ω(C)) is a Banach quasilinear

space with this norm. Thus, we will say that L2(R, Ω(C)) is a Hilbert quasilinear space.

The operations of algebraic sum, multiplication by a complex scalar and the partial order

relation are defined as follows:

(F1 + F2)(x) = F1(x) + F2(x), (λF)(x) = λF(x)

and

F1 � F2 ⇔ F1(x) ⊆ F1(x) for any x ∈ R.

By a similar way given in [5], it is easy to verify that Lp(R, Ω(C)) is a quasilinear space over

the field C by the above algebraic operations and the relation.

Now let us determine the regular elements of Lp(R, Ω(C)), 1 ≤ p < ∞:

F ∈ (Lp(R, Ω(C)))r ⇔ F − F = θ ⇔ F(x)− F(x) = {0}, for all x ∈ R

⇔ F(x) ∈ Ω(C)r ≡ C, for all x ∈ R.

By Ω(C)r ≡ C we mean there exist an isometric isomorphism (equivalence) between these

normed linear spaces. Recall again that the regular subspace of a quasilinear space is just a

linear space. Hence we can give the following corollaries.

Corollary 1. (Lp(R, Ω(C)))r = Lp(R, Ω(C)r) ≡ Lp(R, C) = Lp(R) for 1 ≤ p < ∞. Further, if

F ∈ Lp((R, Ω(C)))r then there exists only one selection of F and this selection is equal to itself.

Now we will prove that the L2(R, Ω(C)) space is a inner-product quasilinear space.

Theorem 5. The quasilinear space L2(R, Ω(C)) is an inner-product quasilinear space with

respect to the inner-product

〈F, G〉 =
(A)∫

R

〈F(x), G(x)〉Ω dx (3)

for F, G ∈ L2(R, Ω(C)) and using the Aumann integral gives the equality

〈F, G〉 =
(A)∫

R

〈F(x), G(x)〉Ω dx = {
∫

R

〈 f (x), g(x)〉
C

dx : f ∈ S2(F), g ∈ S2(G)}. (4)

Proof. Previously, we shall verify that the equality (3) is well-defined, i.e., that the function

UF,G : R →Ω(C), UF,G(x) = 〈F(x), G(x)〉Ω

is integrable according to Aumann and this integral belongs to Ω(C) (see, Definition 7). If

we consider the Theorem 2 then we can say that UF,G has a measurable selection, since UF,G

is closed valued. Thus, this function is integrable according to Aumann. Now we will show
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that the Aumann integral of UF,G is an element of Ω(C): Firstly, let us show that UF,G is inte-

grably bounded, namely, there exists a nonnegative integrable function f : R → R such that

UF,G(x) ⊆ f (x)B for any x ∈ R, where B = {a ∈ C : |a| ≤ 1}. By the definition of norm on

Ω(C),

‖UF,G(x)‖Ω
= ‖〈F(x), G(x)〉Ω‖ = sup{|〈ax, bx〉C

| : ax ∈ F(x), bx ∈ G(x)}.

Since for each x ∈ R, UF,G(x) is a compact set, there exists the elements a0
x ∈ F(x) and b0

x ∈
G(x) which are dependent on x such that

‖UF,G(x)‖Ω
= ‖〈F(x), G(x)〉Ω‖ =

∣∣∣
〈

a0
x, b0

x

〉
C

∣∣∣ .

By reason of the fact that each of the elements x corresponds to the element a0
x ∈ F(x) and

b0
x ∈ G(x), we can define the function f : R → R such that

f (x) =
∣∣∣
〈

a0
x, b0

x

〉
C

∣∣∣ .

Further,
∣∣∣∣∣∣

∫

R

f (x)dx

∣∣∣∣∣∣
≤

∫

R

| f (x)| dx =
∫

R

∣∣∣
〈

a0
x, b0

x

〉
C

∣∣∣ dx =
∫

R

‖UF,G(x)‖Ω
dx =

∫

R

‖〈F(x), G(x)〉Ω‖ dx.

By Lemma 3 and Holder inequality we observe that

∫

R

‖〈F(x), G(x)〉Ω‖ dx ≤
∫

R

(‖F(x)‖Ω ‖G(x)‖Ω)dx ≤ (
∫

R

‖F(x)‖2
Ω dx)1/2(

∫

R

‖G(x)‖2
Ω dx)1/2.

The last inequality implies f is integrable since F, G ∈ L2(R, Ω(C)). Furthermore,

‖UF,G(x)‖Ω
=

∣∣∣
〈

a0
x, b0

x

〉
C

∣∣∣ =
∣∣∣
〈

a0
x, b0

x

〉
C

∣∣∣ ‖B‖ = ‖ f (x)B‖ .

Since Ω(C) is an Ω-space, we have that UF,G(x) ⊆ f (x)B for any x ∈ R and so UF,G is inte-

grably bounded. Consequently, by the Theorem 3 we say that the Aumann integral of UF,G

〈F, G〉 =
(A)∫

R

UF,G(x)dx =

(A)∫

R

〈F(x), G(x)〉Ω dx

is a compact set. The next step is to verify the equality (4): If we apply the definition of Aumann

integral to the set-valued function UF,G then we write

〈F, G〉 =
(A)∫

R

〈F(x), G(x)〉Ω dx =

(A)∫

R

UF,G(x)dx = {
∫

R

h(x)dx : h ∈ S(UF,G)}.

Now let us research the selections of UF,G. By the definition of norm on Ω(C) we write

〈F(x), G(x)〉Ω = {〈z, w〉
C

: z ∈ F(x), w ∈ G(x)} .
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If we remember that h(x) ∈ UF,G(x) for every x ∈ R then for the determined elements z0
x ∈

F(x) and w0
x ∈ G(x) it is written that

h(x) =
〈

z0
x, w0

x

〉
C

,

where z0
x and w0

x are depend on the element x. Let us describe the functions f : R → C and

g : R → C such that f (x) = z0
x and g(x) = w0

x. The functions f and g are well-defined due to

the fact that h is a function. It is obvious that f ∈ S2(F) and g ∈ S2(G) and so f , g ∈ L2(R).

Also we can see that

h(x) = 〈 f (x), g(x)〉
C

for any element x. The equality
∣∣∣∣∣∣

∫

R

h(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

R

〈 f (x), g(x)〉
C

dx

∣∣∣∣∣∣
≤

∫

R

∣∣〈 f (x), g(x)〉
C

∣∣ dx =
∫

R

∣∣∣ f (x)g(x)
∣∣∣ dx

and from the Cauchy-Shwarz inequality give
∫

R

∣∣∣ f (x)g(x)
∣∣∣ dx ≤ (

∫

R

| f (x)|2 dx)1/2(
∫

R

|g(x)|2 dx)1/2
< ∞

and so h ∈ S(UF,G). Hence,

〈F, G〉 =
(A)∫

R

〈F(x), G(x)〉Ω dx = {
∫

R

〈 f (x), g(x)〉
C

dx : f ∈ S2(F), g ∈ S2(G)}.

Now we shall show that the expression (3) defines an inner product on L2(R, Ω(C)) in the

meaning of the Definition 7.

1. If F, G ∈ L2(R, Ω(C)) then 〈F, G〉 ∈ Ω(C)r ≡ C.

If F, G ∈ L2(R, Ω(C)) then by the Corollary 1

〈F, G〉 =
(A)∫

R

〈F(x), G(x)〉Ω dx =
∫

R

〈F(x), G(x)〉
C

dx =
∫

R

F(x)G(x)dx.

Also if we remember that the equality

〈F, G〉 =
∫

R

F(x)G(x)dx

is complex-valued inner product on L2(R) then we say that 〈F, G〉 ∈ Ω(C)r
∼= C.

2. 〈F + G, H〉 = 〈F, H〉+ 〈G, H〉 :

By the second condition of inner product on Ω(C) and the Proposition 1 we have that

〈F + G, H〉 =
(A)∫

R

〈F(x) + G(x), H(x)〉Ω dx ⊆
(A)∫

R

(〈F(x), H(x)〉Ω + 〈G(x), H(x)〉Ω)dx

and from the Proposition 2 we obtain that

〈F + G, H〉 ⊆
(A)∫

R

〈F(x), H(x)〉Ω dx +

(A)∫

R

〈G(x), H(x)〉Ω dx = 〈F, H〉+ 〈G, H〉 .
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3. 〈λF, G〉 = λ 〈F, G〉 and 〈F, λG〉 = λ̄ 〈F, G〉 :

By the third condition of inner product on Ω(C) and the Proposition 2 we have that

〈λF, G〉 =
(A)∫

R

〈(λF)(x), G(x)〉Ω dx =

(A)∫
λ

R

〈F(x), G(x)〉Ω dx

= λ

(A)∫

R

〈F(x), G(x)〉Ω dx = λ 〈F, G〉 .

It can be easily shown that 〈F, λG〉 = λ̄ 〈F, G〉 .

4. 〈F, G〉 = 〈G, F〉 :

By the fourth condition of inner product on Ω(C),

〈F, G〉 =
(A)∫

R

〈F(x), G(x)〉Ω dx =

(A)∫

R

〈G(x), F(x)〉Ω dx = 〈G, F〉 .

5. 〈F, F〉 ≥ 0 for F ∈ (L2(R, Ω(C)))r and 〈F, F〉 = {0} ⇔ F = θ :

If F ∈ (L2(R, Ω(C)))r then f ∈ L2(R) by the Corollary (1) and so

〈F, F〉 =
(A)∫

R

〈F(x), F(x)〉Ω dx = {
∫

R

〈F(x), F(x)〉
C

dx}

= {
∫

R

F(x)F(x)dx} = {
∫

R

|F(x)|2 dx}.

Since the inner-product on L2(R) is non-negative we have that
∫
R

|F(x)|2 dx ≥ 0 and so

〈F, F〉 ≥ 0.

Now let us assume that 〈F, F〉 = 0. Then

(A)∫

R

〈F(x), F(x)〉Ω dx = {
∫

R

〈 f (x), g(x)〉
C

dx : f , g ∈ S2(F)} = {0}.

This implies
∫
R

f (x) f (x)dx =
∫
R

| f (x)|2 dx = 0. Hence, by the Corollary (1) and the norm

on L2(R) we say that f = 0. Since the any selection f of F is equal to 0, we say that F = θ.

6. ‖〈F, G〉‖Ω = sup{‖〈 f , g〉‖Ω : f ∈ FF, g ∈ FG} :

Firstly, it is not hard to see that FF ⊆ S2(F) for F ∈ L2(R, Ω(C)). By this way we say that

sup{‖〈 f , g〉‖Ω : f ∈ FF, g ∈ FG} = sup{

∣∣∣∣∣∣

∫

R

〈 f (x), g(x)〉
C

dx

∣∣∣∣∣∣
: f ∈ FF, g ∈ FG}

= sup{

∣∣∣∣∣∣

∫

R

〈 f (x), g(x)〉
C

dx

∣∣∣∣∣∣
: f ∈ S2(F), g ∈ S2(G)} = ‖〈F, G〉‖Ω .
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7. 〈F1, G1〉 ⊆ 〈F2, G2〉 if F1 � F2 and G1 � G2 :

If F1 � F2 and G1 � G2 then F1(x) ⊆ F2(x) and G1(x) ⊆ G2(x) for a.e. x ∈ R. By the

seventh condition of inner product on Ω(C) we say that

〈F1(x), G1(x)〉 ⊆ 〈F2(x), G2(x)〉 .

Therefore, using the Proposition 1 implies the equality

〈F1, G1〉 =
(A)∫

R

〈F1(x), G1(x)〉 dx ⊆
(A)∫

R

〈F2(x), G2(x)〉 dx = 〈F2, G2〉 .

8. We show that if for any ε > 0 there exists an element Fε ∈ L2(R, Ω(C)) such that F � G + Fε

and 〈Fε, Fε〉 ⊆ Sε(θ) then F � G :

Suppose that for any ε > 0 there exists an element Fε ∈ L2(R, Ω(C)) such that F � G + Fε

and 〈Fε, Fε〉 ⊆ Sε(θ). Then

‖〈Fε, Fε〉‖Ω ≤ ‖Sε(θ)‖Ω = ε. (5)

Further,

‖〈Fε, Fε〉‖Ω =

∥∥∥∥∥∥

(A)∫

R

〈F(x), F(x)〉Ω dx

∥∥∥∥∥∥
Ω

=

∥∥∥∥∥∥
{
∫

R

〈 fε(x), gε(x)〉
C

dx : fε, gε ∈ S2(Fε)}

∥∥∥∥∥∥
Ω

= sup{

∣∣∣∣∣∣

∫

R

〈 fε(x), fε(x)〉
C

dx

∣∣∣∣∣∣
: fε ∈ S2(Fε)}

= sup{

∣∣∣∣∣∣

∫

R

| fε(x)|2 dx

∣∣∣∣∣∣
: fε ∈ S2(Fε)} = ‖Fε‖2 .

Hence by the inequality (5) we say that ‖Fε‖2 ≤ ε. The last condition of norm on

L2(R, Ω(C)) indicates F � G.

For 1 ≤ p < ∞, the expression

‖F‖ =

∥∥∥∥∥∥
{
∫

R

| f (x)|p dx : f ∈ Sp(F)}

∥∥∥∥∥∥

1/p

Ω

defines a norm on Lp(R, Ω(C)) and so this space is a normed quasilinear space and this norm

is an inner-product norm obtained from the inner-product (3). Notably,

‖F‖2 = ‖〈F, F〉‖ =

∥∥∥∥∥∥

(A)∫

R

〈F(x), F(x)〉Ω dx

∥∥∥∥∥∥
Ω

=

∥∥∥∥∥∥
{
∫

R

〈 f (x), g(x)〉
C

dx : f , g ∈ S2(F)}

∥∥∥∥∥∥
Ω

= sup{

∣∣∣∣∣∣

∫

R

〈 f (x), g(x)〉
C

dx

∣∣∣∣∣∣
: f , g ∈ S2(F)} = sup{

∣∣∣∣∣∣

∫

R

〈 f (x), f (x)〉
C

dx

∣∣∣∣∣∣
: f ∈ S2(F)}

= sup{
∫

R

| f (x)|2 dx : f ∈ S2(F)}.
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Since for bounded subset A ⊂ C we have that sup |A| = sup
∣∣A

∣∣ where |A| = {|a| : a ∈ A}
then

‖F‖2 = ‖〈F, F〉‖ = sup{
∫

R

| f (x)|2 dx : f ∈ S2(F)} = sup {
∫

R

| f (x)|2 dx : f ∈ S2(F)}

=

∥∥∥∥∥∥
{
∫

R

| f (x)|2 dx : f ∈ S2(F)}

∥∥∥∥∥∥
Ω

and so

‖F‖ =

∥∥∥∥∥∥
{
∫

R

| f (x)|2 dx : f ∈ S2(F)}

∥∥∥∥∥∥

1/2

Ω

.

Lemma 4. For p = 2, the inner-product norm is equivalents to (
∫
R

‖F(x)‖2
Ω dx)1/2 i.e., if F ∈

L2(R, Ω(C)) then

‖F‖ =

∥∥∥∥∥∥
{
∫

R

| f (x)|2 dx : f ∈ S2(F)}

∥∥∥∥∥∥

1/2

Ω

= (
∫

R

‖F(x)‖2
Ω dx)1/2. (6)

Proof. By the Proposition 3 and the norm of inner-product on Ω(C), we write

‖F‖2 = ‖〈F, F〉‖ =

∥∥∥∥∥∥

(A)∫

R

〈F(x), F(x)〉Ω dx

∥∥∥∥∥∥
≤

∫

R

‖〈F(x), F(x)〉Ω‖ dx =
∫

R

‖F(x)‖2
Ω dx (7)

and

‖F‖2 = ‖〈F, F〉‖ =

∥∥∥∥∥∥
{
∫

R

| f (x)|2 dx : f ∈ S2(F)}

∥∥∥∥∥∥
Ω

. (8)

Using the (7) and (8) we have the inequality

‖F‖2 = ‖〈F, F〉‖ =

∥∥∥∥∥∥
{
∫

R

| f (x)|2 dx : f ∈ S2(F)}

∥∥∥∥∥∥
Ω

≤
∫

R

‖F(x)‖2
Ω dx. (9)

It is obvious that for any x ∈ R, F(x) is a compact subset of C. Hence, there exists an element

tx
0 in F(x) such that

sup{|t| : t ∈ F(x)} = |tx
0 | .

Let us define the function g : R → C with g(x) = tx
0 . It is not hard to see that g is well-defined.

The function g is an element of S2(F) due to the fact that for x ∈ R, g(x) = tx
0 ∈ F(x) and

∫

R

‖F(x)‖2
Ω dx =

∫

R

(sup{|t| : t ∈ F(x)})2dx =
∫

R

|tx
0 |2 dx =

∫

R

|g(x)|2 dx. (10)

Since ∫

R

|g(x)|2 dx ≤ sup{
∫

R

| f (x)|2 dx : f ∈ S2(F)}
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and

sup{
∫

R

| f (x)|2 dx : f ∈ S2(F)} = sup {
∫

R

| f (x)|2 dx : f ∈ S2(F)}

=

∥∥∥∥∥∥
{
∫

R

| f (x)|2 dx : f ∈ S2(F)}

∥∥∥∥∥∥
Ω

.

This implies
∫

R

|g(x)|2 dx ≤

∥∥∥∥∥∥
{
∫

R

| f (x)|2 dx : f ∈ S2(F)}

∥∥∥∥∥∥
Ω

. (11)

By the (10) and (11) we say that

∫

R

‖F(x)‖2
Ω dx =

∥∥∥∥∥∥
{
∫

R

| f (x)|2 dx : f ∈ S2(F)}

∥∥∥∥∥∥
Ω

. (12)

Therefore, from the (9) and (12) we obtain that

‖F‖ =

∥∥∥∥∥∥
{
∫

R

| f (x)|2 dx : f ∈ S2(F)}

∥∥∥∥∥∥

1/2

Ω

=



∫

R

‖F(x)‖2
Ω dx




1/2

.

Theorem 6. The quasilinear space L2(R, Ω(C)) is complete with the norm given by (6), i.e.,

L2(R, Ω(C)) is a Banach quasilinear space.

Proof. Let {Fn}∞
n=1 be a sequence in L2(R, Ω(C)) such that

∞

∑
k=1

‖Fk‖ < ∞. We will show that

the series
∞

∑
k=1

Fk is convergent. For this we need to find a function F in L2(R, Ω(C)) such that

lim
n→∞

hL2(
n

∑
k=1

Fk, F) = 0

where hL2 is the Hausdorff metric on the normed quasilinear space L2(R, Ω(C)). Now we

define the function g : R → R by

g(x) =
∞

∑
k=1

(‖Fk(x)‖Ω)
2.

Applying the Monoton Convergence Theorem and Minkowski inequality prove that

∫

R

g(x)dx =
∫

R

∞

(∑
k=1

(‖Fk(x)‖Ω)
2)dx =

∫

R

lim
n→∞

n

(∑
k=1

(‖Fk(x)‖Ω)
2)dx

= lim
n→∞

∫

R

n

(∑
k=1

(‖Fk(x)‖Ω)
2)dx ≤ lim

n→∞

n

(∑
k=1

(
∫

R

‖Fk(x)‖2
Ω dx)1/2)2

= lim
n→∞

(
n

∑
k=1

‖Fk‖)2 = (
∞

∑
k=1

‖Fk‖)2.
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This shows that g is integrable function, since
∞

∑
k=1

‖Fk‖ is convergent. Thus, g(x) is finite for

any x ∈ R and the series
∞

∑
k=1

‖Fk(x)‖Ω is convergent for any x ∈ R. Due to the fact that Ω(C)

is complete, we say that the series
∞

∑
k=1

Fk(x) is convergent. Let us consider that the function

F : R → Ω(C) defined by

F(x) =

{ ∞

∑
k=1

Fk(x)

{0}
, g(x) < ∞

, g(x) = ∞
.

From the Proposition 6.1.13 in [12] we say that the set-valued function F is measurable. Since

‖F(x)‖2
Ω =

∥∥∥∥∥
∞

∑
k=1

Fk(x)

∥∥∥∥∥

2

Ω

≤
∞

(∑
k=1

‖Fk(x)‖Ω)
2 = g(x)

and ∫

R

g(x)dx < ∞

we have that
∫
R

‖F(x)‖2
Ω dx < ∞. This implies F belongs to L2(R, Ω(C)). Further, for a.e. x ∈ R

0 ≤ lim
n→∞

hΩ(
n

∑
k=1

Fk(x), F(x)) ≤ lim
n→∞

∥∥∥∥∥
n

∑
k=1

Fk(x)− F(x)

∥∥∥∥∥
Ω

=

∥∥∥∥∥ lim
n→∞

n

∑
k=1

Fk(x)− lim
n→∞

F(x)

∥∥∥∥∥
Ω

=

∥∥∥∥∥
∞

∑
k=1

Fk(x)− F(x)

∥∥∥∥∥
Ω

= 0

and so

lim
n→∞

hΩ(
n

∑
k=1

Fk(x), F(x)) = 0. (13)

Now we shall prove that the function series
∞

∑
k=1

Fk converges to F in L2(R, Ω(C)) to complete

the proof. In accordance with this purpose we will show that lim
n→∞

hL2(
n

∑
k=1

Fk, F) = 0. Firstly, if

we use the Hausdorff metric on L2(R, Ω(C)), we say that for any ε > 0 there exist elements

Fi
r ∈ L2(R, Ω(C)), i = 1, 2 such that

n

∑
k=1

Fk � F + F1
r , F �

n

∑
k=1

Fk + F2
r and

∥∥Fi
r

∥∥ ≤ r. Hence

n

∑
k=1

Fk(x) ⊆ F(x) + F1
r (x), F(x) ⊆

n

∑
k=1

Fk(x) + F2
r (x) for a.e. x ∈ R. Further, by the Hausdorff

metric on Ω(C) we have that
∥∥Fi

r(x)
∥∥ ≤ hΩ(

n

∑
k=1

Fk(x), F(x)) + r for a.e. x ∈ R and i = 1, 2.

Moreover, for any r > 0

hL2(
n

∑
k=1

Fk, F) ≤
∥∥∥Fi

r

∥∥∥ = (
∫

R

∥∥∥Fi
r(x)

∥∥∥
2

Ω
dx)1/2 ≤ (

∫

R

(hΩ(
n

∑
k=1

Fk(x), F(x)) + r)2dx)1/2.

Hence, we have proved the inequality

hL2(
n

∑
k=1

Fk, F) ≤ (
∫
(

R

hΩ(
n

∑
k=1

Fk(x), F(x)))2dx)1/2.
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Consequently,

lim
n→∞

(hL2(
n

∑
k=1

Fk, F))2 ≤ lim
n→∞

∫

R

hΩ(
n

∑
k=1

Fk(x), F(x))2dx.

Using the Theorem 4 the above inequality gives

lim
n→∞

(hL2(
n

∑
k=1

Fk, F))2 ≤
∫

R

( lim
n→∞

(hΩ(
n

∑
k=1

Fk(x), F(x)))2)dx

and this implies lim
n→∞

hL2(
n

∑
k=1

Fk, F) = 0 by the equality (13). So the proof is complete.

Theorem 7. The quasilinear space L2(R, Ω(C)) is a Hilbert quasilinear space with the inner-

product given by (4).

Proof. We know that L2(R, Ω(C)) is a inner-product quasilinear space with respect to the

inner-product given by (4). By the definition of norm obtained this inner-product we have

that

‖F‖ =

∥∥∥∥∥∥
{
∫

R

| f (x)|2 dx : f ∈ S2(F)}

∥∥∥∥∥∥

1/2

Ω

.

Using the Lemma 4 and Theorem 6 show that L2(R, Ω(C)) is complete. Thus, L2(R, Ω(C)) is

Hilbert quasilinear space.

4 TRANSLATION, MODULATION AND DILATION OPERATORS ON L2(R, Ω(C))

In this section we introduce some important operators on L2(R, Ω(C)).

Definition 16. (Translation) For a ∈ R and F ∈ L2(R, Ω(C)), the operator Ta is defined by

(TaF)(x) = F(x − a) = {(Ta fn)(x) = fn(x − a) : fn ∈ S1(F), n = 1, 2, ...} (14)

and is called translation by a, where Ta is the translation operator on L2(R).

Note that TaF is defined by the set of translations of countable measurable selections of F.

By using the Castaing’s theorem (see, [13]) we say that there exists a sequence ( fn) of measur-

able selections of F such that

F(x − a) = ∪
n≥1

(Ta fn)(x) = ∪
n≥1

fn(x − a).

This implies that F(x − a) which is the translation by a ∈ R of a set-valued function F ∈
L2(R, Ω(C)) can be written as (14). Hence the translation operator Ta is a natural generaliza-

tion of classical translation operator Ta in this way.

Notation: We will often write TaF(x) instead of (TaF)(x) and similarly for the other opera-

tors.

Translation operator Ta is a bounded linear operator between quasilinear spaces: Actually,

given any F, G ∈ L2(R, Ω(C)) and λ ∈ C we write

Ta(F + G)(x) = (F + G)(x − a) = F(x − a) + G(x − a) = TaF(x) + TaG(x),
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Ta(λF)(x) = (λF)(x − a) = λF(x − a) = λTaF(x).

These show that

Ta(F + G) = TaF + TaG and Ta(λF) = λTaF. (15)

Also, if F � G then F(x) ⊆ G(x) for each x ∈ R. Hence, for any x ∈ R

TaF(x) = F(x − a) ⊆ G(x − a) = TaG(x). (16)

This implies TaF � TaG. By the (15) and (16) we say that Ta is linear in the meaning of Defini-

tion 9. Furthermore, if F ∈ L2(R, Ω(C)), the change of variable z = x − a shows that

∫

R

‖TaF(x)‖2
Ω dx =

∫

R

‖F(x − a)‖2
Ω dx =

∫

R

‖F(z)‖2
Ω dz (17)

and so

‖TaF‖ = ‖F‖ ,

namely, Ta is bounded.

Now we will define the modulation and dilation operators in analogy to the definition of

translation operator.

Definition 17. (Modulation, Dilation) For a set-valued function F ∈ L2(R, Ω(C)) we define

the following operators:

(i) For b ∈ R, the operator Eb is defined by

(EbF)(x) = e2πibxF(x) = {(Eb fn)(x) = e2πibx fn(x) : fn ∈ S1(F), n = 1, 2, ...}

and is called modulation by b, where Eb is the modulation operator on L2(R). This defi-

nition shows that the modulation operator Eb is a natural generalization of classical mod-

ulation operator Eb.

(ii) For c ∈ R, the operator Dc is defined by

(DcF)(x) =
1√
c

F(
x

c
) = {Dc fn(x) =

1√
c

fn(
x

c
) : fn ∈ S1(F), n = 1, 2, ...}

and is called dilation by c, where Dc is the dilation operator on L2(R). Thus, we say that

the modulation operator Dc is a natural generalization of classical modulation operator

Dc.

It can be easily shown that Eb and Dc are bounded linear operators as per above.

Definition 18. Let X1 and X2 be Hilbert quasilinear spaces and T : X1 → X2 be a bounded

linear operator. The operator T∗ : X2 → X1 is called the adjoint operator of T such that for any

x ∈ X1 and y ∈ X2,

〈Tx, y〉 = 〈x, T∗y〉 .

Definition 19. Let X be a Hilbert quasilinear space and T : X → X a bounded linear operator.

The operator T is self-adjoint if T = T∗ and is unitary if TT∗ = T∗T = I.
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Proposition 4. The operators Ta, Eb and Dc are unitary operators from space L2(R, Ω(C)) to

L2(R, Ω(C)). Further,

• T −1
a = T−a = (Ta)∗,

• E−1
b = E−b = (Eb)

∗,

• D−1
c = D1/c = (Dc)∗.

Proof. We give a complete proof for the operator Ta, since the proof is similar to the cases of

Eb and Dc Due to the assumption F ∈ L2(R, Ω(C)) and the equality (17) we say that Ta maps

L2(R, Ω(C)) into L2(R, Ω(C)). Now we will prove that Ta is unitary: The change of variable

z = x − a yields that

〈TaF, G〉 =
(A)∫

R

〈TaF(x), G(x)〉Ω dx =

(A)∫

R

〈F(x − a), G(x)〉Ω dx

=

(A)∫

R

〈F(z), G(z + a)〉Ω dz = 〈F, T−aG〉 .

Hence by the definition of the adjoint operator T ∗
a we prove that T ∗

a = T−a. Moreover, it is not

hard to show that TaT ∗
a = TaT−a = I and T ∗

a Ta = T−aTa = I. The calculations show that Ta is

unitary and T −1
a = T−a = (Ta)∗.

Operators denoted by composition of some of the translation, modulation and dilation

operators appear in mathematics and engineering. For this purpose, the following Proposition

is useful.

Proposition 5. For any a, b ∈ R and c > 0, the following commutation relations hold:

(i) (TaEbF)(x) = e2πib(x−a)F(x − a) = e−2πba(EbTaF)(x),

(ii) (TaDcF)(x) = 1√
c
F( x

c − a
c ) = (DcTa/cF)(x),

(iii) (DcaEbF)(x) = 1√
c
e2πib/cF( x

c ) = (Eb/cDcF)(x).
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Левент Х., Їлмаз Й. Системи перенесення, модуляцiї та затримки у множиннозначнiй обробцi

сигналу // Карпатськi матем. публ. — 2018. — Т.10, №1. — C. 143–164.

У цiй статтi дослiджується важливий простiр функцiй, який складається з множиннозна-

чних функцiй, визначених на множинi дiйсних чисел зi значеннями у просторi всiх компа-

ктних опуклих пiдмножин комплексних чисел, для яких p-тий степiнь їхньої норми iнтегров-

ний. Загалом цей простiр позначають Lp(R, Ω(C)) при 1 ≤ p < ∞ i вiн має алгебраїчну
структуру, його називають квазiлiнiйним простором, що є узагальненням класичного лiнiй-

ного простору. Далi вводиться скалярний добуток (множиннозначний скалярний добуток)

на L2(R, Ω(C)) i, на наш погляд, це важливо для управлiння iнтервальнозначними даними
та iнтервальною обробкою сигналiв. Також це можна використати в терiї нечiтких сподi-

вань. Визначення скалярного добутку в L2(R, Ω(C)) базується на поняттi iнтегралу Аумана,

який застосовується для iнтегрування множиннозначних функцiй. Ми показуємо, що простiр
L2(R, Ω(C)) є гiльбертовим квазiлiнiйним простором. Насамкiнець ми означаємо оператори
перенесення, модуляцiї та затримки, якi є трьома основоположними множиннозначними опе-

раторами у гiльбертовому квазiлiнiйному просторi L2(R, Ω(C)).

Ключовi слова i фрази: гiльбертiв квазiлiнiйний простiр, множиннозначна функцiя, iнтеграл
Аумана, перенесення, модуляцiя, затримка.


