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TRANSLATION, MODULATION AND DILATION SYSTEMS IN SET-VALUED
SIGNAL PROCESSING

In this paper, we investigate a very important function space consists of set-valued functions
defined on the set of real numbers with values on the space of all compact-convex subsets of complex
numbers for which the pth power of their norm is integrable. In general, this space is denoted by
LP(R,Q(C)) for 1 < p < oo and it has an algebraic structure named as a quasilinear space which
is a generalization of a classical linear space. Further, we introduce an inner-product (set-valued
inner product) on L?(IR, (C)) and we think it is especially important to manage interval-valued
data and interval-based signal processing. This also can be used in imprecise expectations. The
definition of inner-product on L?(R, Q)(C)) is based on Aumann integral which is ready for use
integration of set-valued functions and we show that the space L?(RR, (C)) is a Hilbert quasilinear
space. Finally, we give translation, modulation and dilation operators which are three foundational
set-valued operators on Hilbert quasilinear space L?(R, Q(C)).

Key words and phrases: Hilbert quasilinear space, set-valued function, Aumann integral, transla-
tion, modulation, dilation.
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INTRODUCTION

The translation, modulation and dilation operators play an important role in signal pro-
cessing. These operators are usually applied to electromagnetic signals such as radio, lasers,
optics and computer networks. For example, the translation operator provides parallel dis-
placement for a discret-time signal. The modulation operator changes the wealths of a sound
wave. As it is well known, converting an analog signal to a digital signal leads to ambiguous
computation errors. In such circumstances to perform signal processing we need the area of
interval-valued signal processing, more generally set-valued signal processing (see [1-3]). In
this work, we introduce translation, modulation and dilation operators on L?(IR, Q(C)) which
is a special space of set-valued functions.

Unfortunately, the space L?(IR,)(C)) have an algebraic structure which is not a linear
space. This structure is called as a “quasilinear space” by Aseev in 1986 [5]. Therefore, he
present an approach for the function spaces of set-valued mappings. Let us give the definition
of a quasilinear space which is presented by Aseev [5].

A set X is called a quasilinear space if a partial order relation ”<", an algebraic sum oper-
ation, and an operation of multiplication by real numbers are defined in it in such a way that
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the following conditions hold for all elements x,y,z,v € X and all &, B € R:

x =x,

x Xzifx Jyandy <z,
x=yifx 2yandy < x,
X+y=y+x
x+(y+z)=(x+y) +z

there exists an element (zero) 6 € X such that x + 6 = x,
a(Bx) = (a)x,

a(x +vy) =ax+ay,

1x = x,

Ox =296,

(. + B)x < ax + Bx,
x+zy+vifx Jyandz <7,
ax X ayifx < y.

Note that the concept of quasilinear space has been only introduced over the field R. As
distinct from Aseev’s definition, in next section we will introduce the quasilinear spaces over
general field K which consists of real or complex numbers.

Any linear space is a quasilinear space with the partial order relation "x <y <= x = y”.

Perhaps the most popular example of a nonlinear quasilinear space is the set of all non-
empty closed intervals of real numbers sembolized by Q¢(RR), and it is a quasilinear space
with the inclusion relation “C”, the algebraic sum operation

A+B={a+b:ac A beB}

and the real-scalar multiplication A\A = {Aa:a € A}.

In fact Q¢(R) is the set of all nonempty compact convex subsets of real numbers and it
is a subset of )(R), the set of all nonempty compact subsets of real numbers which is an
another important example of a nonlinear quasilinear space. In general, Q)(E) and Q¢(E) are
the sets of all nonempty closed bounded and nonempty convex closed bounded subsets of any
normed linear space E, respectively. Both are a quasilinear space with the inclusion relation,
the real-scalar multiplication and with a slight modification of addition as follows:

A+B={a+b:ac A beB}

where the closure is taken on the norm topology of E.

The investigation of Q¢ (IR) or more general (3(C) contributes interval and convex analysis
and they are excellent tools for mathematical formulation of many real-life situations, for ex-
ample signal processing. Therefore we are interested in the space of Q)(C)-valued functions in
this article.

We know the Banach space LP(R) for 1 < p < oo the space of all functions f for which
|f|? is integrable, is one of the fundamental vector spaces in functional analysis. In this pa-
per we will try to investigate the space L7 (IR, 3(C)) of all functions F : R — Q(C) such that
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[ |F(x)||ydx do exist (1 < p < o). We can see that the set LP(R, 2(C)) is a normed quasi-
R

linear space and the special case L?(R,Q(C)) is a Hilbert quasilinear space. We use a new
kind inner-product for set-valued functions to construct a norm structure of L?(R, Q(C)). The
inner-product will be introduced by an integral in the sense of Aumann [8].

1 PRELIMINARIES

We will start by giving the definition of quasilinear space which is different from Aseev’s
definition. In this definition we will consider the quasilinear spaces over a general field K. The
elements of K are real or complex numbers. We think that this approach is suitable mathe-
matical background of some applications, e.g., interval analysis and signal processing.

A set X is called a quasilinear space over field K if a partial order relation “=<", an algebraic
sum operation, and an operation of multiplication by real or complex numbers are defined in
it in such a way that the following conditions hold for any elements x,y,z,v € X and any
a, B eK:

x < x,

x Xzifx <yandy <z,

x=yifx <yandy < x,

xX+y=y+x

x4 (y+2) = (x+1) +2,

there exists an element 6 € X such that x + 6 = x,

x(Bx) = (af)x, M
a(x +y) =ax+ay,

1x = x,

Ox =0,

(@ + B)x < ax + Bx,
x+z<y+vifx <yandz <v,
ax 2 ayifx < y.

K is called the scalar field of the quasilinear space X, and X is called a real quasilinear
space if K = R and is called a complex quasilinear space if K = C. Mostly K will be C in this
work.

Any real linear space is a quasilinear space with the partial order relation defined by “x <y
if and only if x = y”. In this case, quasilinear space axioms is the linear space axioms.

Lemma 1 ([5]). Suppose that each element x in quasilinear space X has an inverse element
x" € X. Then the partial order in X is determined by equality, the distributivity conditions
hold, and consequently X is a linear space.

Hence in a real linear space, the equality is the only way to define a partial order such that
conditions (1) hold.

It will be assumed in what follows that —x = (—1) - x. Also, note that —x may not be x’.
Any element x in a quasilinear space is regular if and only if x — x = 6, that is, if and only if

x' = —x.
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Now, let us record some basic necessary results from [5]. In a quasilinear space X, the
element 0 is minimal, i.e., x = 0 if x < 0. An element x’ is called inverse of x € X if x + x’ = 6.
The inverse is unique whenever it exists. An element x possessing inverse is called regular,
otherwise is called singular.

Definition 1 ([6]). Suppose that X is a quasilinear space and Y C X. Then Y is called a sub-
space of X whenever Y is a quasilinear space with the same partial order on X.

Theorem 1 ([6]). Y is subspace of quasilinear space X if and only if for every x,y € Y and
,peK a-x+p-yey.

Proof of this theorem is quite similar to its classical linear algebraic analogue.

Let X be a quasilinear space and Y be a subspace of X. Suppose that each element x in
Y has inverse element ¥’ € Y then by Lemma 1 the partial order on Y is determined by the
equality. In this case Y is a linear subspace of X. An element x in quasilinear space X is said
to be symmetric if —x = x and Xy, denotes the set of all symmetric elements. Also, X, stands
for the set of all regular elements of X while X stands for the sets of all singular elements and
zero in X. Further, it can be easily shown that X;, Xs,» and X are subspaces of X. They are
called regular, symmetric and singular subspaces of X, respectively. Furthermore, it isn’t hard to
prove that summation of a regular element with a singular element is a singular element and
the regular subspace of X is a linear space while the singular one is nonlinear at all.

Example 1. In Q¢(R),
{{0}} U{l[a,b] :a,b € Randa < b}

is the singular subspace of Q¢ (R). Further {{a} : a € R} is the set of all degenerate intervals
or the set of all singletons of R constitutes the regular subspace X,. It is a linear subspace of
Qc(R) and (Qc(R)), is the copy of R in Q¢ (R). In fact, for any normed linear space E, each
singleton {a}, a € E, can be identified with the element a and hence E can be considered as
the (regular) subspace of both Q¢ (E) and Q)(E). Further, the regular subspace of both Q¢ (E)
and Q)(E) is isometrically isomorphic to E, namely, (Qc(E)), = E and (Q)(E)), = E.

Let X be a real or complex quasilinear space. The real-valued function on X is called a norm
if the following conditions hold:

||x]| > 0if x #0,
[yl < ]l +lyll,
[lox]l = fal f[x]l,

if x <y, then |[x| < ly|,
if for any & > 0 there exists an element x; € X such that

x <y+x.and [|x] <ethenx <y,

here x, y, x; are arbitrary element in X and « is any scalar.

A quasilinear space X with a norm defined on it, is called normed quasilinear space. It follows
from Lemma 1 that if any x € X has inverse element x’ € X, then the concept of normed
quasilinear space coincides with the concept of real normed linear space. Notice again that x’
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may not be exist but if x’ exists then x = —x. Hausdorff metric or norm metric on X is defined
by the equality

h(x,y) = inf{r >0:x =< y+a§r),y =< x—i—aér) and Hafr)H <vri= 1,2}.

Since x < y+ (x —y) and y < x+ (y — x), the quantity h(x,y) is well-defined for any
elements x,y € X, and it is not hard to see that the function / satisfies all the metric axioms.
Also we should note that i(x, y) may not equal to ||x — y|| if X is not a linear space; however
h(x,y) < ||x —y| forevery x,y € X.

Lemma 2 ([5]). The operations of algebraic sum and multiplication by real or complex numbers
are continuous with respect to the Hausdorff metric. The norm is continuous with respect to
the Hausdorff metric.

Example 2 ([5]). For a normed linear space E, a norm on Q)(E) is defined by
[Allq = sup [la]|g -
acE

Hence Q¢(E) and Q)(E) are normed quasilinear spaces. In this case the Hausdorff (norm)
metric is detined as usual:

hix,y) =inf{r >0:x Cy+5,(0),y Cx+S5,(0)},

where S,(0) is a closed ball of E and x,y are elements of Q¢c(E) or Q(E). Further, Q¢ (E) is a
closed subspace of Q(E).

Definition 2 ([5]). A normed quasilinear space X is called an ()-space if there exists an element
Bx # 0 such that

If X is a real normed linear space, then Q)(X) is an Q)-space.

Now, let us give a useful type of quasilinear spaces called consolidate quasilinear space.
Definition 3 ([6]). Let X be a quasilinear space, M C X and x € M. The set
FM={ze M,:z=<x}

is called floor in M of x. In the case of M = X it is called only floor of x and written briefly Fy
instead of FX.

Floor of an element x in linear spaces is the singleton {x}. Therefore, it is nothing to discuss
the notion of floor of an element in a linear space.

Definition 4 ([6]). A quasilinear space X is called consolidate quasilinear space whenever
sup F, do exists for every y € X and

y=supF, =sup{z€ X,:z=y}.

Otherwise, X is called non-consolidate quasilinear space.
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Especially, we should note that the supremum in this definition is defined according to the

partial order relation “<” on X. Hence, we will use the notion of “sup” in place of general
g

notation “sup” to emphasize this case.

Example 3 ([6]). For any normed linear space E, Q) (E) and Q¢ (E) are consolidate normed
quasilinear space.

Aseev launched a theory in [5] that we see it as the beginning of quasilinear functional
analysis. However, there was a lot of deficiencies in the theory. One of them is the definition of
inner-product. Now we will give the definition of inner-product in a quasilinear space which
coinsides with its linear analogue [6,7]. Later we will present some fundamental properties of
inner-product and Hilbert quasilinear spaces. Firstly, let us introduce a definition.

Definition 5. For two quasilinear spaces (X, <) and (Y, <), Y is called compatible contains X
whenever X C Y and the partial order relation < on X is the restriction of the partial order
relation < on Y. We briefly use the symbol XCY in this case. We write X <Y whenever XCY
and YCX.

Remark 1. X T Y means X and Y are the same sets with the same partial order relations
which make them quasilinear spaces. However, we may write X = Y for X Y whenever the
relations are clear from context.

Definition 6. Let X be a quasilinear space. Consolidation of X is the smallest consolidate
quasilinear space X which compatible contains X, that is, if there exists another consolidate
quasilinear space Y which compatible contains X then X C Y.

Clearly, X = X for some consolidate quasilinear space X. We do not know yet whether each
quasilinear space has a consolidation. This notion is unnecessary in consolidate quasilinear

spaces, hence it is redundant in linear spaces. Further, Qc/(ﬁ) s = Qc(R").
For a quasilinear space X, the set FyX = {z € <X)r 1z X y} is the floor of y in X.
Now, let us give an extended definition of inner-product given in [7]. We can say that the

inner product in the following definition may be seen a set-valued inner product on quasilinear
spaces.

Definition 7. Let X be a quasilinear space having a consolidation X. A mapping (, ) : X x
X — Q(K) is called an inner-product on X if for any x,y,z € X and a« € K the following
conditions are satistied :

Ifx,y € X, then (x,y) € Qc(K), =K,

(x+y2) < (x2)+(y,2),

{ax,y) = a(x,y) and (x,ay) =T (x,y),

(x,y) ={y,x),

(x,x) >0 forx € X, and (x,x) =0 x =0,

|9l = sup { (@b}l : a € FX,b € FY},

ifx X< yandu < v then (x,u) C (y,v),

if for any € > 0 there exists an element x. € X such that
X 2 Y+ xe and (xg, x;) C S (0) thenx = y.
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A quasilinear space with an inner product is called an inner product quasilinear space.

Remark 2. For some x € X;, (x,x) > 0 means (x, x) is non-negative, that is, the order ">" in
the definition is the usual order on Q¢ (K), = K. It should not be confused with the order "<"”
on X.

Example 4 ([6,7]). Let X be a linear Hilbert space. Then the space ()(X) is a Hilbert quasilinear
space by the inner product defined by

(A,B)y, = {{a,b)y 0 € AbE B}

for A,B € Q)(X). Further, there is no need the closure for the definition of inner product on
Q(C), since {(a,b)c :a € A,b € B} is closed subset of C. Namely, the inner product on Q)(C)
is given by

(A,B)o ={(a,b)c:a€ Abec B}.

Every inner product quasilinear space X is a normed quasilinear space with the norm de-
fined by

[} = /1l (x %}l

for every x € X. This norm is called inner product norm. Further x, — x and v, — y in a inner
product quasilinear space then (x,, y,) — (x,y).

Lemma 3 ([6]). Let X be a inner product quasilinear space. Then

ey lla < lxllx lyllx

forx,y € X.

A inner product quasilinear space is called Hilbert quasilinear space if it is complete according
to the inner-product (norm) metric. For example, Q(C) is a Hilbert quasilinear space.

Definition 8 ([5]). Let X and Y be quasilinear spaces. A mapping T : X — Y is called a
quasilinear operator if it satisfies the following conditions:

T(x1 + XZ> = T(xl) + T(XZ),
T(ax) = aT(x) foranywa € R,
ifx1 < xp, then T(x1) < T(xp).

Definition 9. Let X and Y be quasilinear spaces. A mapping T : X — Y is called a linear
operator if it satisties the following conditions:

T(x1 + XZ> = T(xl) + T(XZ),
T(ax) = aT(x) foranya € R,
ifx1 < xp, then T(x1) < T(x2).

Hence linear operators can be obtained by adding an extra condition to the first condition
of quasilinear operators.
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Remark 3. We will see that quasilinear operators may not conserve quasilinear structure. Due
to this obstacle we introduce the linear operator notion acting on quasilinear spaces. Obvi-
ously, any linear operator between quasilinear spaces is a quasilinear operator, but not con-
versely. If X and Y are linear spaces then the definition of quasilinear operators coincides with
the usual definition of a linear operators.

Definition 10 ([5]). Let X and Y be a normed quasilinear spaces. A quasilinear operator T :
X — Y is said to be bounded if there exists a number k > 0 such that | Tx| < k||x|| for any
x e X.

2 AUMANN INTEGRAL

We will need the integral of set-valued functions when we deal with the space L7 (R, Q)(C)),
1 < p < oo. For this purpose we will introduce the integral of a set-valued function and give
some properties of this integral.

Integrals of set-valued functions are given by Robert J. Aumann in 1965. It is as follows [8]:

Let I be the unit interval [0, 1]. For any t in I, let F(¢) be a nonempty subset of R”. Suppose
that £ be the set of all point-valued functions f from I to R" such that f is integrable over I
and f(t) € F(t) for all t in I. Define

/ F(f)dt = / F(tydt: fer
I I

i.e., the set of all integrals of members of L.

Throughout the section we will use the notations: The triple (T, A, u) is a complete o-finite
measure space, X is a complete separable metric space and F : I' ~ X represents a set-valued
function that assigns to each t € T a subset F(t) C X.

Let us give the main definitions and theorems with respect to the integral of a measurable
set-valued function.

Definition 11 ([9]). A set-valued function F : I' ~ X is called with closed, open or compact
valued if F(x) is a closed, open or compact set in X, for each x € T, respectively.

Definition 12 ([9]). A set-valued function F : I' ~~ X is called measurable if for any open subset
0 CcX,
FYO)={xeT:F(x)NO # @}

is element of A.

Measurability of set-valued functions is closely associated with the concept of measurabil-
ity of its selections.

Definition 13 ([9]). For a given set-valued functionF : I ~ X, a measurable functionf : I — X
satisfying
forallx €T, f(x) € F(x)

is called a measurable selection of F.
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Theorem 2 ([9]). Let F : I' ~» X be closed valued. Then there exists a measurable selection
of F.

We denote by LP(I', X, u), 1 < p < oo the Banach space of all measurable functions f :
I — X such that [ ||f||Pdy < co.If T = K, where K = R or K = C and y is the Lebesque

T
measure then we find LP(T, X, ) = LP(R). For 1 < p < oo, SP(F) is the set of all selections
f € LP(T, X, u) of a measurable set-valued function F : T ~~ X [10], i.e.,

SP(F)={f:T > X: / LF|IP du < oo, and f(x) € F(x) for x € T}.

Definition 14 ([4]). A set-valued function F : I' ~» X is called integrably bounded if there
exists a nonnegative function f € L(T', R, ) such that

F(x) C f(x)B almost everywhere inT,
where B is the unit ball of X.
Aumann gave the definition of an integral of a set-valued function in the following way:

Definition 15 ([4]). The integral of F on I is the set of integrals of integrable selections of F :

/de{/fdy:fesl(P)}.
r T

We will say that F is integrable set-valued function in the sense of Aumann if the set { [ fdu :
T
(4)
f € SY(F)} is not empty. Aumann integral of F will be shown as [ Fdy.
r

Proposition 1 ([9]). If G : T ~» X is Aumann integrable and G(x) C F(x) almost everywhere
onTI'. Then the set-valued function F is also Aumann integrable and

(4) (4)
/G(x)dx C /F(x)dx
r r

Proposition 2 ([9]). IfF, F;, F, : ' ~ X are Aumann integrable then F; + F; and AF are Aumann

integrable and
(4)

(4) (4)
/(a 4 B)(x)dx = /Fl(x)dx + /Fz(x)dx
T T

T

and
(A)

/AF dx—A/F

Proposition 3 ([9]). If F : R —+Q(X) is Aumann integrable and the integral of F is compact

then
(A) (A)
[F@ax| < [ IF@)qdx.
T 0O T

—
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Theorem 3 ([4]). Let F : I ~» R" be a measurable and closed-valued function. If y is nonatomic
and F is integrably bounded, then the Aumann integral of F is compact.

Now let us present the Dominated Convergence Theorem for the Aumann integrals.

Theorem 4 ([11]). If F, : T — Q(C) n = 1,2,... are measurable closed valued functions,
{IIFa ()| }52-; is uniformly integrable and F,(x) — F(x) with respect to the Hausdorff met-
ric then

(4) (4)
/Fn(x)dx — /F(x)dx.
r r

3 THE HILBERT QUASILINEAR SPACE L%(RR, Q(C))

In this chapter we will concentrate on the quasilinear structure of the LF(R, ()(C)) space,
1 < p < co. We will show that L (IR, (}(C)) spaces are normed quasilinear space over the
field C and later we construct a set-valued inner-product on L?(RR, Q(C)) by way of Aumann
integral.

For 1 < p < oo, the space LP(R,Q)(C)) consists of all set-valued measurable functions
F : R —Q(C) such that the Lebesque integral

JIFG;dx
R

is well defined, where the notion of measurability of F is the measurability in Definition 12.
Note that this integral is a classical Lebesque integral.

Among the L7 (R, Q}(C)) spaces, the case p = 2 has a special importance: We will say that
L%(R,Q(C)) is an inner-product quasilinear space with respect to the inner-product which is
defined via Aumann integral

bS

(4)

(F,G) = [ (F(x),G(x))qdx. 2

A~

Firstly, let us indicate L?(IR, Q(C)) is a consolidate quasilinear space and so it has a consoli-
dation. Therefore, we can define a set-valued inner-product function on this space. After the
definition of inner-product on L?(R, Q(C)) we will denote the norm on L?(RR, Q(C)) with

1/2

IFIl = { [ 1fx)Pdx : f € S2(F)}
R

Q

and we will show that this norm comes from the inner-product given by the equality (2). There-
after, we will show that the inner-product norm on L?(RR, Q(C)) coincides with the expression

1/2
( / P<x>|édx> ,
R
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1/2
IFl = ( / F(x)édx)
R

is also a norm on L?(R, Q(C)). Further, we will prove that L?(IR, QO(C)) is a Banach quasilinear
space with this norm. Thus, we will say that L?(R, Q(C)) is a Hilbert quasilinear space.

The operations of algebraic sum, multiplication by a complex scalar and the partial order
relation are defined as follows:

(F+F)(x) = Fi(x) + B(x), (AF)(x) = AF(x)

namely, the equality

and
F;1 < F, & F(x) C Fi(x) forany x € R.

By a similar way given in [5], it is easy to verify that LP (R, }(C)) is a quasilinear space over
the field C by the above algebraic operations and the relation.
Now let us determine the regular elements of LF(R, ((C)), 1 < p < oo:

Fe (LP(R,Q(C))) < F-F=0< F(x) —F(x) = {0}, forall x € R
< F(x) €e Q(C), =C, forall x € R.

By )(C), = C we mean there exist an isometric isomorphism (equivalence) between these
normed linear spaces. Recall again that the regular subspace of a quasilinear space is just a
linear space. Hence we can give the following corollaries.

Corollary 1. (LP(R,Q)(C))), = LP(R,Q(C),) = LP(R,C) = LP(R) for1 < p < oo. Further, if
F € LP((R,Q(C))), then there exists only one selection of F and this selection is equal to itself.

Now we will prove that the L?(IR, Q(C)) space is a inner-product quasilinear space.

Theorem 5. The quasilinear space L?(R,Q)(C)) is an inner-product quasilinear space with
respect to the inner-product

(4)

= [ (F(x),G(x)) v ®
R

for F,G € L*(R,Q)(C)) and using the Aumann integral gives the equality

(A)

/ o dx = {/ cdx:feSX(F),ge(G)} @
R
Proof. Previously, we shall verify that the equality (3) is well-defined, i.e., that the function

Urc: R =Q(C), Urc(x) = (F(x),G(x))q

is integrable according to Aumann and this integral belongs to ()(C) (see, Definition 7). If
we consider the Theorem 2 then we can say that Ur ¢ has a measurable selection, since UF ¢
is closed valued. Thus, this function is integrable according to Aumann. Now we will show
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that the Aumann integral of Uf ¢ is an element of ()(C): Firstly, let us show that U ¢ is inte-
grably bounded, namely, there exists a nonnegative integrable function f : R — R such that
Urg(x) € f(x)B for any x € R, where B = {a € C : |a| < 1}. By the definition of norm on
Q(0),

IUrc(x)llq = IKF(x), G(x)) qll = sup{[{ax, bx)cl : ax € F(x),bx € G(x)}.

Since for each x € R, U g(x) is a compact set, there exists the elements a) € F(x) and b? €
G(x) which are dependent on x such that

lurc()llg = IF(x), Gl = | {ad, 88) |-

By reason of the fact that each of the elements x corresponds to the element a € F(x) and
b € G(x), we can define the function f : R — R such that

flx) = ’<a’0"b’0‘>c"

Further,

fdx

</!f rdx—/)a & \dx—/nupc Hndx—/n 0)alldx.

By Lemma 3 and Holder inequality we observe that

/n C)alldx < [(IFE)la 16 In)dx < ( /HP )l ) ”2/HG )12,

R

The last inequality implies f is integrable since F, G € L?(R,Q(C)). Furthermore,

lurc()llg = [(a%82) | = |(a%,82) | IBI = IIf(=)B]I.

Since ()(C) is an Q-space, we have that Ur g(x) € f(x)B for any x € R and so U is inte-
grably bounded. Consequently, by the Theorem 3 we say that the Aumann integral of Ur ¢

(A (4)
G) = / U (x)dx = / (F(x), G(x)) g dx
R R

is a compact set. The next step is to verify the equality (4): If we apply the definition of Aumann
integral to the set-valued function Ur ¢ then we write

hS

(4) (4)

(F,G) = [ (F(x),G(x))qdx = /uF,G(x)dx - {/h(x)dx ‘he S(Urc))

B~

Now let us research the selections of Ur ;. By the definition of norm on ((C) we write

(F(x),G(x))q ={{z,w)c:z€ F(x),w € G(x)}.
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If we remember that i(x) € Upg(x) for every x € R then for the determined elements 2 €
F(x) and w9 € G(x) it is written that

hx) = (2,w)

where z0 and w? are depend on the element x. Let us describe the functions f : R — C and
¢ : R — C such that f(x) = z% and g(x) = w!. The functions f and g are well-defined due to
the fact that & is a function. It is obvious that f € S?(F) and ¢ € S*(G) and so f,¢ € L*(R).
Also we can see that

for any element x. The equality

[nyax| = < [ 1) g)e|dx = [ [f(x)g()]dx
R R R

and from the Cauchy-Shwarz inequality give

/‘f )| dx < ( /|f |dx1/2/|g )2 dx)/? < oo

andsoh € S(UF,G). Hence,
(4)

(F,G) = [ (F(x),G(x dxz{/ )edx: f € SX(F),g € SHG)}:

R

[ (70, 8(x))e dx
R

Now we shall show that the expression (3) defines an inner product on L?(R,Q(C)) in the
meaning of the Definition 7.

1. If F,G € L*(R,Q(C)) then (F,G) € Q(C), = C.
If F,G € L*(R,Q(C)) then by the Corollary 1

(4)
(F,G) = / (F(x),G(x))de:/(F(x),G(x))Cdx:/F(x)G(x)dx
R R R

Also if we remember that the equality

(F,G) = [ F(x)G(x)dx
l

is complex-valued inner product on L?(R) then we say that (F,G) € Q(C), = C.

By the second condition of inner product on ()(C) and the Proposition 1 we have that

(A) (A)
(F+G,H) = [ (F(x)+G(x), Hx))qdx € [ ((F(x), H(x)q + (G(x), H(x)q)dx
R R
and from the Proposition 2 we obtain that
(4)
<F+G,H>g/< (x),H dx—l—/ ) dx = (E, H) + (G, H).

R
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3. (AF,G) = A(F,G) and (F,AG) = A (F,G) :
By the third condition of inner product on (}(C) and the Proposition 2 we have that

(A) (A)
(AF,G) = [ ((AF)(x), Gx)qdx = [ A(F(x),G(x)qdx
R R

- A/ (F(x), G(x)) o dx = A (E, G).

It can be easily shown that (F,AG) = A (F,G).

4. (F,G) = (G,F):
By the fourth condition of inner product on Q(C),

(4) (4)
(F,G)= [ (F),G(x)qdx= [ (G(x),F(x))qdx = (G, F).
R R

5. (F,F) > 0for F € (L>(R,Q(C))), and (F,F) = {0} & F =0 :
If F € (L?(R,Q(C))), then f € L?(R) by the Corollary (1) and so

(4)

<F,F>=/<<> dx—{/ ) dx}
_{/p Fx)dx} = {/\Fx]dx}.
R

Since the inner-product on L?(R) is non-negative we have that [ |F(x) >dx > 0and so

R
(F,F) > 0.
Now let us assume that (F, F) = 0. Then
(4)
/<<> dx—{/ Jedx: f.g € S(F)} = {0},
R
This implies f f(x)f(x)dx = f |f(x)|*dx = 0. Hence, by the Corollary (1) and the norm

on L?(R) we say that f = 0. Smce the any selection f of F is equal to 0, we say that F = 0.

6. [{F, G)llq = sup{ll{f,&)lla: f € Fr, g € Fc} :
Firstly, it is not hard to see that Fr C S?(F) for F € L?>(R,Q}(C)). By this way we say that

sup{I[{f,8)lln : f € Fr.g € Fo} = sup{| [ (f(x),g(x))c x| : f € Fr,g € Fo)
R
= sup{| [ (f(x),8(0))c x| : f € S*(F), g € SH(G)} = | {F, G) |-
R
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7. (F1,G1) C(F,Gp)if FF R Fand G; < Gy :

If i X F,and G; = G then Fi(x) C F(x) and G(x) C Gy(x) for a.e. x € R. By the
seventh condition of inner product on ()(C) we say that

(Fi(x),G1(x)) € (Ba(x), Ga(x)) -

Therefore, using the Proposition 1 implies the equality

(4) (4)
(F, Gy) = / (Fi(x),G1(x)) dx C / (F2(x), Ga(x)) dx = (F5, Ga) .
R R

8. We show that if for any ¢ > O there exists an element F; € L>(R,Q(C)) such that F < G + F;
and (Fg, Fe) C S¢(0) then F < G :

Suppose that for any ¢ > 0 there exists an element F, € L?>(R, Q)(C)) such that F < G + F;
and (F, F¢) C S¢(6). Then

I(Fe )l < 15:0) o = & ©
Further,
(4)
I(FoFla = || [ (G, F@qdx| = [ (), ge()cdx: foge € SR}
R Q R Q
= sup{| [ (fi(x), o) dx| : fe € S2(F)}

R
= sup{| [ 1f:(x)dx|: f; € S*(F)} = ||
R

Hence by the inequality (5) we say that ||F.|> < e The last condition of norm on
L*(R,Q(C)) indicates F < G.

O

For1 < p < oo, the expression
1/p

IF|l =

{[IfPdx: f e s(F))
R

Q
defines a norm on L? (IR, 3(C)) and so this space is a normed quasilinear space and this norm
is an inner-product norm obtained from the inner-product (3). Notably,

(4)
IFIP = 1B = | [ (B, EGqdx| = | [ (Fx)g(x)cdx: fig € SHP)
R R Q
= sup{| [ (f(x),g(x))cdx|: f,g € S(E)} = sup{| [ (f(x), f(x)edx|: f € SE)}
R R

= sup{ [ |f(x)"dx: f € S*(F)}.

R
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Since for bounded subset A C C we have that sup |A| = sup |A| where |A| = {[a] : a € A}
then

IFI? = IEF) | = sup{ [ If (o) d: £ € S3(F)} = sup { [ If(x) dx : £ € S(E)}
R R

{[1f)Pdx: £ € 52(F))
R

Q

and so
1/2

IE|l =

{[If)Pax: f e 2(F)}
R

Q

Lemma 4. For p = 2, the inner-product norm is equivalents to ( [ ||F(x)||§dx)V/? ie., if F €
R

L*(R,Q(C)) then

IF|l =

{/!f JPdx: f € S2(F

/ [FG) [y d)2 ©)

Proof. By the Proposition 3 and the norm of inner-product on Q(C), we write

(A)
IFIP = IF, ) / adx </n Qndx—/up b @)
R

and

IE|1* = I(E, B)|| = ®)

{[1f(x)Pds: f € s2(F))
R

0
Using the (7) and (8) we have the inequality

IEI> = I(E B {/f X)dx: f € SAF /HF )l ©

It is obvious that for any x € R, F(x) is a compact subset of C. Hence, there exists an element
t§ in F(x) such that

sup{[t] : ¢ € F(x)} = |f§].
Let us define the function g : R — C with g(x) = #§. It is not hard to see that g is well-defined.
The function g is an element of S*(F) due to the fact that for x € R, g(x) = t3 € F(x) and

/HF i dx = [(sup{le] :t € F(x de—/\tor dx—/\g . (10)

R

Since

[ lg)Pdx < sup{ [ |f(x)dx: f € S2(F))
R

R
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and
sup{ [ |f(x)dx: f € SH(E)} = sup { [ |£(x)"dx s f € S2(F))
R R
{[1f)Pax: f e s2(F))
R Q
This implies
[1gGPax < || { [ 1f)P dx: f € $2(P) (1)
R R Q
By the (10) and (11) we say that
JIUEIGdx = || [ 1f0)P dx s £ € 2(F)} (12)
R R Q
Therefore, from the (9) and (12) we obtain that
1/2
IFll = {/\f x)Pdx: f € SE (/P |de) -
U

Theorem 6. The quasilinear space L?>(R, )(C)) is complete with the norm given by (6), i.e.,
L%(R,Q(C)) is a Banach quasilinear space.

Proof. Let {F,}°_; be a sequence in L?(R, }(C)) such that ¥ ||F|| < co. We will show that
k=1

the series Y Fy is convergent. For this we need to find a function F in L?(R, Q(C)) such that
k=1

lim o ( ZFk, =0

n—oo
k=1

where &> is the Hausdorff metric on the normed quasilinear space L?(IR, Q(C)). Now we
define the function g : R — R by

¢(x) = Y (IF@) o)
k=1

Applying the Monoton Convergence Theorem and Minkowski inequality prove that

[st dx—/ SR = | AS(LIBINGES

n

n
. 1/2\2
—,}g{}o/ (L (IF (0l o)) < fim, (3 / | Fex) I3, dx)/2)

= ,}5{;(’; I1Ell)? ; I1Ekl])?
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This shows that g is integrable function, since Y ||Fi|| is convergent. Thus, g(x) is finite for
k=1
any x € R and the series )} ||F(x)||(, is convergent for any x € R. Due to the fact that Q(C)
k=1

is complete, we say that the series Y Fi(x) is convergent. Let us consider that the function
k=1
F:R — Q(C) defined by

{0y /8(x) =00

From the Proposition 6.1.13 in [12] we say that the set-valued function F is measurable. Since

F(x) = {sz"(x) /8(x) <09

2
|IF(x ”Q_ < (L IE()]q)* = g(x)
Q k=1
and
/g(x)dx < o0
we have that [ ||F(x)||3 dx < oo. This implies F belongs to L2(IR, Q)(C)). Further, fora.e. x € R
R
n n
0% Jim ha( Y Flx), F() < Jim | ) B
k=1 k=1 0
Jim LLF ()~ Jim F2) i PR
and so .
lim ho (Y Fi(x), E(x)) = 0. (13)

Now we shall prove that the function series Y F; converges to F in L?(RR, )(C)) to complete
k=1

n
the proof. In accordance with this purpose we will show that lgn hi2( ¥ F, F) = 0. Firstly, if
h—reo k=1
we use the Hausdorff metric on L?(IR, Q(C)), we say that for any ¢ > 0 there exist elements

. n n .
Fl € L*(R,Q(C)), i = 1,2 such that ) Fy < F+F, F < Y F+ F? and ||F!|| < r. Hence
k=1 k=1
n n
Y Fi(x) C F(x) + E}(x), F(x) € ¥ F(x) + F?(x) for a.e. x € R. Further, by the Hausdorff
= k=1

metric on Q(C) we have that ||F!(x)| < ha( f; F.(x),F(x)) +rforae. x € Randi = 1,2.
k=1

Moreover, for any r > 0
n
h 12 ( Z F, F ) <
k=1
Hence, we have proved the inequality

(Y B) < ([ (ha (Y F(x), F(x)))2dn) 2
k=1 R k=1

= (

. n
Fi(x) dx 172 < / (hao( Z %)) +7)2dx)/2.
A =
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Consequently,

n n
lim (hLz(k_Zle,F))z < lim hQ(];Fk(x),F(x))zdx.
- =

Using the Theorem 4 the above inequality gives

lim (712 kka,p»z < [ (lim ra (Y Fiw), F() )i
=1

n—o0
R

n
and this implies r}gn hr2( ¥ Fy, F) = 0 by the equality (13). So the proof is complete. O
o k=1

Theorem 7. The quasilinear space L?(R, )(C)) is a Hilbert quasilinear space with the inner-
product given by (4).

Proof. We know that L?(R,Q(C)) is a inner-product quasilinear space with respect to the
inner-product given by (4). By the definition of norm obtained this inner-product we have
that

1/2
IFIl={ ([ 1f)Pdx : f € S2(F)}
R 0
Using the Lemma 4 and Theorem 6 show that L?(R, )(C)) is complete. Thus, L?(R, Q(C)) is
Hilbert quasilinear space. O

4 TRANSLATION, MODULATION AND DILATION OPERATORS ON L?(R, Q)(C))

In this section we introduce some important operators on L?(R, Q(C)).

Definition 16. (Translation) Fora € R and F € L?(R, Q(C)), the operator T, is defined by

(TE)(x) = E(x—a) = {(Tafu) (%) = fax—a) < fu €SB, =1,2,-} (14

and is called translation by a, where T, is the translation operator on L,(R).

Note that 7,F is defined by the set of translations of countable measurable selections of F.
By using the Castaing’s theorem (see, [13]) we say that there exists a sequence (f;;) of measur-
able selections of F such that

Fix—a) = U(Tf) () = U fale =)

= U
n>1
This implies that F(x — a) which is the translation by 2 € R of a set-valued function F €
L%(R,Q(C)) can be written as (14). Hence the translation operator 7, is a natural generaliza-
tion of classical translation operator T, in this way.
Notation: We will often write 7,F(x) instead of (7,F)(x) and similarly for the other opera-
tors.

Translation operator 7, is a bounded linear operator between quasilinear spaces: Actually,
given any F,G € L?(R,Q(C)) and A € C we write

T.(F+G)(x) = (F+G)(x —a) = F(x —a) + G(x —a) = T,F(x) + T.G(x),
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Ta(AF)(x) = (AF)(x —a) = AF(x —a) = AT,F(x).

These show that
To(F 4+ G) = ToF + 7,G and T,(AF) = AT,F. (15)

Also, if F < G then F(x) C G(x) for each x € R. Hence, for any x € R
T.F(x) = F(x —a) C G(x —a) = T,G(x). (16)

This implies 7,F < 7,G. By the (15) and (16) we say that 7, is linear in the meaning of Defini-
tion 9. Furthermore, if F € L2(IR, Q(C)), the change of variable z = x — a shows that

JITE@ I3 ax = [IFG=a)lddx = [IFE)3 4z (17)
R R R

and so

I7El = 1IFll,

namely, 7, is bounded.
Now we will define the modulation and dilation operators in analogy to the definition of
translation operator.

Definition 17. (Modulation, Dilation) For a set-valued function F € L?(RR,Q(C)) we define
the following operators:

(i) Forb € R, the operator &, is defined by

(EF)(x) = e™F(x) = {(Epfa)(x) = &%y (x) : fu € SUF),n =1,2,..}

and is called modulation by b, where E,, is the modulation operator on L,(R). This defi-
nition shows that the modulation operator £, is a natural generalization of classical mod-
ulation operator E;,.

(ii) Forc € R, the operator D, is defined by

1 x 1
(DeF)(x) = Z2F(2) = ADefulx) = —Zfu
and is called dilation by ¢, where D, is the dilation operator on Ly(R). Thus, we say that
the modulation operator D, is a natural generalization of classical modulation operator
DC.

(%) i fu€SYF),n=1,2,..}

It can be easily shown that £, and D, are bounded linear operators as per above.

Definition 18. Let X; and X, be Hilbert quasilinear spaces and T : X; — X, be a bounded
linear operator. The operator T* : X, — Xj is called the adjoint operator of T such that for any
x € Xjandy € Xo,

(Tx,y) = (x, T*y).

Definition 19. Let X be a Hilbert quasilinear space and T : X — X a bounded linear operator.
The operator T is self-adjoint it T = T* and is unitary it TT* = T*T = I.
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Proposition 4. The operators T,, £, and D, are unitary operators from space L?(R,Q(C)) to
L*(R,Q(C)). Further,

o T =Tu=(T0),
o &1 =E64=(&),
o D' =Dy = (De)".

Proof. We give a complete proof for the operator 7, since the proof is similar to the cases of
&, and D, Due to the assumption F € L?(RR, )(C)) and the equality (17) we say that 7, maps
L%(R,Q(C)) into L*(R, Q(C)). Now we will prove that 7, is unitary: The change of variable
z = x — a yields that

=

<7;Pr G> =

—

(4)
(TaF(x), G(x))qdx = [ (F(x—a), G(x))qdx
R

> =

—
~—

(F(z),G(z+a))qdz = (F,T-,G) .

I
A~

Hence by the definition of the adjoint operator 7,* we prove that 7, = 7_,. Moreover, it is not
hard to show that 7,7, = T,7—, = I and 7,;*T, = T_,7, = I. The calculations show that 7, is
unitary and 7,7 = T_, = (7,)*. O

Operators denoted by composition of some of the translation, modulation and dilation
operators appear in mathematics and engineering. For this purpose, the following Proposition
is useful.

Proposition 5. Forany a,b € R and c > 0, the following commutation relations hold:
() (To&F)(x) = ™= F(x — a) = e~ 27(&, T,F)(x),
(@) (ToDcF)(x) = F (% — &) = (DeTaycF) (%),

(i) (Den&yF)(x) = LeXTH/E(2) = (&, DcF) (x).

S
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Y 11il1 cTaTTi AOCAIAXYETHCS BaXKAMBMIA IIPOCTip (PYHKIIM, SKMIi CKAAAAETHCS 3 MHOKIMHHO3HA-
yHMX (PYHKIIM, BU3HAUEHMX Ha MHOXMHI AIVICHMX YMcCeA 3i 3HaUeHHSIMI Yy IPOCTOpPi BCiX KOMIIa-
KTHMX OITYKAMX IIAMHOXIH KOMIIA@KCHUX UMCeA, AASL IKMX p-THI CTeTliHb iXHbOI HOpMU iHTerpoB-
Hwit. 3aranroMm weit mpoctip mosHavaote LP (R, Q(C)) npu 1 < p < oo i BiH Mae aArebpaidHy
CTPYKTYpY, JIOrO Ha3MBaIOTh KBa3iAiHIHMM MPOCTOPOM, IIO € y3araAbHEHHSIM KAACMUYHOTO AiHil-
HOTO IPOCTOPY. AaAi BBOAMTBCS CKaASIPHMI AODYTOK (MHOXVHHO3HAUHMIA CKaASIPHIMI AOOYTOK)
Ha L?(R,Q)(C)) i, Ha HaII TIOTASIA, TIe BaXKAMBO AAS yIpaBAiHHSI iIHTepBaABHO3HAUHMMM AQHVIMU
Ta iHTepBaAbHOIO 06pobKOI0 cmrHaAiB. TakoX Ile MOXXHa BUKOPMCTATH B Tepil HEUITKMX CIIOAI-
BaHb. BusHaueHHs ckaasipHOro A06yTKy B L?(IR, )(C)) 6asyeTbcst Ha MOHATTI iHTerpasy AyMaHa,
SIKMIA 32CTOCOBYETLCSI AAST iHTerpyBaHHSI MHOXMHHO3HAYHMX (PYHKII. M1 oKa3yeMo, 10 IpoCTip
L%(R,Q(C)) e rirbbepToBum KBasiAiHitEMM mpocTopom. HacamkiHenb My 03HAYAEMO OTIepaTOPH
TlepeHeCceHHsI, MOAYASIIIT Ta 3aTPUMKM, SIKi € TPhOMa OCHOBOIIOAOKHVIMY MHOXXIMHHO3HaUHMMI OTTe-
patopamu y riabbepToBoMy KBasiAitiiHOMY mpoctopi L2 (R, Q(C)).

Kntouosi cnoea i ppasu: TiabbepTiB KBa3iAiHIHMIA MpOCTip, MHOXMHHO3HaUHA (pYHKIIisI, iHTeTpas
AymaHa, TIepeHeCeHHS, MOAYASIIIisI, 3aTPYMKa.



