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FREI M.M.

WICK CALCULUS ON SPACES OF REGULAR GENERALIZED FUNCTIONS OF LEVY
WHITE NOISE ANALYSIS

Many objects of the Gaussian white noise analysis (spaces of test and generalized functions,
stochastic integrals and derivatives, etc.) can be constructed and studied in terms of so-called chaotic
decompositions, based on a chaotic representation property (CRP): roughly speaking, any square inte-
grable with respect to the Gaussian measure random variable can be decomposed in a series of It6’s
stochastic integrals from nonrandom functions. In the Lévy analysis there is no the CRP (except the
Gaussian and Poissonian particular cases). Nevertheless, there are different generalizations of this
property. Using these generalizations, one can construct different spaces of test and generalized
functions. And in any case it is necessary to introduce a natural product on spaces of generalized
functions, and to study related topics. This product is called a Wick product, as in the Gaussian
analysis.

The construction of the Wick product in the Lévy analysis depends, in particular, on the selected
generalization of the CRP. In this paper we deal with Lytvynov’s generalization of the CRP and with
the corresponding spaces of regular generalized functions. The goal of the paper is to introduce and
to study the Wick product on these spaces, and to consider some related topics (Wick versions of
holomorphic functions, interconnection of the Wick calculus with operators of stochastic differen-
tiation). Main results of the paper consist in study of properties of the Wick product and of the
Wick versions of holomorphic functions. In particular, we proved that an operator of stochastic
differentiation is a differentiation (satisfies the Leibniz rule) with respect to the Wick multiplication.
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INTRODUCTION

Due to development of physics and mathematics (in particular, of the quantum field the-
ory, of the mathematical physics, of the theory of random processes) there is a need to develop
a theory of test and generalized functions of infinitely many variables. There are different
approaches to building of such a theory. Correspondingly, different spaces of test and general-
ized functions are the object of study. One of the most successful approaches consists in build-
ing of the just now mentioned spaces in such a way that the natural pairing between test and
generalized functions is generated by integration with respect to some probability measure on
a dual nuclear space (in particular, on a dual Schwartz space). First it was the standard Gaus-
sian measure (the measure of a Gaussian white noise), the corresponding theory is called the
Gaussian white noise analysis (see, e.g., [10,21]); then it were realized numerous generalizations.
In particular, important for applications results can be obtained if as the above-mentioned
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measure one uses a so-called Lévy white noise measure (e.g., [4,5]), the corresponding theory is
called the Lévy white noise analysis.

An important role in the Gaussian analysis belongs to a so-called chaotic representation prop-
erty (CRP): roughly speaking, any square integrable with respect to the Gaussian measure
random variable can be decomposed in a series of Itd’s stochastic integrals from nonrandom
functions. In particular, the CRP can be used in order to construct the extended Skorohod
stochastic integral [13,27] and the Hida stochastic derivative [10].

Unfortunately, in the Lévy analysis there is no the CRP [29] (except Gaussian and Poisso-
nian particular cases). Nevertheless, there are different approaches to a generalization of this
property: Ito6’s approach [12], Nualart-Schoutens” approach [24,25], Lytvynov’s approach [23],
Oksendal’s approach [4,5], etc. The interconnections between these generalizations of the CRP
are described in, in particular, [1,4,5,17,23,28,30].

One can use different generalizations of the CRP and construct different spaces of test and
generalized functions in the Lévy analysis, depending on the purpose of the research. And in
any case, for solving of some problems, or even simply for the completeness of the theory, it
is necessary to introduce a natural product on spaces of generalized functions, and to study
related topics. In the classical Gaussian analysis such a product, known as a Wick product, can
be introduced with use of symmetric tensor products of kernels from natural decompositions
of generalized functions (e.g., [22]). But in a general Lévy analysis the situation is more com-
plicated: now the construction of a product on spaces of generalized functions appreciably
depends on the construction of the just now mentioned spaces that, by-turn, depends, in par-
ticular, on the selected generalization of the CRP. For example, elements of the Lévy analysis
in terms of Oksendal’s generalization of the CRP and, in particular, the corresponding Wick
product and related topics, are considered in [4,5].

In this paper we deal with so-called regular parametrized Kondratiev-type spaces of gen-
eralized functions of the Lévy white noise analysis [16], which are constructed with use of
Lytvynov’s generalization of the CRP. The goal of the paper is to introduce and to study a
natural product (a Wick product) on these spaces, and to consider some related topics (Wick
versions of holomorphic functions, stochastic equations with Wick type nonlinearities, inter-
connection of the Wick calculus with operators of stochastic differentiation). Main results of
the paper consist in study of properties of the Wick product and of the Wick versions of holo-
morphic functions. In particular, we proved that an operator of stochastic differentiation is a
differentiation (satisfies the Leibniz rule) with respect to the Wick multiplication.

Note that, as distinguished from the Gaussian case, now the symmetric tensor product of
kernels from natural decompositions of generalized functions is indeterminated, therefore we
introduce an applicable generalization of this product, by analogy with a so-called Gamma
white noise analysis [15] and a more general Meixner white noise analysis [14].

The paper is organized in the following manner. In the first section we recall necessary
notions, definitions and statements. Namely, we introduce a Lévy process L and convenient
for our considerations probability space connected with L; describe in detail Lytvynov’s gen-
eralization of the CRP; consider a regular parametrized rigging of (L?), and the stochastic
integrals, derivatives, and operators of stochastic differentiation on the spaces that belong to
this rigging. The second section is devoted to the Wick calculus: in the first subsection we
introduce and study the Wick product and the Wick versions of holomorphic functions on the
spaces of regular generalized functions; in the second subsection we study an interconnection
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between the Wick calculus and the operator of stochastic differentiation.

1 PRELIMINARIES

In this paper we accept on default that signs || - || or | - |y denote the norm in a space H;
a sign (-, -)g denotes the scalar product in H; signs (-, -)g or (-, -)) g denote the dual pairing
generated by the scalar product in H.

1.1 Lévy processes

Set R4 := [0,+o0). Consider a real-valued locally square integrable Lévy process L =
(Lt)ter, (i-e. a random process on R, with stationary independent increments and such that
Ly = 0) without Gaussian part and drift. As is known (e.g., [5]), the characteristic function of
Lis

E[e"] = exp {t /]R(eigx -1- iex)v(dx)]. (1)

Here v is the Lévy measure of L, which is a measure on (R, B(IR)), here and below B denotes
the Borel o-algebra; E denotes the expectation. We assume that v is a Radon measure whose
support contains an infinite number of points, v({0}) = 0, there exists € > 0 such that

/ x2eFly(dx) < oo,
R

and

/ xv(dx) = 1. (2)
R

Let us define the measure of the white noise of L. By D denote the set of all real-valued
infinite-differentiable functions on IR, with compact supports. As is known, D can be en-
dowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [3]). Let
D’ be the set of linear continuous functionals on D. For w € D’ and ¢ € D denote w(¢) by
(w, ¢); note that one can understand (-, -) as the dual pairing generated by the scalar product
in the space L?(R; ) of (classes of) square integrable with respect to the Lebesgue measure
real-valued functions on R (e.g., [3]). The notation (-, -) will be preserved for dual pairings
in tensor powers of riggings of L?(IR..) and in tensor powers of complexifications of such rig-

gings.

Definition 1. A probability measure i on (D',C(D’)), where C denotes the cylindrical o-
algebra, with the Fourier transform

i{w,p) = ip(u)x _ 1 _
/D’e p(dw) = exp [/]lz+x]1?(e 1—ip(u)x) duv(dx)], peD, 3)

is called the measure of a Lévy white noise.

The existence of u follows from the Bochner-Minlos theorem (e.g., [11]), this proved in
[23]. Below we assume that the o-algebra C(D’) is completed with respect to y, i.e. we take the
completion of C(D’) and preserve for this completion the previous designation. So, now C(D’)
contains all subsets of all measurable sets O such that u(O) = 0.

Denote by (L?) := L*(D',C(D’),u) the space of (classes of) complex-valued square in-
tegrable with respect to u functions on D’. Let f € L?*(R;) and a sequence (¢x € D)ren
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converge to f in L2(R.) as k — oo (as is well known (e.g., [3]), D is a dense set in L?(R)).
One can show [4,5,17,23] that (o, f) := (Lz) — limy (0, @k) (i-e. the limit in the topology of
the space (L?)) is well-defined as an element of (L?).

Denote by 14 the indicator of a set A. Set 19y = 0 and consider (o, 1j;)) € (L2),t € Ry.

It follows from (1) and (3) that <<O, Lo ter +) can be identified with a Lévy process on the
probability space (D', C(D’), jt) (see, e.g., [4,5]). So, one can write L; = (o, 1jg ;) € (L?).

1.2 Lytvynov’s generalization of the CRP

Denote by ® a symmetric tensor product, by a subscript C—complexifications of spaces.
Set Z. := N U{0}. Denote by P the set of complex-valued polynomials on D’ that consists of
zero and elements of the form

Ny R
flw) =Y (0™, fM), weD, Nyez,, fepgn, (NI +£0,
n=0

here Ny is called the power of a polynomial f; (w®0, fO)y .= £0) ¢ Dgo := C. The measure y
of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3) and
properties of the measure v, see also [23]), therefore P is a dense set in (LZ) [26]. Denote by Py,
the set of polynomials of power smaller or equal to 1, by P, the closure of P, in (L?). Let for
n € NP, :=P, ©P,_1 (the orthogonal difference in (L?)), Py := Py. It is clear that
(L2) = & P,
n=0

Let (") € Dg@”, n € Z... Denote by : (0®", f(")} : the orthogonal projection of a monomial
<o®”,f(”)> onto P,,. Let us define real (i.e. bilinear) scalar products (-, -)ext ON D®”, neZ4,by
setting for f(”),g(”) € Dg@”

1
(1,8t = [+, F0) (w0, g (), @
This definition is well posed: it is clear that (-, - ).yt are quasiscalar products on Dg”, the fact
that these products are scalar follows from their explicit formula calculated in [23] (see formula
(6) below).
By | - |ext we denote the norms corresponding to scalar products (4), i.e.

|f(n) |€Xt = (f(n)r,m)ext

Denote by ngt) , n € Z,, the completions of Dg” with respect to the norms | - |ext. For

F(") ¢ HE,ZZ define a Wick monomial : (0®", F()) def (L?) — limk_m:(o@”,fl((n)}:, where

Dg’” > fk(n) — FM ask — oo in ngt) (the well-posedness of this definition can be proved

by the method of "mixed sequences”). Since, as is easy to see, for each n € Z, the set
{:(c®n, M| f0) ¢ D¢"} is dense in P, F € (L?) if and only if there exists a unique se-

quence of kernels F(") ¢ 1 0 e Z.,such that

ext’

(o]

F=) (0% M) 5)

n=0
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(the series converges in (L?)) and

(9]

FIZz) = [ IF(@)Pu(dw) = EIFP = ¥ )R, < .
n=0

So, for F, G € (L?) the real scalar product has a form
(F,G)12) = /D F(@)G(w)p(dw) = E[FG] = Y nl(F™,G").,
n=0

where F("), G ¢ ngt) are the kernels from decompositions (5) for F and G respectively. In

particular, for Fn) ¢ Hézt) and G(m € 7-[( ) n,mée Z,

ext ’
(: (", EM) 2 (o=, GM)2) ) = / Hw®", FY 2 (™™, GOy 1 (dew)
D/
—FE [: <o®n,1:(n)> : (0®M, G(m)> :} — (5n’mn!(1:(n)’ G(n))ext-

Also we note that in the space (L2) : (020, FO)): = (0®0 F(0)) = F(0) and : (o, FV)): = (o, F))
[23].

In what follows, we need an explicit formula for the scalar products (-, - )ext. Let us write out
this formula. Denote by || - ||, the norm in the space L?(IR,v) of (classes of) square integrable
with respect to the Lévy measure v (see (1)) real-valued functions on IR. Let

pn(x) :=x" 4+ anln,lx”*1 +tagax, ai€R, je{l,...,n—1}, neN,

be polynomials orthogonal in LZ(IR,V), i.e. for natural numbers n,m such that n # m,
fR pu(x)pm (x)v(dx) = 0. Then, as it follows from [23], for IAONONS %é”) n €N,

xt’

(F(”),G(”))ext = (F("),G(”))H(m

ext

_ n! P2, v 251 171, [l 25¢
- ‘ Z 51!...Sk!< 111! ) < lk! )

k,l]‘,S]‘GN: ]:l,...,k, 11 >lz>~~~>lk,

1151+"'+lk5k:n

(6)
X /]Riﬁmﬂk F(”)(ul,...,ul,...,usl,...,usl,...,usl+‘.‘+sk,.;.,u51+.,.+sk)
ll 11 lk
X G(")(ul,...,ul, o Uy, e Usyy e Us gy - ooy Uy epsy AU - - AUs 4y, -
ll 11 lk
In particular, forn =1
(FY, 6o = (FV,6), ) = 1} / (wdu = (FV, W) 2w ) ()

(by (2) [|[p1]|2 = [ ¥*v(dx) = 1); in the case n = 2 we have
(F?,GP) = (F?, = / (11, u2) G (uy, up)duyduy

2 2
n HP;HV/ F@(y, u)G(z)(u w)du = (F?,GP) 1o+ HP;HV/ F@ (u,u) G (u, u)du,
R, R,

etc.



WICK CALCULUS ON SPACES OF REGULAR GENERALIZED FUNCTIONS ... 87

Remark. Note that the explicit formula for scalar products in H gxz ,n € Z.,calculated in [23],

ditfers from (6). But it is very easy to verify that actually these formulas differ by the record
form only.

Denote H := L?(Ry), then He = L?*(IR.)c (in what follows, this notation will be used
very often). It follows from (7) that ’H( )

ot = Hc; and, as is easily seen, for n € IN\{1} one

can identify 7-[®” with the proper subspace of Héxt) that consists of "vanishing on diagonals"
elements (roughly speaking, such that F") (uy, ..., u,) = Oif there existk,j € {1,...,n}: k #j,
but u; = u;). In this sense the space ’H( t) is an extension of H®” (this explains why we use the

subscript "ext" in our designations).
1.3 A regular rigging of (L?)

Denote Py = {f = ZHN£0'< on fn)y., fn) ¢ D®” Ny € Z, } C (L?). Accept on default
B€[0,1],g€ Zinthecase € (0,1] and g € Z if ﬁ = 0. Define real (bzlmear) scalar products
(+,+)q,6 On Py by setting for

Ny N
Z oM, f):, g =Y (0™, g): € Py
n=0 n=0
min(Ng,Ng)
(F8)qpi= 3, ()2 (fM, gty
n=0

It is easy to verify that the axioms of a scalar product are fulfﬂled In particular, if (f, f) p=0
then f = 0in (L?). In fact, (f, f)qp = ZNf (n')1+52‘7”|f 2, = 0ifand onlyif [fW[2, =0
foreachn € {0,..., N}, so HfH%LZ) =y,. 0” F2, = 0.

Let || - ||4,5 be the norms corresponding to scalar products (-, -)g 8, i-e. ||fllg8 = v/ (f, f)q,p-

Denote by (Lz)g the completions of P with respect to these norms; and set
(L2)f = pr lim(Lz)g (the projective limit of spaces, i.e. (L?2)f = ﬂ(Lz)g provided by the
q

q—+o0
projective limit topology, see, e.g., [2,3] for details).

Definition 2. The spaces (Lz)g and (L?)P are called parametrized Kondratiev-type spaces of
regular test functions.

As is easy to see, F € (Lz)f,3 if and only if F can be uniquely presented as series (5) (with
kernels F(") ¢ chlt)) that converges in (Lz)g , and
IEI3 5 = IFI2 50 = 30 (n)FP2P" | FPIZ, < oo, (8)

2ﬁ_
(L n=0

Further, it is clear that for F, G € (Lz)ﬁ the real scalar product has a form

i n!) 1+/3217n ),G(n))m,

where F("),G(") ¢ Hﬁ@ are the kernels from decompositions (5) for F and G respectively.

Finally, F € (L?)P if and only if F can be uniquely presented in form (5) and series (8) converges
foreachq € Z.
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Proposition ( [16]). For any g € (0,1] and any q € Z, in the same way as for p = 0 and any
q € Z, the space (Lz)g is densely and continuously embedded into (L?).

Taking into account this result, we can consider a chain (a parametrized regular rigging of
(L%))
(L) 5 (122 2 (17) 5 (1L2)g > (1), ©)

where (L?)_ g and (L?)7# = ind hmq—>+oo(L2> P (the inductive limit of spaces, i.e. (L?)7F =

U(LZ)_g provided by the inductive limit topology, see, e.g., [2,3] for details) are the spaces
q

dual of (Lz)g and (L2)P respectively.

Definition 3. The spaces (L?)_ g and (L?)~P are called parametrized Kondratiev-type spaces
of regular generalized functions.

The following statement from the definition of (LZ) P and the general duality theory fol-
lows.

—P

Proposition. 1) Any regular genera]jzed function F € (L?)_ g

can be uniquely presented as

formal series (5) (with kernels F(") e ext ) that converges in (L?)_ g , and
IEI g = 1N yp = 20 (P27 Gy < oo (10)

Vice versa, any formal series (5) such that series (10) converges, is a regular generalized func-
tion from (Lz)fl3 (i.e. now series (5) converges in (Lz)fﬁ).

2) ForF,G € (Lz) P the real scalar product has a form
(F, i at)l-B-an (F() Gm),.
n=0

where F"), G ¢ ’H( t) are the kernels from decompos1t1ons () for F and G respectively.
3) The dual pairing between F & (LZ) and f € (L )g that is generated by the scalar
product in (L?), has a form

—q

- i n!(p(n),f(n))ext,
n=0

where F"), f(1) ¢ 1") are the kernels from decompositions (5) for F and f respectively.

ext

4)F € (L?)~P ifand only if F can be uniquely presented in form (5) and norm (10) is finite
for someq € Z .

Note that the term "reqular generalized functions" is connected with the fact that the kernels
from decompositions (5) for elements of positive and negative spaces of chain (9) belong to the

(n)

same spaces H,,;.
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1.4 Stochastic integration and differentiation

In this subsection it will be convenient to denote the spaces (L2) 5 , (L%) = (L*)} and (L?) :g

from chain (9) by (Lz)g ,B € [—1,1],q € Z. The norms in these spaces are given, obviously, by
formula (8) (cf. (8) and (10)).

Decomposition (5) for elements of (Lz)g defines an isometric isomorphism (a generalized
Wiener-It6-Sigal isomorphism)

I: (L)) = @ (n)' P27 #f),

where @ (n!)HﬁZq”ngt) is a weighted extended symmetric Fock space (cf. [20]): for F €

n=0
(12)f of form (5) IF = (FO,F(),..) € %O(n!)Hﬁzq”Hg,’j). Let 1 : He — Hc be the
n—=
identity operator. Then the operator I® 1 : (Lz)g ® He — (néo(n!)HﬁZq”Hé;t)) ® He =
& (n!)1+52‘7”(7-[$2 ® Hc) is an isometric isomorphism between the spaces (Lz)g ® Hc and

n=0
& (n!)1+/32‘7”(7-[$2 ® Hc). It is obvious that for arbitrary m € Z, and ™ ey g Hc a

=0 ext

vector (0, ...,0, F.(m),O,...) belongs to @ (n!)HﬁZq”(”Hth) ® Hc). Set

n=0

Ho®m By 1@ 1), 0,E™,0,..) € (12)f  He.

m

It is clear that elements : (0®", 2 ;, n € Z, form orthogonal bases in the spaces (Lz)g ® Hc

)
in the sense that any F € (Lz)g ® Hc can be uniquely presented as

Z E™y:, F e 1M @ He (11)
(the series converges in (Lz)g ® Hc), with

)
IFIR e = SO0 R <o
n=0 ext C

Let us describe the construction of an extended stochastic integral that is based on decom-
position (11) (a detailed presentation is given in [16,17]). Let F eyl ® Hc, n € N. We

ext
select a representative (a function) f.(”) ¢ F" such that

fé")(ul,...,un) = 0if forsomek € {1,...,n} u = uy. (12)

Accept on default A € B(R4) (we remind that B denotes the Borel o-algebra). Let f A”

g;’f 1) as the

the symmetrization of a function f.(”)l A(-) by 1 4 1 variables. Define F g") € H

equivalence class in Héxt 2 generated by j?én) (i.e. fy) cF y)). It is proved in [16, 17] that this
definition is well-posed (in particular, F| in) does not depend on a Choice of a representative

(1) (1) aticfos 7(n) (n)
fo € F' satisfying (12)) and |Fy " |ext < [F71A(4)], ¢ 1) o He _]P ] W e
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Definition 4. We define the extended stochastic integral with respect to a Lévy process L
/Ao(u)cTLu (LB @ He — (1) (13)

by a formula

A Z ®n+1 F (14)

where fgo) = F.(O)lA(-) € He = 1) and B € H"D 5 € N, are constructed by the

ext’ A ext

kernels E" € H") ‘Hc from decomposition (11) for F.

ext

One can show quite analogously to [16] that this integral is a linear continuous operator; and,
moreovet, if F is integrable by It6 then F is integrable in the extended sense and the extended
stochastic integral coincides with the It6 stochastic integral.

Sometimes it can be convenient to define the extended stochastic integral by formula (14)
as a linear operator

/Ao(u)cTLu L (1)F @ He — (12)F. (15)
If B = —1 then this operator is continuous (bounded) [16], for B € (—1,1] operator (15) is
unbounded. But if we accept the set
{F e (L2)F @ He - H/ WL ;= Lt 1)1)+Bae ) E 2 o oo}
9 n=0

as the domain of integral (15) then the last is a closed operator [16]. Also we note that the
extended stochastic integral can be defined by formula (14) as a linear continuous opera-

q%Jroo(Lz)q’3 ® He to (L?)P, or from (L2)P @ He =
ind limy_, 4oo(L?) "F @ He to (L?)~F, here B € [0,1].

Now for plenitude of picture we recall very briefly a notion of a Hida stochastic derivative
in the Lévy white noise analysis, in terms of Lytvynov’s CRP (see [8, 16, 17] for a detailed
presentation).

tor acting from (L?)f @ Hc := prlim

Definition 5. We define the Hida stochastic derivative 15(+)d. : (LZ);fq — (LZ):g ® Hc as a

linear continuous operator adjoint to extended stochastic integral (13), i.e. for all F € (L?) g ®
He and G € (L2);F,

(FO) 100G 2y = ([ F@Lu G))

If instead of integral (13) one uses integral (15), the corresponding Hida stochastic deriva-
tive will be a linear unbounded (except the case f = —1), but closed operator acting from
(Lz) P to (Lz) P& Hc [8]. Further, it is clear that the Hida stochastic derivative can be defined
as a lmear Contmuous operator acting from (L?)f to (L2)f @ H¢ (B € [—1,1]) that is adjoint
to the corresponding extended stochastic integral. We note also that the extended stochastic
integral and the Hida stochastic derivative are mutually adjoint operators [8,16,17].

Let us write out an explicit formula for the Hida stochastic derivative in terms of decompo-
sitions by the Wick monomials. Let G") € H EZZ ,n €N, ¢" € G be arepresentative of G.
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(n-1)
ext

We consider ¢(")(-), i.e. separate a one argument of g'( "), and define G )( ) €eH ® Hc as
the equivalence class in ngt Ve He generated by ¢ (-) (i.e. ¢ (-) € G (). Itis proved
in [17] that this def1n1t10n is well-posed (in particular, G (+) does not depend on a choice of a

representative ¢(" () and

G- oo Dope = <G oy (16)

ext

Note that, in spite of estimate (16), the space 1" ne IN'\{1}, is not a subspace of Tion )

ext”’ ext
Hc because different elements of H gxz

The following statement easily follows from results of [8,16,17].

can coincide as elements of ngt Y ® He.

Proposition. For a test or square integrable or generalized function G of form (5)

(9]

19.G = Zn o, G ()1a(-)): = Y- (n+1): (05", GU I ()14(:)) 1.

n=0

At last, we recall a notion of operators of stochastic differentiation (see [6,7] for a detailed
presentation). Let n,m € Z. Consider a function i : R""" — C. Denote

h(ull ce Unp Uy, ey, un—i—m)

Jh(uy, .. unm), ifforalli € {1,...,n},je {n+1,...,n+m}u; # u; (17)
' 0, in other cases

oxt? Gm ¢ ’ngt) We select representatives (functions) f n e F(”) and

Let £ ¢ 7™

g'(m) e G, Set h(ul,;. S Upem) = f(")(ul,...,un) -g'(m)(unH, . Uptm). Let f m) be
the symmetrization of i (see (17)) by all variables, F () o G(m) ¢ Hﬁ,’jﬁ ") be the equlvalence
class in ngt "™ that is generated by f(Wg(m) (ie. fmg(m) ¢ FW o GM) 1t is proved in [6]

that this definition is well—posed (in particular, F(") o G(") does not depend on a choice of
representatives from F(") and G(")) and

‘P(n) <& G(m)’ext < ‘P(H)‘ext‘G(m)‘ext- (18)

Let F(m) ext , f ext), m > n. We define a "product” (f( n) F(m))gxt € chnt_n) by
setting for each g( ") ¢ Hgft ")

(g, (F), F) i) ext = (F) o gUm=m), Fm)y, (19)

Since by the Cauchy-Bunyakovsky inequality and (18)

|(f(n) Og(m_”), F(m))ext| < |f(n) <>g(m_n)|ext|1:|(m)|ext < |f(n)|ext|g(m_n)|ext|F(m)|extz

this definition is well-posed and

’(f(n)/ F(m))ext‘ext S ’f(n) ’ext‘F(m)‘exb (20)
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Definition 6. Letn € N, f") ¢ Hgg We define an operator of stochastic ditferentiation

(D"o)(f™) = (L)) — (LA)F (21)

by setting for F € (Lz)g

DB 1= B G (05 (P )
= (m s )1 (22)
= Z 7] :<O®m/ (f(n)/F(m+n))€xt> Y
m=0 m.

where F(") ¢ Hg;’? are the kernels from decomposition (5) for F.

Using estimate (20) one can show [6] that this definition is well-posed and operator (21)
is linear and continuous. Moreover, in the case B = 1 formula (22) defines a linear continuous
operator (D"o)(f™) on (Lz)}i, qeZz.

Finally, as is easily seen, (D"o)(f(")) can be defined by formula (22) as a linear continuous
operator on (Lz)ﬁ, B € [—1,1]. Namely a linear continuous operator

(Do)(g) := (D'e)(8) : (L) P — (I)F, geHi=He, B, (@3
will be a subject of study in the forthcoming section.

Properties of operators of stochastic differentiation on spaces of regular test and general-
ized functions of the Lévy white noise analysis are considered in detail in [6,7,9]. Here we note
only that the operator D = D! and the Hida stochastic derivative are connected as follows [7].
Denote 9. := 1g, (-)d.. Let F € (Lz)g and g € 1l = Hc. Then

ext —

(DF)(g) = [ QuF - glujdu € (L),

here the integral in the right hand side is a Pettis one (the weak integral). Taking into account
this equality, one can write formally

9.0 = (Do)(6.), (24)

where §. is the Dirac delta-function concentrated at -. In order to give a nonformal sense to
equality (24), one can consider operators of stochastic differentiation on so-called spaces of
nonregular generalized functions, see [18].

2  ELEMENTS OF WICK CALCULUS

21 Wick product and Wick versions of holomorphic functions

In this subsection we introduce and study a Wick product and Wick versions of holomor-
phic functions on (L?)~#, now g € [0, 1].
First we give necessary definitions.
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Definition 7. For F € (L?)~F we define an S-transform (SF)(A), A € D¢, as a formal series

Z ; ext = F( ) + Z (F(m)/ A®m)extz (25)
m=0 m=1

where F(") ¢ ngt), m € Z., are the kernels from decomposition (5) for F (each term in

series(25) is well-defined, but the series can diverge). In particular, (SF)(0) = F(0), 51 = 1.

Definition 8. For F,G € (L?) and a holomorphic at F(°) functionh : C — C we define a
Wick product FOG and a Wick version h¥ (F) by setting formally

FOG := S~Y(SF-SG), hY(F) := S~ h(SF). (26)

Remark. It is obvious that the Wick product ¢ is commutative, associative and distributive
over a field C.

A function h from Definition 8 can be decomposed in a Taylor series

h(u) = Y hw(u— (SF)(0))™. (27)

WO(F) = Y hu(F — (SF)(0))"", (28)
m=0
where FO" .= F(--- OF, FO0 .= 1.
m times
It easily follows from formula (2.23) in [19] that for £ ¢ ’ngt), (m) ¢ ngt), nmeZ.,,
and A € D¢
(F(n)/ A®n>ext(c(m)/ A®m)ext — (F(n) <& G(m)r )\®n+m)ext (29)

(a product ¢ is defined in Subsection 1.4).

Using this formula, by analogy with the Meixner analysis [14] one can prove the following
statement.
Proposition. ForF,..., F, € (L?)~P

(o]

FO---OF, = Z (o®m, Z F1(k1)<>...<>1:’gkn)>: (30)
m=0 ki, kn€Z 2 ki+---+kp=m
(in particular, for F,G € (L*)™F FOG = OXOJ (oM, g F®) o GIm=h)):), where F( ) e ngt),

m=0 k=0
j € {L,...,n}, kj € Z,, are the kernels from decompositions (5) for F;; F®), Gk ¢ ngz,
k € Z., are the kernels from the same decompositions for F and G respectively. Further, for

F € (L?)~P and a holomorphic at (SF)(0) = F) functionh : C — C

e} m
O F) =ho+ Z ;<o®’“, Z h, Z p(k1) <>...<>F(kn)>:’ (31)
m=1 n=1

Ky kn €N Ky +ky=m

where F) ¢ Hﬁxi, k € Z., are the kernels from decomposition (5) for F, h, € C,n € Z., are

the coetficients from decomposition (27) for h.
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It is clear that in order to give a nonformal sense to notions "the Wick product" and "the
Wick version of a holomorphic function", it is necessary to study a question about convergence
of series (30) and (31) in the spaces of regular generalized functions. Using estimate (18), it is
possible to do it as in the Meixner analysis [14]. As a result, for the Wick product we obtain the
following statement (remind that now € [0,1]).

Theorem 1. Let Fy,...,F, € (L?)~P. Then F - - - OF, € (L?)~P. Moreover, the Wick product
is continuous in the topology of (L2)=F: for arbitrary Fy, ..., F, € (L?)=F, n € N, there exist
7,9 € Z4 (9 > q' + (1 —p)log, n +1) such that

[F1O - -~ OFull—g,—p < \/max 27" (m+ )" R g,—p- - [ Fall-g,—p
mEZ+

(see (10)).

Now let us pass to consideration of the Wick versions of holomorphic functions. It follows
from Theorem 1 and (28) that if F € (L?) " and h : C — C is a polynomial then h®(F) €
(L2)~F. But for a general h the situation is more complicated: as in the Meixner analysis, the
cases f = 1 and B € [0,1) essentially differ. The case f = 1 is comparatively simple: by
analogy with [14] we obtain

Theorem 2. Let F € (L?)~! and a function h : C — C be holomorphic at (SF)(0). Then
hO(F) € (L2)~ L.

Let now B € [0,1). Since (L?)~F C (L?)7 1, for F € (L?)~F and a holomorphic at (SF)(0)
function /i : C — C, by Theorem 2 the Wick version 1° (F) is a well-defined element of (L%)~".
But at the same time it is possible that 1% (F) ¢ (L?)~#, if h is not a polynomial. More exactly,
we have the following result.

Theorem 3. Letug € C, h : C — C be a holomorphic at u function, which is not a polynomial
and is such that all coefficients h, from the Taylor decomposition

h(u) = i By (u — ug)" (32)
n=0

are real and non-negative. Then for each B € [0,1) one can find F € (L?)~F with (SF)(0) = ug
such that h® (F) ¢ (L?)~F.

The proof of this statement, in the same way as the proofs of Theorem 4 and Theorem 5
below, is completely analogous to the proof of the corresponding statement in the Meixner
white noise analysis [14] and therefore can be omitted.

It follows from Theorem 3 that if /1 is not a polynomial then, generally speaking, there are
no estimates for coefficients from decomposition (32), which can guarantee that for arbitrary
F € (L2)7F, B € [0,1), with (SF)(0) = ug, h°(F) is an element of (L?)P. Nevertheless, the
following statement is valid.

Theorem 4. Let F = g (0®m Fm)y: ¢ (L2)~F, Fim ¢ H" N e Z.; and coefficients

ext 7

m=0
h, € C,n € N, from the Taylor decomposition

h(u) = i By (u — FO)n
n=0
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for a holomorphic at FO) € C functionh : C — C satisfy estimates

K}’l

|hn| S nN#

(33)
n

with some K > 0. Then h°(F) € (L?)F.

Letnow 0 < B1 < B2 < 1. We describe a sufficient condition under which k% (F) € (L?)~F2
for F € (L?)~P1 (note that if B, = 1 then by Theorem 2 h¥(F) € (L?)~! without additional
conditions).

Theorem 5. Let0 < B < B < 1, F € (L?)™P1, h : C — C be a holomorphic at (SF)(0)
function. If there exists K > 0 such that for arbitrary n € IN

|ha| <

n
meN: min (([';l}z)nﬁzzﬁl >
where h,, are the coefficients from decomposition (27) for h, [-] denotes the integer part of a
number, then h (F) € (L2)~F2.

By analogy with the Meixner analysis [14] one can apply the above-formulated results for
study of stochastic equations with Wick-type nonlinearities.

Example. Let us consider a stochastic equation
t t -
X = Xo+ / X,OFds + / X,0GdLs, (34)
0 0

where Xo, F,G € (L2)7P, fot X;OFds € (L?)~1 is a Pettis integral (the weak integral). Applying
the S-transform and solving the obtained nonstochastic equation, we obtain

t
SX; = SXo - exp{SFt + SG / A(s)ds).
0
Now it is sufficient to apply the inverse S-transform in order to obtain the solution of (34)
X; = XoO exp®{Ft + GOL;} € (L?)~!

(the fact that X; € (L?)~! follows from Theorem 1 and Theorem 2). In order to obtain X; €
(L2)~F, B < 1, we have to impose additional conditions. For example, let F and G be "polyno-
mials" in the sense that their decompositions (5) contain only finite number of nonzero terms.
Set N := max[pow F, pow G + 1], where pow H denotes the quantity of nonzero terms in de-
composition (5) for H. If there exists K > 0 such that for arbitrary m € IN, where pow H is the
greatest number of nonzero term in decomposition,

1—
mN T

m
o =K%, (35)

then by Theorem 4 X; € (L*)~P (see (33), now h(u) = exp(u), hy = =; for eachm € IN). Note
that estimates (35) are fulfilled if and only if N < ﬁ, this fact is proved in [14].
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2.2  Wick calculus and operators of stochastic differentiation

In this subsection we consider an interconnection between the Wick calculus and the oper-
ator of stochastic differentiation D (see (23)). In particular, we’ll prove that this operator is a
differentiation (satisfies the Leibniz rule) with respect to the Wick multiplication.

We define a characterization set of the space (L?)~F in terms of the S-transform, setting
Bg := S(L?)F = {SF : F € (L?)P}. Itis clear that Bg is a linear space, which consists of
formal series Of; (F(m),.@m), + (see (25)) with the kernels F(") ¢ Hgﬁ) satisfying a condition:

m=0

there exists § € Z such that Y (m!)1=F2-9"|F(")2 < co. It follows from Definition 8 and
=0

m=
Theorem 1 that Bg is an algebra with respect to the pointwise multiplication.

Let g € Héxz Hc. We define a "directional derivative” Dy : Bg — Bg as follows. Set for
(SF)(-) = Z ( (m),.@m) o+ € Bg (F € (L*)7P, Fm) ¢ ’H(gz) are the kernels from decomposi-
tion (5) for F )

DOSF Z m+ 1 m+1)1g<> ext Z m+ 1 (m+1))extz '®m)ext € Bﬁ (36)

(see (19)). Since S_l(D<g>SF) = OZO‘, (m +1): (%™, (g, F"+1)) 1) : = (DF)(g) € (L?)~F (see
m=0
(22)), the operator D; is well-defined and the following statement is valid.

Proposition. The operator of stochastic differentiation (Do)(g), § € %ﬁxi Hc, is the pre-

image of the "directional derivative" Dy of So under the S-transform, i.e. for all F € (L2)~=F
(DF)(g) = "' (DgSF) € (L*)~P. (37)

Remark. If we introduce on Bg a topology induced by the (inductive limit) topology of (L2)~F,
then the S-transform will be a topological isomorphism between a topological algebra (L?)~F

with the Wick multiplication and a topological algebra Bg with the pointwise multiplication.
(1)

Now the "directional derivative" Dg, ¢ € H,y, i
differentiation (Do)(g) on (L?)~P ( under the S-transform). Of course, D : Bg — Bg is a linear
continuous operator.

is the image on Bg of the operator of stochastic

The main result of this subsection is the following

Theorem 6. The operator of stochastic differentiation D is a ditferentiation with respect to the

Wick multiplication, i.e. for arbitrary F,G € (L?)~F and g € Héx% He

(D(FOG))(g) = (DF)(8)0G + FO(DG)(g) € (L*)F. (38)

Proof. First we note that the expressions in the left hand side and in the right hand side of (38)
belong to (L?)~#, this follows from the definition of operator (23) and Theorem 1. Let us prove
the equality (38). By (37) and the first formula in (26)

(D(FOG))(g) = S™H(Dg(S(FOG))) =
(DF)()0G = ST'(S(DF)(g) - SG)
FO(DG)(g) = S~'(SF-S(DG)(g))

S~ (D§(SF - 5G)),
S~1(Dg(SF) - SG),
S~'(SF - Dy(SG)),
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therefore it is sufficient to prove that

D¢(SF - SG) = DS(SF) - SG + SF - D(SG). (39)

Let FM, G e H™ be the kernels from decompositions (5) for F and G respectively.

ext

Using (25), (29) and (36), we obtain

(SF)A) = X (F), A7), (SO)(1) = 1. (G, A,

(SEY) - (5G)) - L (P o, vy,

DS ((SF)(A) - (SG)(A); = io(n +m)(F™ o G, g o ASMHM=1y, )

DS(SF)(A) = ion(ﬂ"), g/<>}\®”1)ext,D§(SG)()\) = iom(G(m), g oA 1,
Dg(SF)(A) (SG_>(A) ion(F(’“,gM@” Y f(G“”),_A ")ext,

(SF)(A)-Dg(SG)(A) = Y m(FU, A%, (G, g 0 A¥™ 1) oy,
n,m=0
here A € D¢. So, in order to prove (39), it is sufficient to show that for all n,m € Z
(n+m)(F™ o G, g o ATmTm=L) oy = n(F), g 0 A1) (GI™), A¥M) 0y (40)
+ m(F(n)/ A®n)ext(G(m);g o A®m_1)ext-

It is easy to see that for n = 0 or m = 0 equality (40) is valid, therefore we consider the case

n,m € N only.

Let us consider (1 + m)(F™ o GI™), g o A®"+m=1), . Denote by ' £ e F and g( m e
G(™) representatives of the equivalence classes F(") and G(™). Set f(n g = f() . ¢(m (an
operation S is defined in (17)). Let f(")¢() be the symmetrization of f(") ¢(") with respect to

(n+ )

ext

by f@): f@) € F o Gm, Similarly for A € D¢ and a representative ¢ € "8/ 8€ H

set A®ntm—lg .— A\@ntm=1. ¢ and denote by A®"+"m~1lg the symmetrization of A= 1o with

—

all arguments. We remind that F(") o G( ™) is an equivalence class in H that is generated

(1)

ext’

respect to all arguments. Then A®"+m-1g € oo A®"+m—1 (an equivalence class g © AZ" M1 ¢
21 i generated by A®n+m—1g),

ext
Without loss of generality, one can assume that f(") and ¢(") are symmetric functions, and

m > n. Taking this into consideration, we obtain

T n!m!

f(n)g(m) (ull .. .,un; un—|—1/ .. .,un+m) = m

—_——

o Z f(n)g(m) (upl, ey l/lpr, l/lql, ceey T/lq,17r} (41)

1<p1eepn<nn+1<qq,.. qm<n+m
0<r<n,p1<-<prppp1<<pPni1 < <qn—rlp—r+1<"<qm

Upyirr s Upys Ugy iar s Ugy),
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here for r = n the argument in the right hand side of (41) is (11, ..., n; Uyi1, - -, Untm); forr =
0 this argument is (”qlr e Ug U, e U Uy gy ”qm) (see [7] for a detailed explanation).
Substituting (41) in the left hand side of (40), we obtain (see (6))

—_—

(ﬂ + m)(F(n) o G(m),g0A®n+mfl)ext — (1’1 4 m)(f(n)g(m)’}\®n+mflg)ext
2 2
= (n+m) y (n+m)! (szl|lv> 51_“<||pzk||u> B

A sl 5! Ih! I !
Kl EN =1k, 1>l > >l ©1 k 1 k
lysy+-+lgsp=n+m

—_—

n m
X /]Rsf'””kf( )gl )(ul,...,ul,...,u51+‘.‘+sk,...,u51+,.,+sk)
I

Iy

—

XO(ASTFM=) (g, - UL, e Usyogsyr o ooy Uy oegs ) AU - - AU s, =
——
ll lk (42)

B n!m! P llv 1 1 llv 2
= (n+m) )3 51!'-'Sk!< ! < !

k,lj,sje]N:j:L...,k, I >lp>>1y,
Iysy+-+lgsp=n+m

n m
X |:/H{j}++sk f( )g( )(ull"'/ulf"'lusl++Sk/"'/usl++Sk)

ll lk

—

X(ASTFM=1 ) Uy, oo U, oo Usygoqsyy ooy Uy oty AU -+ AU 4oqs ]

ll lk

We say that a collection of equal among one another arguments (e.g., (11, ..., 1)) is called
a procession. It follows from the ordering in ascending of indexes in (41) and in (6) that proces-
sions in summands in interior sums [- - - | from (42) can "tear" only so that different parts of a
"torn" procession will be for different parties from ’;’; processions being for one side from ’;’
do not switch places; and elements in processions do not switch places. In addition, it follows

from a construction of f("¢(m) (see (17)) that summands in interior sums [- - -] from (42), in
which a procession is divided by ’;’, are equal to zero. Another summands (if there exist for a
collection k, I, s;) disintegrate on groups of equal among one another integrals. These groups
arise by means of transpositions of processions with equal quantity of members, which are
placed before ’;” and after ’;’, an equality of integrals under such transpositions from the sym-
metric property of a function ASn+m=1 g follows: this symmetry gives a possi@it\y to transpose

mutually processions with equal quantity of members in the argument of A®"+7m—1¢_ Ttis clear

that if there are s’ processions of length I before ’;” and s” processions of length [ after ;" tnen by

1 MY
oy . : S—+S§"):
means of mutual transpositions of these processions one can obtain % equal summands.

So, nonzero terms in the last expression in (42) are "connected" with equalities
lisi+ -+ sy =n+m, (43)
that can be presented in the form

Lsi+ - +luspy =n, )+ -+ s =m,
/1 g/ / !/ / 1 1 1 1/
k,k ,ll,...,lk/,Sl,...,Sk/,ll,...,lk//,sl,...,Sk//EN, (44)

B> sl > > 10
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(the first sum in (44) corresponds to first n arguments of f(")¢("), the second sum corresponds
to last m arguments) as follows. For each s; from (43) either there exists st = S; (=1 j) or there
exists s = s; (If' = I;) or there exist s} and s}, such that s; + 53, = s; (I} = Iz, = I;). Inequalities
for I/, 1” in (44) follow from inequalities Iy > --- > [; and ordering of indexes in (41) and (6)
(more long processions have smaller indexes of arguments).

We will replace each group of the above-described equal among one another integrals in
the right hand side of (42) by a representative multiplied by a quantity of terms in the group.

Also, since the Lebesgue measure is non-atomic, we can replace here f() g(m) by £(1) . ¢(m) (in
summands that remain elements of each procession are placed on the same side of ’;"). Now,
taking into account that w' " = w¥w", one can rewrite the last expression in (42) in the form

> nlm!(n + m)
Mool g g
HSy el st =, IS et sl =, S51° SprS1° Sk

P A AR AN

/ o "
ll>~~~>lk,, 1 >~~~>lk,,

2s] 2s! 2s!/ 2s
e I\ (e T (g™ (e, 1\ ™

(1)
X A{s’l+~~~+s;<,+s/1/+~~+s;<’,, f (ull cee UL, uS/1+"’+S;(/’ sy us/1+...+5;(/)
+ ’
ll

I,
45
. (45)

<(m
X g( )(un+1r .. .,un+1, ce ,Mn+si/+,,,+s;(/”, .. .,un+S/1/+,,,+skH
N———

l// M
1 lkN
—_—

n+m—1
x (A®n+ g)(ul,...,ul,...,usfl+,.,+s;{/,---r”s’1+w+s;{,r

h

’
Zk’

)

Upnit,e - Uns1,e - -y un+5’1’+‘~‘+5// IEERY un+s’1’+~~+sk,,
————

K
1 l//
K

X du1 .. -dusll+,,,+S;{/dun+1 s dun+s/1/+,,,+S;(/N.

Further, the symmetrization of a function A®"+"~1¢ has a form

—_— 1
(ASTEm=1Y (1, . .. Upm) = cEw ; (ASHAM=) (U (1), s U () (46)
TTESn+m

where 5,1, is the set of all permutations of numbers 1,...,n + m. This representation can

be essentially simplified if we take into account that A®"+"~1g is a symmetric function with
respect to first n + m — 1 arguments. Namely, consider all summands from (46) with the last
argument U, It is clear that there are (n 4+ m — 1)! such summands, because they can be ob-
tained by arbitrary permutations of arguments uy, ..., 1, 4,,—1. Taking into account the above-
mentioned symmetry one can conclude that all these summands are equal among one another.
So, itis possible to replace them by an arbitrary representative multiplied by (n +m —1)!. Sim-
ilarly one can group summands with the last arguments 1,41, Uy m—2, . .., u1. Substituting
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multiplied by (n + m — 1)! representatives of these groups of summands in (46), we obtain

— 1

(ASnm=Le) (U, ...y Upm) = [(A®mTm=1e) (uy, ..., tnrm)

(n+m) (47)
+ (A2 (g, U, oo Upgem—1) + o+ (ALY (1, g, 1) ]

(representatives of the above-described groups of summands are selected subject to conse-
quent calculations).
Substituting (47) in (45), we obtain

nlm!
spl-- sy syl sl
lisllw; +lk/sk, n/ l/// ’+N +l;(’,, ;(’//// m, 1 k' k"
KR el 1 o 11, My sl sll €N,
1> >lk,,l > >l]’(’,,
2s! 2s!, 25" 25",
Pl ™ A 7 A A A
— s | = — - X
I ] o I,

((n)
X \/]RSlJr +Sk,+sl+ +Sk,/ (ulr Y ATEEE rus’1+‘-‘+s;(,/ “ee ru5’1+‘.‘+5;(,>
Jr
l/
1

lec’
48

s(m
Xg( )(un+1/"'lun+1""/un+s’1’+‘~‘+s;(’,,/" n+s”+ s
N———

"
Z1

k!

"
lk//

X [(A®"+m*1g)(u1,---,ulf---z”s’1+~~+s;(,/--- u pn—

h

\~
!
L

PEN

(257 PR 7 3 T PR i’l+S’1’+ s
———

"
ll

1"
o’ ”7L51Jr +sk,,

"
lkN

X duqy---du p—— duyyq-- du,HS”+ sl
where each next term in the sum [- - - | with n 4+ m summands is obtained from the previous
term by the "shift of arguments": (-1,..., nim—1, ‘n+m) — Cntm, 1,---, n+m—1) etc. Taking
into account the structure of A®7+\m/_1 ¢ (in particular, its symmetry with respect to first n +
m—1 ﬁrgments), the non-atomicity of the Lebesgue measure, and equalities (47) for Aa”*\lg

and A®"~1g, we can continue (48) as follows:

(1’1 + m)(F(n) o (;(m)’g<> A®n+m71)ext

n!m!
- 1M1 ... g1
s bl = +1]’<’,, = syl splsy st
k/ k// 1/ " lk/ / ;(/ li/ l;{’,, // klleN'
1> >11’( 1> 1]’(’,,
25! 2s', 25" 25",
1Pl ™ e, 1\ = (Ml ) I, 1\ ™
>< - oo _— _ ..
!/ / " 1
13! lk,! 17! lkHI

‘(n)
X /Y51+ +5k,+5//+ +qk// (ul,...,ul,...,usll_;’_‘“_;’_s;{/,---,us/l_j’_‘“ S;{,)
+ I
1

’
Zk’
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/ l/,
" ) X [All (ul) Ak (usfl+...+s;(,)

s\m
X g( )(un+1, e U, - .,unHH,,,Hu P .,un+slll+m+sk”
——— —

K
l// 7/’
1 lkN

X ((A®M—1g)(un+1, ce Uy, .. .,un+si/+,,,+su P .,unJrS/l/ijJrS//N) + .. )]
———

K’ k

l// M
1 lkN

X duq - -dusll+...+s;(,dun+1 T dun+s’1’+~-+s"

kN

n'm!
+ ghlev gl It gl 1
lis’1+<~+lll(,s]/(/:n, li’sibr--drl]/(/,,s]/(///:nl, 1 k71 k"

KK oy 53 S A ey Y oSl €N,
l{>--->l]’<,, l{’>--->l]’<’,,

2 ! 2 / 2 " 2 "

||P1{Hv & ”pl,’(,”v w lei/Hv 1 HPI;(’,,HV k!
>< l/' PN l/ ' 1/7/’ PN l// '
1° K 1° k'

o(n)
X /Rs’1+---+s;(,+s’1’+---+sl’<’,, f (ulf cee UL,y uS’1+---+S;(,’ T uS’1+~~-+S,’(/)
+
l/

1 l]’(,
(m
X g( )(unJrl, e U1, ,lxln_._si/_i_m_,’_s;(/”, .. "un+S/1/+~“+S]Z,,>
Iy ) y ’
lk//
n—1 ..
X |:(()\® g)(ul,...,ul,...,usll_i_‘“_._s;{/,-..,usll_._.“_._s;{/)—|—- )
I
1 ZI/(/

1" "
X Al (un+1) A k”(un+5/1’+...+s;(///) du1 s dusllJr,,,Jrs;(,dun_._l s dunJrS/l/erJrs;(/N

= m(f(n)/ A®n>ext(g(m)/ A®milg>3xt + n(f(n)/ A®nilg>3xt(g(m)r )\®m>ext
= m(F(n), )\®n>ext(G(m)/g<> )\®m71>ext + H(F("),go A®n71)ext(G(m)/ A®m>ext~

So, (40) is fulfilled, hence (39) is valid and therefore equality (38) is proved. O

Corollary. Let F € (L?)7F, ¢ € ”chz = H¢, and h : C — C be a holomorphic at (SF)(0)
function. Then

(Dh®(F))(g) = W (F)O(DF)(g) € (L), (49)

where I'C is the Wick version of the usual derivative of a function h.

Proof. First we’ll prove by the mathematical induction method that for each m € Z
(D(F=(sF)(0)°") (g) = m (F = (SF)(0))*" " 0(DF)(g)- (50)

In fact, in the case m = 0 equality (50) is, obviously, true (we remind that (F — (SF)(0))%? =1
by definition and for G € C C (L?)"P DG = 0). Let us suppose that (50) is valid for m < k,
k € Z. In particular,

(D(F = (sF)(0))%) (3) = k (F = (SF)(0)) " O(DF)(g). (51)
We have to show that
(D (F=(sF)(0))%*") (9) = (k+1) (F = (SF)(0) ** O(DF)(2).
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Using (38) and (51) we obtain

D(F—($ ><o>><>"“)< )

(b

RS

(DL(E = (5E)(©0)% 0 (F = (5F)(0))]) (g)
(SF)(0))7) ()0 (F = (SF)(0)) + (F = (SF)(0))** 0.(D (F = (SF)(0))) (3)
(F = (SF)(0))* 1 0(DF)(8)0 (F — (SF)(0)) + (F — (SF)(0)) * 0(DF)(g)
(F — (SF)(0))* O(DF)(g) + (F — (SF)(0))** O(DF)(g)
= (k+1) (F = (SF)(0))* 0(DF)(g),

(
(

which is what had to be proved.
Further, consider decomposition (28) for 1% (F). Let hS, (F N(F) == Z hw (F — (SF) (O))Qm be

the N-th partial sum of this decomposition. It follows from the hnearlty of D, (50), and Theo-
rems 2 and 1 that

=

(Dr(B) () = L o (D (= (SF)(0))™) (3)

3
I
—_

I
=z

i (F = (SF)(0)) """ 0(DF)(g) = H(F)O(DF)(g)

3
I
—_

in (L2)~1, where 1'° is the Wick version of the usual derivative of a function 4. On the other

hand, since (Do)(g) is a continuous operator on (L?)~1, <Dh%(l—“)> (g) ¢ (DhO(F)) (g) in
—00

(L2)~1. So, equality (49) is valid. O
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Barato 06’exTiB I'aycciBcbkoro aHaAisy 6iaoro mrymy (IIpocTOpy OCHOBHMX i y3araAbHeHMX (PyH-
KIIilf, CTOXaCTWUHI iHTerpaAu Ta MOXiaHi, TOmIO) MOXHa 6yAyBaTH i AOCAIAXYBaTH Y TepMiHaX Tak
3BaHMX XaOTUYHMX PO3KAAAIB, III0 6a3YIOThCS Ha 84cHuoci xaomuurozo poskaady (BXP): rpybo ka-
XyuM, KOXKHY KBaApPaTMUHO iHTErpOBHY BiAHOCHO rayccCiBChbKOI Mipy BUITAAKOBY BEAVUMHY MOXHa
PO3KAACTH Y psIA CTOXAaCTUUHMX iHTeTpaais ITo Bia HeBrmaaxosux dpyHKIiN. Y aHarisi Aesi Hema
BXP (xpim raycciBchbKoro Ta IyacCOHiBChKOrO YaCTMHHMX BUIAAKiB). TuUM He MeHIN, icHYIOTb pi3Hi
y3araabHEHHsI ITi€l BAQCTMBOCTI. BMKOpMCTOBYIOUM Li y3araabHEHHsI, MOXHa O6yAyBaTy pisHi mpo-
CTOPY OCHOBHUMIX i y3araAbHeHMX (pyHKIIA. |y KOXXHOMY BMITaAKY HEOOXiAHO YBOAMTY IIPUPOAHVIA
AODOYTOK Ha IIPOCTOpax y3araAbHeHMX (PYHKIIil, Ta BUMBYATH IIOB s13aHi muTaHHs. Lleit AobyToK Ha-
3UBAETHCSI BiKIBCLKUM 000YMKOM, SIK Y TayCCiBCBKOMY aHaAi3i.

KoHcTpyxkuis BikiBcbkoro A06yTKY y aHaAi3i AeBi 3aAeXWUTh, 30KpeMa, Bia 06paHOTO y3arasbHe-
HHs1 BXP. VY mit craTTi M1 MaeMo CIpaBy 3 AMTBMHIBCHKMM y3arasbHeHHsIM BXP Ta 3 BiamoBiaHMMU
IIPOCTOpaMM PETYASIPHMX y3araAbHeHMX (PYHKII. MeToo CTaTTi € yBecTy Ta BUBUMTH BiKiBChKMI
AOGYTOK Ha IMX IMPOCTOpaX, Ta PO3TASHYTH AesIKi MOB’sI3aHi MMTaHHS (BikiBcbki Bepcii roroMop-
dHMX pyHKIII, B3a€MO3B 30K BiKiBCHKOTO UMCAEHHS 3 OIlepaTOpaMy CTOXaCTUYHOTO AMdpepeHITi-
1oBaHHsT). OCHOBHI pe3yAbTaTM CTATTi HOASATAIOTH Y BUBUEHHI BAACTMBOCTEN BiKiBCBKOTO AOOYTKY
Ta BiKiBCbKIX Bepcili roroMOpdHIX (PYHKIIN. 30Kpema, MU AOBEAH, ITI0 OIIEPATOP CTOXaCTUIHOTO
AVdpepeHIIIIOBaHHS € AVPepeHIIIOBaHHIM (3aA0BOABHSIE ITPaBMUAO AelibHilla) BiAHOCHO BiKiBCBKOTO
MHOXEHHSL.

Kntouosi cnosa i ppasu: Ilporiec Aesi, croxacTiane AvidpepeHIiIOBaHHSI, BiKiBChKIMIT AODOYTOK.



