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WICK CALCULUS ON SPACES OF REGULAR GENERALIZED FUNCTIONS OF LÉVY

WHITE NOISE ANALYSIS

Many objects of the Gaussian white noise analysis (spaces of test and generalized functions,

stochastic integrals and derivatives, etc.) can be constructed and studied in terms of so-called chaotic

decompositions, based on a chaotic representation property (CRP): roughly speaking, any square inte-

grable with respect to the Gaussian measure random variable can be decomposed in a series of Itô’s

stochastic integrals from nonrandom functions. In the Lévy analysis there is no the CRP (except the

Gaussian and Poissonian particular cases). Nevertheless, there are different generalizations of this

property. Using these generalizations, one can construct different spaces of test and generalized

functions. And in any case it is necessary to introduce a natural product on spaces of generalized

functions, and to study related topics. This product is called a Wick product, as in the Gaussian

analysis.

The construction of the Wick product in the Lévy analysis depends, in particular, on the selected

generalization of the CRP. In this paper we deal with Lytvynov’s generalization of the CRP and with

the corresponding spaces of regular generalized functions. The goal of the paper is to introduce and

to study the Wick product on these spaces, and to consider some related topics (Wick versions of

holomorphic functions, interconnection of the Wick calculus with operators of stochastic differen-

tiation). Main results of the paper consist in study of properties of the Wick product and of the

Wick versions of holomorphic functions. In particular, we proved that an operator of stochastic

differentiation is a differentiation (satisfies the Leibniz rule) with respect to the Wick multiplication.
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INTRODUCTION

Due to development of physics and mathematics (in particular, of the quantum field the-

ory, of the mathematical physics, of the theory of random processes) there is a need to develop

a theory of test and generalized functions of infinitely many variables. There are different

approaches to building of such a theory. Correspondingly, different spaces of test and general-

ized functions are the object of study. One of the most successful approaches consists in build-

ing of the just now mentioned spaces in such a way that the natural pairing between test and

generalized functions is generated by integration with respect to some probability measure on

a dual nuclear space (in particular, on a dual Schwartz space). First it was the standard Gaus-

sian measure (the measure of a Gaussian white noise), the corresponding theory is called the

Gaussian white noise analysis (see, e.g., [10, 21]); then it were realized numerous generalizations.

In particular, important for applications results can be obtained if as the above-mentioned
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measure one uses a so-called Lévy white noise measure (e.g., [4, 5]), the corresponding theory is

called the Lévy white noise analysis.

An important role in the Gaussian analysis belongs to a so-called chaotic representation prop-

erty (CRP): roughly speaking, any square integrable with respect to the Gaussian measure

random variable can be decomposed in a series of Itô’s stochastic integrals from nonrandom

functions. In particular, the CRP can be used in order to construct the extended Skorohod

stochastic integral [13, 27] and the Hida stochastic derivative [10].

Unfortunately, in the Lévy analysis there is no the CRP [29] (except Gaussian and Poisso-

nian particular cases). Nevertheless, there are different approaches to a generalization of this

property: Itô’s approach [12], Nualart-Schoutens’ approach [24,25], Lytvynov’s approach [23],

Oksendal’s approach [4,5], etc. The interconnections between these generalizations of the CRP

are described in, in particular, [1, 4, 5, 17, 23, 28, 30].

One can use different generalizations of the CRP and construct different spaces of test and

generalized functions in the Lévy analysis, depending on the purpose of the research. And in

any case, for solving of some problems, or even simply for the completeness of the theory, it

is necessary to introduce a natural product on spaces of generalized functions, and to study

related topics. In the classical Gaussian analysis such a product, known as a Wick product, can

be introduced with use of symmetric tensor products of kernels from natural decompositions

of generalized functions (e.g., [22]). But in a general Lévy analysis the situation is more com-

plicated: now the construction of a product on spaces of generalized functions appreciably

depends on the construction of the just now mentioned spaces that, by-turn, depends, in par-

ticular, on the selected generalization of the CRP. For example, elements of the Lévy analysis

in terms of Oksendal’s generalization of the CRP and, in particular, the corresponding Wick

product and related topics, are considered in [4, 5].

In this paper we deal with so-called regular parametrized Kondratiev-type spaces of gen-

eralized functions of the Lévy white noise analysis [16], which are constructed with use of

Lytvynov’s generalization of the CRP. The goal of the paper is to introduce and to study a

natural product (a Wick product) on these spaces, and to consider some related topics (Wick

versions of holomorphic functions, stochastic equations with Wick type nonlinearities, inter-

connection of the Wick calculus with operators of stochastic differentiation). Main results of

the paper consist in study of properties of the Wick product and of the Wick versions of holo-

morphic functions. In particular, we proved that an operator of stochastic differentiation is a

differentiation (satisfies the Leibniz rule) with respect to the Wick multiplication.

Note that, as distinguished from the Gaussian case, now the symmetric tensor product of

kernels from natural decompositions of generalized functions is indeterminated, therefore we

introduce an applicable generalization of this product, by analogy with a so-called Gamma

white noise analysis [15] and a more general Meixner white noise analysis [14].

The paper is organized in the following manner. In the first section we recall necessary

notions, definitions and statements. Namely, we introduce a Lévy process L and convenient

for our considerations probability space connected with L; describe in detail Lytvynov’s gen-

eralization of the CRP; consider a regular parametrized rigging of (L2), and the stochastic

integrals, derivatives, and operators of stochastic differentiation on the spaces that belong to

this rigging. The second section is devoted to the Wick calculus: in the first subsection we

introduce and study the Wick product and the Wick versions of holomorphic functions on the

spaces of regular generalized functions; in the second subsection we study an interconnection
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between the Wick calculus and the operator of stochastic differentiation.

1 PRELIMINARIES

In this paper we accept on default that signs ‖ · ‖H or | · |H denote the norm in a space H;

a sign (·, ·)H denotes the scalar product in H; signs 〈·, ·〉H or 〈〈·, ·〉〉H denote the dual pairing

generated by the scalar product in H.

1.1 Lévy processes

Set R+ := [0,+∞). Consider a real-valued locally square integrable Lévy process L =

(Lt)t∈R+ (i.e. a random process on R+ with stationary independent increments and such that

L0 = 0) without Gaussian part and drift. As is known (e.g., [5]), the characteristic function of

L is

E[eiθLt ] = exp
[
t
∫

R

(eiθx − 1 − iθx)ν(dx)
]

. (1)

Here ν is the Lévy measure of L, which is a measure on (R,B(R)), here and below B denotes

the Borel σ-algebra; E denotes the expectation. We assume that ν is a Radon measure whose

support contains an infinite number of points, ν({0}) = 0, there exists ε > 0 such that
∫

R

x2eε|x|ν(dx) < ∞,

and ∫

R

x2ν(dx) = 1. (2)

Let us define the measure of the white noise of L. By D denote the set of all real-valued

infinite-differentiable functions on R+ with compact supports. As is known, D can be en-

dowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [3]). Let

D′ be the set of linear continuous functionals on D. For ω ∈ D′ and ϕ ∈ D denote ω(ϕ) by

〈ω, ϕ〉; note that one can understand 〈·, ·〉 as the dual pairing generated by the scalar product

in the space L2(R+) of (classes of) square integrable with respect to the Lebesgue measure

real-valued functions on R+ (e.g., [3]). The notation 〈·, ·〉 will be preserved for dual pairings

in tensor powers of riggings of L2(R+) and in tensor powers of complexifications of such rig-

gings.

Definition 1. A probability measure µ on (D′, C(D′)), where C denotes the cylindrical σ-

algebra, with the Fourier transform
∫

D′
ei〈ω,ϕ〉µ(dω) = exp

[ ∫

R+×R

(eiϕ(u)x − 1 − iϕ(u)x) duν(dx)
]

, ϕ ∈ D, (3)

is called the measure of a Lévy white noise.

The existence of µ follows from the Bochner-Minlos theorem (e.g., [11]), this proved in

[23]. Below we assume that the σ-algebra C(D′) is completed with respect to µ, i.e. we take the

completion of C(D′) and preserve for this completion the previous designation. So, now C(D′)

contains all subsets of all measurable sets O such that µ(O) = 0.

Denote by (L2) := L2(D′, C(D′), µ) the space of (classes of) complex-valued square in-

tegrable with respect to µ functions on D′. Let f ∈ L2(R+) and a sequence (ϕk ∈ D)k∈N
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converge to f in L2(R+) as k → ∞ (as is well known (e.g., [3]), D is a dense set in L2(R+)).

One can show [4, 5, 17, 23] that 〈◦, f 〉 := (L2)− limk→∞〈◦, ϕk〉 (i.e. the limit in the topology of

the space (L2)) is well-defined as an element of (L2).

Denote by 1A the indicator of a set A. Set 1[0,0) ≡ 0 and consider 〈◦, 1[0,t)〉 ∈ (L2), t ∈ R+.

It follows from (1) and (3) that
(
〈◦, 1[0,t)〉t∈R+

)
can be identified with a Lévy process on the

probability space (D′, C(D′), µ) (see, e.g., [4, 5]). So, one can write Lt = 〈◦, 1[0,t)〉 ∈ (L2).

1.2 Lytvynov’s generalization of the CRP

Denote by ⊗̂ a symmetric tensor product, by a subscript C—complexifications of spaces.

Set Z+ := N ∪ {0}. Denote by P the set of complex-valued polynomials on D′ that consists of

zero and elements of the form

f (ω) =

N f

∑
n=0

〈ω⊗n, f (n)〉, ω ∈ D′, N f ∈ Z+, f (n) ∈ D⊗̂n
C

, f (N f ) 6= 0,

here N f is called the power of a polynomial f ; 〈ω⊗0, f (0)〉 := f (0) ∈ D⊗̂0
C

:= C. The measure µ

of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3) and

properties of the measure ν, see also [23]), therefore P is a dense set in (L2) [26]. Denote by Pn

the set of polynomials of power smaller or equal to n, by Pn the closure of Pn in (L2). Let for

n ∈ N Pn := Pn ⊖Pn−1 (the orthogonal difference in (L2)), P0 := P0. It is clear that

(L2) =
∞
⊕

n=0
Pn.

Let f (n) ∈ D⊗̂n
C

, n ∈ Z+. Denote by : 〈◦⊗n, f (n)〉 : the orthogonal projection of a monomial

〈◦⊗n, f (n)〉 onto Pn. Let us define real (i.e. bilinear) scalar products (·, ·)ext on D⊗̂n
C

, n ∈ Z+, by

setting for f (n), g(n) ∈ D⊗̂n
C

( f (n) , g(n))ext :=
1

n!

∫

D′
: 〈ω⊗n, f (n)〉 :: 〈ω⊗n, g(n)〉 :µ(dω). (4)

This definition is well posed: it is clear that (·, ·)ext are quasiscalar products on D⊗̂n
C

, the fact

that these products are scalar follows from their explicit formula calculated in [23] (see formula

(6) below).

By | · |ext we denote the norms corresponding to scalar products (4), i.e.

| f (n) |ext :=

√
( f (n) , f (n))ext

.

Denote by H
(n)
ext , n ∈ Z+, the completions of D⊗̂n

C
with respect to the norms | · |ext. For

F(n) ∈ H
(n)
ext define a Wick monomial : 〈◦⊗n, F(n)〉 :

def
= (L2) − limk→∞ : 〈◦⊗n, f

(n)
k 〉 :, where

D⊗̂n
C

∋ f
(n)
k → F(n) as k → ∞ in H

(n)
ext (the well-posedness of this definition can be proved

by the method of "mixed sequences"). Since, as is easy to see, for each n ∈ Z+ the set

{: 〈◦⊗n, f (n)〉 :| f (n) ∈ D⊗̂n
C

} is dense in Pn, F ∈ (L2) if and only if there exists a unique se-

quence of kernels F(n) ∈ H
(n)
ext , n ∈ Z+, such that

F =
∞

∑
n=0

: 〈◦⊗n, F(n)〉 : (5)
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(the series converges in (L2)) and

‖F‖2
(L2) =

∫

D′
|F(ω)|2µ(dω) = E|F|2 =

∞

∑
n=0

n!|F(n)|2ext < ∞.

So, for F, G ∈ (L2) the real scalar product has a form

(F, G)(L2) =
∫

D′
F(ω)G(ω)µ(dω) = E[FG] =

∞

∑
n=0

n!(F(n), G(n))ext,

where F(n), G(n) ∈ H
(n)
ext are the kernels from decompositions (5) for F and G respectively. In

particular, for F(n) ∈ H
(n)
ext and G(m) ∈ H

(m)
ext , n, m ∈ Z+,

(
: 〈◦⊗n, F(n)〉 :, : 〈◦⊗m, G(m)〉 :

)
(L2)

=
∫

D′
: 〈ω⊗n, F(n)〉 :: 〈ω⊗m, G(m)〉 :µ(dω)

= E
[
: 〈◦⊗n, F(n)〉 :: 〈◦⊗m, G(m)〉 :

]
= δn,mn!(F(n), G(n))ext.

Also we note that in the space (L2) : 〈◦⊗0, F(0)〉 : = 〈◦⊗0, F(0)〉 = F(0) and : 〈◦, F(1)〉 : = 〈◦, F(1)〉

[23].

In what follows, we need an explicit formula for the scalar products (·, ·)ext. Let us write out

this formula. Denote by ‖ · ‖ν the norm in the space L2(R, ν) of (classes of) square integrable

with respect to the Lévy measure ν (see (1)) real-valued functions on R. Let

pn(x) := xn + an,n−1xn−1 + · · ·+ an,1x, an,j ∈ R, j ∈ {1, . . . , n − 1}, n ∈ N,

be polynomials orthogonal in L2(R, ν), i.e. for natural numbers n, m such that n 6= m,∫
R

pn(x)pm(x)ν(dx) = 0. Then, as it follows from [23], for F(n), G(n) ∈ H
(n)
ext , n ∈ N,

(F(n), G(n))ext ≡ (F(n), G(n))
H

(n)
ext

= ∑
k,lj,sj∈N: j=1,...,k, l1>l2>···>lk,

l1s1+···+lksk=n

n!

s1! · · · sk!

(‖pl1‖ν

l1!

)2s1
· · ·
(‖plk

‖ν

lk!

)2sk

×
∫

R
s1+···+sk
+

F(n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1, . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× G(n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1, . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)du1 · · · dus1+···+sk
.

(6)

In particular, for n = 1

(F(1), G(1))ext ≡ (F(1), G(1))
H

(1)
ext

= ‖p1‖
2
ν

∫

R+

F(1)(u)G(1)(u)du = (F(1), G(1))L2(R+)C
(7)

(by (2) ‖p1‖
2
ν =

∫
R

x2ν(dx) = 1); in the case n = 2 we have

(F(2), G(2))ext ≡ (F(2), G(2))
H

(2)
ext

= ‖p1‖
4
ν

∫

R2
+

F(2)(u1, u2)G
(2)(u1, u2)du1du2

+
‖p2‖

2
ν

2

∫

R+

F(2)(u, u)G(2)(u, u)du = (F(2), G(2))L2(R+)
⊗2
C

+
‖p2‖

2
ν

2

∫

R+

F(2)(u, u)G(2)(u, u)du,

etc.
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Remark. Note that the explicit formula for scalar products in H
(n)
ext , n ∈ Z+, calculated in [23],

differs from (6). But it is very easy to verify that actually these formulas differ by the record

form only.

Denote H := L2(R+), then HC = L2(R+)C (in what follows, this notation will be used

very often). It follows from (7) that H
(1)
ext = HC; and, as is easily seen, for n ∈ N\{1} one

can identify H⊗̂n
C

with the proper subspace of H
(n)
ext that consists of "vanishing on diagonals"

elements (roughly speaking, such that F(n)(u1, . . . , un) = 0 if there exist k, j ∈ {1, . . . , n}: k 6= j,

but uk = uj). In this sense the space H
(n)
ext is an extension of H⊗̂n

C
(this explains why we use the

subscript "ext" in our designations).

1.3 A regular rigging of (L2)

Denote PW :=
{

f = ∑
N f

n=0 : 〈◦⊗n, f (n)〉 :, f (n) ∈ D⊗̂n
C

, N f ∈ Z+
}
⊂ (L2). Accept on default

β ∈ [0, 1], q ∈ Z in the case β ∈ (0, 1] and q ∈ Z+ if β = 0. Define real (bilinear) scalar products

(·, ·)q,β on PW by setting for

f =

N f

∑
n=0

: 〈◦⊗n, f (n)〉 :, g =
Ng

∑
n=0

: 〈◦⊗n, g(n)〉 : ∈ PW

( f , g)q,β :=

min(N f ,Ng)

∑
n=0

(n!)1+β2qn( f (n) , g(n))ext.

It is easy to verify that the axioms of a scalar product are fulfilled. In particular, if ( f , f )q,β = 0

then f = 0 in (L2). In fact, ( f , f )q,β = ∑
N f

n=0(n!)1+β2qn| f (n) |2ext = 0 if and only if | f (n)|2ext = 0

for each n ∈ {0, . . . , N f }, so ‖ f‖2
(L2)

= ∑
N f

n=0 n!| f (n) |2ext = 0.

Let ‖ · ‖q,β be the norms corresponding to scalar products (·, ·)q,β, i.e. ‖ f‖q,β =
√
( f , f )q,β.

Denote by (L2)
β
q the completions of PW with respect to these norms; and set

(L2)β := pr lim
q→+∞

(L2)
β
q (the projective limit of spaces, i.e. (L2)β =

⋂
q
(L2)

β
q provided by the

projective limit topology, see, e.g., [2, 3] for details).

Definition 2. The spaces (L2)
β
q and (L2)β are called parametrized Kondratiev-type spaces of

regular test functions.

As is easy to see, F ∈ (L2)
β
q if and only if F can be uniquely presented as series (5) (with

kernels F(n) ∈ H
(n)
ext ) that converges in (L2)

β
q , and

‖F‖2
q,β := ‖F‖2

(L2)
β
q
=

∞

∑
n=0

(n!)1+β2qn|F(n)|2ext < ∞. (8)

Further, it is clear that for F, G ∈ (L2)
β
q the real scalar product has a form

(F, G)
(L2)

β
q
=

∞

∑
n=0

(n!)1+β2qn(F(n), G(n))ext,

where F(n), G(n) ∈ H
(n)
ext are the kernels from decompositions (5) for F and G respectively.

Finally, F ∈ (L2)β if and only if F can be uniquely presented in form (5) and series (8) converges

for each q ∈ Z+.



88 FREI M.M.

Proposition ( [16]). For any β ∈ (0, 1] and any q ∈ Z, in the same way as for β = 0 and any

q ∈ Z+, the space (L2)
β
q is densely and continuously embedded into (L2).

Taking into account this result, we can consider a chain (a parametrized regular rigging of

(L2))

(L2)−β ⊃ (L2)
−β
−q ⊃ (L2) ⊃ (L2)

β
q ⊃ (L2)β, (9)

where (L2)
−β
−q and (L2)−β = ind limq→+∞(L2)

−β
−q (the inductive limit of spaces, i.e. (L2)−β =

⋃
q
(L2)

−β
−q provided by the inductive limit topology, see, e.g., [2, 3] for details) are the spaces

dual of (L2)
β
q and (L2)β respectively.

Definition 3. The spaces (L2)
−β
−q and (L2)−β are called parametrized Kondratiev-type spaces

of regular generalized functions.

The following statement from the definition of (L2)
−β
−q and the general duality theory fol-

lows.

Proposition. 1) Any regular generalized function F ∈ (L2)
−β
−q can be uniquely presented as

formal series (5) (with kernels F(n) ∈ H
(n)
ext ) that converges in (L2)

−β
−q , and

‖F‖2
−q,−β := ‖F‖2

(L2)
−β
−q

=
∞

∑
n=0

(n!)1−β2−qn|F(n)|2ext < ∞. (10)

Vice versa, any formal series (5) such that series (10) converges, is a regular generalized func-

tion from (L2)
−β
−q (i.e. now series (5) converges in (L2)

−β
−q ).

2) For F, G ∈ (L2)
−β
−q the real scalar product has a form

(F, G)
(L2)

−β
−q

=
∞

∑
n=0

(n!)1−β2−qn(F(n), G(n))ext,

where F(n), G(n) ∈ H
(n)
ext are the kernels from decompositions (5) for F and G respectively.

3) The dual pairing between F ∈ (L2)
−β
−q and f ∈ (L2)

β
q that is generated by the scalar

product in (L2), has a form

〈〈F, f 〉〉(L2) =
∞

∑
n=0

n!(F(n), f (n))ext,

where F(n), f (n) ∈ H
(n)
ext are the kernels from decompositions (5) for F and f respectively.

4) F ∈ (L2)−β if and only if F can be uniquely presented in form (5) and norm (10) is finite

for some q ∈ Z+.

Note that the term "regular generalized functions" is connected with the fact that the kernels

from decompositions (5) for elements of positive and negative spaces of chain (9) belong to the

same spaces H
(n)
ext .
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1.4 Stochastic integration and differentiation

In this subsection it will be convenient to denote the spaces (L2)
β
q , (L2) = (L2)0

0 and (L2)
−β
−q

from chain (9) by (L2)
β
q , β ∈ [−1, 1], q ∈ Z. The norms in these spaces are given, obviously, by

formula (8) (cf. (8) and (10)).

Decomposition (5) for elements of (L2)
β
q defines an isometric isomorphism (a generalized

Wiener-Itô-Sigal isomorphism)

I : (L2)
β
q →

∞
⊕

n=0
(n!)1+β2qnH

(n)
ext ,

where
∞
⊕

n=0
(n!)1+β2qnH

(n)
ext is a weighted extended symmetric Fock space (cf. [20]): for F ∈

(L2)
β
q of form (5) IF = (F(0), F(1), . . .) ∈

∞
⊕

n=0
(n!)1+β2qnH

(n)
ext . Let 1 : HC → HC be the

identity operator. Then the operator I ⊗ 1 : (L2)
β
q ⊗ HC →

( ∞
⊕

n=0
(n!)1+β2qnH

(n)
ext

)
⊗ HC

∼=

∞
⊕

n=0
(n!)1+β2qn(H

(n)
ext ⊗ HC) is an isometric isomorphism between the spaces (L2)

β
q ⊗HC and

∞
⊕

n=0
(n!)1+β2qn(H

(n)
ext ⊗HC). It is obvious that for arbitrary m ∈ Z+ and F

(m)
· ∈ H

(m)
ext ⊗HC a

vector (0, . . . , 0︸ ︷︷ ︸
m

, F
(m)
· , 0, . . .) belongs to

∞
⊕

n=0
(n!)1+β2qn(H

(n)
ext ⊗HC). Set

: 〈◦⊗m, F
(m)
· 〉 :

de f
= (I ⊗ 1)−1(0, . . . , 0︸ ︷︷ ︸

m

, F
(m)
· , 0, . . .) ∈ (L2)

β
q ⊗HC.

It is clear that elements : 〈◦⊗n, F
(n)
· 〉 :, n ∈ Z+, form orthogonal bases in the spaces (L2)

β
q ⊗HC

in the sense that any F ∈ (L2)
β
q ⊗HC can be uniquely presented as

F(·) =
∞

∑
n=0

: 〈◦⊗n, F
(n)
· 〉 :, F

(n)
· ∈ H

(n)
ext ⊗HC (11)

(the series converges in (L2)
β
q ⊗HC), with

‖F‖2

(L2)
β
q⊗HC

=
∞

∑
n=0

(n!)1+β2qn|F
(n)
· |2

H
(n)
ext⊗HC

< ∞.

Let us describe the construction of an extended stochastic integral that is based on decom-

position (11) (a detailed presentation is given in [16, 17]). Let F
(n)
· ∈ H

(n)
ext ⊗HC, n ∈ N. We

select a representative (a function) ḟ
(n)
· ∈ F

(n)
· such that

ḟ
(n)
u (u1, . . . , un) = 0 if for some k ∈ {1, . . . , n} u = uk. (12)

Accept on default ∆ ∈ B(R+) (we remind that B denotes the Borel σ-algebra). Let f̂
(n)
∆

be

the symmetrization of a function ḟ
(n)
· 1∆(·) by n + 1 variables. Define F̂

(n)
∆

∈ H
(n+1)
ext as the

equivalence class in H
(n+1)
ext generated by f̂

(n)
∆

(i.e. f̂
(n)
∆

∈ F̂
(n)
∆

). It is proved in [16, 17] that this

definition is well-posed (in particular, F̂
(n)
∆

does not depend on a choice of a representative

ḟ
(n)
· ∈ F

(n)
· satisfying (12)) and |F̂

(n)
∆

|ext ≤ |F
(n)
· 1∆(·)|H(n)

ext ⊗HC

≤ |F
(n)
· |

H
(n)
ext⊗HC

.
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Definition 4. We define the extended stochastic integral with respect to a Lévy process L
∫

∆
◦(u)d̂Lu : (L2)

β
q ⊗HC → (L2)

β
q−1 (13)

by a formula ∫

∆
F(u)d̂Lu :=

∞

∑
n=0

: 〈◦⊗n+1, F̂
(n)
∆

〉 :, (14)

where F̂
(0)
∆

:= F
(0)
· 1∆(·) ∈ HC = H

(1)
ext , and F̂

(n)
∆

∈ H
(n+1)
ext , n ∈ N, are constructed by the

kernels F
(n)
· ∈ H

(n)
ext ⊗HC from decomposition (11) for F.

One can show quite analogously to [16] that this integral is a linear continuous operator; and,

moreover, if F is integrable by Itô then F is integrable in the extended sense and the extended

stochastic integral coincides with the Itô stochastic integral.

Sometimes it can be convenient to define the extended stochastic integral by formula (14)

as a linear operator ∫

∆
◦(u)d̂Lu : (L2)

β
q ⊗HC → (L2)

β
q . (15)

If β = −1 then this operator is continuous (bounded) [16], for β ∈ (−1, 1] operator (15) is

unbounded. But if we accept the set
{

F ∈ (L2)
β
q ⊗HC :

∥∥∥
∫

∆
F(u)d̂Lu

∥∥∥
2

q,β
=

∞

∑
n=0

((n + 1)!)1+β2q(n+1)|F̂
(n)
∆

|2ext < ∞

}

as the domain of integral (15) then the last is a closed operator [16]. Also we note that the

extended stochastic integral can be defined by formula (14) as a linear continuous opera-

tor acting from (L2)β ⊗ HC := pr limq→+∞(L2)
β
q ⊗ HC to (L2)β, or from (L2)−β ⊗ HC :=

ind limq→+∞(L2)
−β
−q ⊗HC to (L2)−β, here β ∈ [0, 1].

Now for plenitude of picture we recall very briefly a notion of a Hida stochastic derivative

in the Lévy white noise analysis, in terms of Lytvynov’s CRP (see [8, 16, 17] for a detailed

presentation).

Definition 5. We define the Hida stochastic derivative 1∆(·)∂· : (L2)
−β
1−q → (L2)

−β
−q ⊗HC as a

linear continuous operator adjoint to extended stochastic integral (13), i.e. for all F ∈ (L2)
β
q ⊗

HC and G ∈ (L2)
−β
1−q

〈〈F(·), 1∆(·)∂·G〉〉(L2)⊗HC
=
〈〈 ∫

∆
F(u)d̂Lu, G

〉〉
(L2)

.

If instead of integral (13) one uses integral (15), the corresponding Hida stochastic deriva-

tive will be a linear unbounded (except the case β = −1), but closed operator acting from

(L2)
−β
−q to (L2)

−β
−q ⊗HC [8]. Further, it is clear that the Hida stochastic derivative can be defined

as a linear continuous operator acting from (L2)β to (L2)β ⊗HC (β ∈ [−1, 1]) that is adjoint

to the corresponding extended stochastic integral. We note also that the extended stochastic

integral and the Hida stochastic derivative are mutually adjoint operators [8, 16, 17].

Let us write out an explicit formula for the Hida stochastic derivative in terms of decompo-

sitions by the Wick monomials. Let G(n) ∈ H
(n)
ext , n ∈ N, ġ(n) ∈ G(n) be a representative of G(n).
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We consider ġ(n)(·), i.e. separate a one argument of ġ(n), and define G(n)(·) ∈ H
(n−1)
ext ⊗HC as

the equivalence class in H
(n−1)
ext ⊗HC generated by ġ(n)(·) (i.e. ġ(n)(·) ∈ G(n)(·)). It is proved

in [17] that this definition is well-posed (in particular, G(n)(·) does not depend on a choice of a

representative ġ(n) ∈ G(n)) and

|G(n)(·)|
H

(n−1)
ext ⊗HC

≤ |G(n)|ext. (16)

Note that, in spite of estimate (16), the space H
(n)
ext , n ∈ N\{1}, is not a subspace of H

(n−1)
ext ⊗

HC because different elements of H
(n)
ext can coincide as elements of H

(n−1)
ext ⊗HC.

The following statement easily follows from results of [8, 16, 17].

Proposition. For a test or square integrable or generalized function G of form (5)

1∆(·)∂·G =
∞

∑
n=1

n: 〈◦⊗n−1, G(n)(·)1∆(·)〉 : ≡
∞

∑
n=0

(n + 1): 〈◦⊗n, G(n+1)(·)1∆(·)〉 :.

At last, we recall a notion of operators of stochastic differentiation (see [6, 7] for a detailed

presentation). Let n, m ∈ Z+. Consider a function h : R
n+m
+ → C. Denote

h̃(u1, . . . , un; un+1, . . . , un+m)

:=

{
h(u1, . . . , un+m), if for all i ∈ {1, . . . , n}, j ∈ {n + 1, . . . , n + m} ui 6= uj

0, in other cases

(17)

Let F(n) ∈ H
(n)
ext , G(m) ∈ H

(m)
ext . We select representatives (functions) ḟ (n) ∈ F(n) and

ġ(m) ∈ G(m). Set h(u1, . . . , un+m) := ḟ (n)(u1, . . . , un) · ġ(m)(un+1, . . . , un+m). Let ̂f (n)g(m) be

the symmetrization of h̃ (see (17)) by all variables, F(n) ⋄ G(m) ∈ H
(n+m)
ext be the equivalence

class in H
(n+m)
ext that is generated by ̂f (n)g(m) (i.e. ̂f (n)g(m) ∈ F(n) ⋄ G(m)). It is proved in [6]

that this definition is well-posed (in particular, F(n) ⋄ G(m) does not depend on a choice of

representatives from F(n) and G(m)) and

|F(n) ⋄ G(m)|ext ≤ |F(n)|ext|G
(m)|ext. (18)

Let F(m) ∈ H
(m)
ext , f (n) ∈ H

(n)
ext , m > n. We define a "product" ( f (n), F(m))ext ∈ H

(m−n)
ext by

setting for each g(m−n) ∈ H
(m−n)
ext

(g(m−n), ( f (n), F(m))ext)ext = ( f (n) ⋄ g(m−n), F(m))ext. (19)

Since by the Cauchy-Bunyakovsky inequality and (18)

|( f (n) ⋄ g(m−n), F(m))ext| ≤ | f (n) ⋄ g(m−n)|ext|F
(m)|ext ≤ | f (n) |ext|g

(m−n)|ext|F
(m)|ext,

this definition is well-posed and

|( f (n) , F(m))ext|ext ≤ | f (n) |ext|F
(m)|ext. (20)
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Definition 6. Let n ∈ N, f (n) ∈ H
(n)
ext . We define an operator of stochastic differentiation

(Dn◦)( f (n)) : (L2)
β
q → (L2)

β
q−1 (21)

by setting for F ∈ (L2)
β
q

(DnF)( f (n)) :=
∞

∑
m=n

m!

(m − n)!
: 〈◦⊗m−n, ( f (n), F(m))ext〉 :

≡
∞

∑
m=0

(m + n)!

m!
: 〈◦⊗m, ( f (n), F(m+n))ext〉 :,

(22)

where F(m) ∈ H
(m)
ext are the kernels from decomposition (5) for F.

Using estimate (20) one can show [6] that this definition is well-posed and operator (21)

is linear and continuous. Moreover, in the case β = 1 formula (22) defines a linear continuous

operator (Dn◦)( f (n)) on (L2)1
q, q ∈ Z.

Finally, as is easily seen, (Dn◦)( f (n)) can be defined by formula (22) as a linear continuous

operator on (L2)β, β ∈ [−1, 1]. Namely a linear continuous operator

(D◦)(g) := (D1◦)(g) : (L2)−β → (L2)−β, g ∈ H
(1)
ext = HC, β ∈ [0, 1], (23)

will be a subject of study in the forthcoming section.

Properties of operators of stochastic differentiation on spaces of regular test and general-

ized functions of the Lévy white noise analysis are considered in detail in [6,7,9]. Here we note

only that the operator D ≡ D1 and the Hida stochastic derivative are connected as follows [7].

Denote ∂· := 1R+(·)∂· . Let F ∈ (L2)
β
q and g ∈ H

(1)
ext = HC. Then

(DF)(g) =
∫

R+

∂uF · g(u)du ∈ (L2)
β
q−1,

here the integral in the right hand side is a Pettis one (the weak integral). Taking into account

this equality, one can write formally

∂·◦ = (D◦)(δ·), (24)

where δ· is the Dirac delta-function concentrated at ·. In order to give a nonformal sense to

equality (24), one can consider operators of stochastic differentiation on so-called spaces of

nonregular generalized functions, see [18].

2 ELEMENTS OF WICK CALCULUS

2.1 Wick product and Wick versions of holomorphic functions

In this subsection we introduce and study a Wick product and Wick versions of holomor-

phic functions on (L2)−β, now β ∈ [0, 1].

First we give necessary definitions.
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Definition 7. For F ∈ (L2)−β we define an S-transform (SF)(λ), λ ∈ DC, as a formal series

(SF)(λ) :=
∞

∑
m=0

(F(m), λ⊗m)ext ≡ F(0) +
∞

∑
m=1

(F(m), λ⊗m)ext, (25)

where F(m) ∈ H
(m)
ext , m ∈ Z+, are the kernels from decomposition (5) for F (each term in

series(25) is well-defined, but the series can diverge). In particular, (SF)(0) = F(0), S1 ≡ 1.

Definition 8. For F, G ∈ (L2)−β and a holomorphic at F(0) function h : C → C we define a

Wick product F♦G and a Wick version h♦(F) by setting formally

F♦G := S−1(SF · SG), h♦(F) := S−1h(SF). (26)

Remark. It is obvious that the Wick product ♦ is commutative, associative and distributive

over a field C.

A function h from Definition 8 can be decomposed in a Taylor series

h(u) =
∞

∑
m=0

hm

(
u − (SF)(0)

)m
. (27)

Using this decomposition, it is easy to calculate that

h♦(F) =
∞

∑
m=0

hm
(
F − (SF)(0)

)♦m
, (28)

where F♦m := F♦ · · ·♦F︸ ︷︷ ︸
m times

, F♦0 := 1.

It easily follows from formula (2.23) in [19] that for F(n) ∈ H
(n)
ext , G(m) ∈ H

(m)
ext , n, m ∈ Z+,

and λ ∈ DC

(F(n), λ⊗n)ext(G
(m), λ⊗m)ext = (F(n) ⋄ G(m), λ⊗n+m)ext (29)

(a product ⋄ is defined in Subsection 1.4).

Using this formula, by analogy with the Meixner analysis [14] one can prove the following

statement.

Proposition. For F1, . . . , Fn ∈ (L2)−β

F1♦ · · ·♦Fn =
∞

∑
m=0

: 〈◦⊗m, ∑
k1,...,kn∈Z+: k1+···+kn=m

F
(k1)
1 ⋄ · · · ⋄ F

(kn)
n 〉 : (30)

(in particular, for F, G ∈ (L2)−β F♦G =
∞

∑
m=0

: 〈◦⊗m,
m

∑
k=0

F(k) ⋄ G(m−k)〉 :), where F
(k j)

j ∈ H
(k j)
ext ,

j ∈ {1, . . . , n}, kj ∈ Z+, are the kernels from decompositions (5) for Fj; F(k), G(k) ∈ H
(k)
ext,

k ∈ Z+, are the kernels from the same decompositions for F and G respectively. Further, for

F ∈ (L2)−β and a holomorphic at (SF)(0) = F(0) function h : C → C

h♦(F) = h0 +
∞

∑
m=1

: 〈◦⊗m,
m

∑
n=1

hn ∑
k1,...,kn∈N: k1+···+kn=m

F(k1) ⋄ · · · ⋄ F(kn)〉 :, (31)

where F(k) ∈ H
(k)
ext, k ∈ Z+, are the kernels from decomposition (5) for F, hn ∈ C, n ∈ Z+, are

the coefficients from decomposition (27) for h.
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It is clear that in order to give a nonformal sense to notions "the Wick product" and "the

Wick version of a holomorphic function", it is necessary to study a question about convergence

of series (30) and (31) in the spaces of regular generalized functions. Using estimate (18), it is

possible to do it as in the Meixner analysis [14]. As a result, for the Wick product we obtain the

following statement (remind that now β ∈ [0, 1]).

Theorem 1. Let F1, . . . , Fn ∈ (L2)−β. Then F1♦ · · ·♦Fn ∈ (L2)−β. Moreover, the Wick product

is continuous in the topology of (L2)−β: for arbitrary F1, . . . , Fn ∈ (L2)−β, n ∈ N, there exist

q, q′ ∈ Z+ (q > q′ + (1 − β) log2 n + 1) such that

‖F1♦ · · ·♦Fn‖−q,−β ≤
√

max
m∈Z+

[2−m(m + 1)n−1]‖F1‖−q′,−β · · · ‖Fn‖−q′,−β

(see (10)).

Now let us pass to consideration of the Wick versions of holomorphic functions. It follows

from Theorem 1 and (28) that if F ∈ (L2)−β and h : C → C is a polynomial then h♦(F) ∈

(L2)−β. But for a general h the situation is more complicated: as in the Meixner analysis, the

cases β = 1 and β ∈ [0, 1) essentially differ. The case β = 1 is comparatively simple: by

analogy with [14] we obtain

Theorem 2. Let F ∈ (L2)−1 and a function h : C → C be holomorphic at (SF)(0). Then

h♦(F) ∈ (L2)−1.

Let now β ∈ [0, 1). Since (L2)−β ⊂ (L2)−1, for F ∈ (L2)−β and a holomorphic at (SF)(0)

function h : C → C, by Theorem 2 the Wick version h♦(F) is a well-defined element of (L2)−1.

But at the same time it is possible that h♦(F) 6∈ (L2)−β, if h is not a polynomial. More exactly,

we have the following result.

Theorem 3. Let u0 ∈ C, h : C → C be a holomorphic at u0 function, which is not a polynomial

and is such that all coefficients hn from the Taylor decomposition

h(u) =
∞

∑
n=0

hn(u − u0)
n (32)

are real and non-negative. Then for each β ∈ [0, 1) one can find F ∈ (L2)−β with (SF)(0) = u0

such that h♦(F) 6∈ (L2)−β.

The proof of this statement, in the same way as the proofs of Theorem 4 and Theorem 5

below, is completely analogous to the proof of the corresponding statement in the Meixner

white noise analysis [14] and therefore can be omitted.

It follows from Theorem 3 that if h is not a polynomial then, generally speaking, there are

no estimates for coefficients from decomposition (32), which can guarantee that for arbitrary

F ∈ (L2)−β, β ∈ [0, 1), with (SF)(0) = u0, h♦(F) is an element of (L2)−β. Nevertheless, the

following statement is valid.

Theorem 4. Let F =
N

∑
m=0

: 〈◦⊗m, F(m)〉 : ∈ (L2)−β, F(m) ∈ H
(m)
ext , N ∈ Z+; and coefficients

hn ∈ C, n ∈ N, from the Taylor decomposition

h(u) =
∞

∑
n=0

hn(u − F(0))n
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for a holomorphic at F(0) ∈ C function h : C → C satisfy estimates

|hn| ≤
Kn

nnN
1−β

2

(33)

with some K > 0. Then h♦(F) ∈ (L2)−β.

Let now 0 ≤ β1 < β2 < 1. We describe a sufficient condition under which h♦(F) ∈ (L2)−β2

for F ∈ (L2)−β1 (note that if β2 = 1 then by Theorem 2 h♦(F) ∈ (L2)−1 without additional

conditions).

Theorem 5. Let 0 ≤ β1 < β2 < 1, F ∈ (L2)−β1 , h : C → C be a holomorphic at (SF)(0)

function. If there exists K > 0 such that for arbitrary n ∈ N

|hn | ≤
Kn

max
m∈N: m≥n

(
nm

1−β2
2

([m
n ]!)

n β2−β1
2

) ,

where hn are the coefficients from decomposition (27) for h, [·] denotes the integer part of a

number, then h♦(F) ∈ (L2)−β2 .

By analogy with the Meixner analysis [14] one can apply the above-formulated results for

study of stochastic equations with Wick-type nonlinearities.

Example. Let us consider a stochastic equation

Xt = X0 +
∫ t

0
Xs♦Fds +

∫ t

0
Xs♦Gd̂Ls, (34)

where X0, F, G ∈ (L2)−β,
∫ t

0 Xs♦Fds ∈ (L2)−1 is a Pettis integral (the weak integral). Applying

the S-transform and solving the obtained nonstochastic equation, we obtain

SXt = SX0 · exp{SFt + SG
∫ t

0
λ(s)ds}.

Now it is sufficient to apply the inverse S-transform in order to obtain the solution of (34)

Xt = X0♦ exp♦{Ft + G♦Lt} ∈ (L2)−1

(the fact that Xt ∈ (L2)−1 follows from Theorem 1 and Theorem 2). In order to obtain Xt ∈

(L2)−β, β < 1, we have to impose additional conditions. For example, let F and G be "polyno-

mials" in the sense that their decompositions (5) contain only finite number of nonzero terms.

Set N := max[pow F, pow G + 1], where pow H denotes the quantity of nonzero terms in de-

composition (5) for H. If there exists K > 0 such that for arbitrary m ∈ N, where pow H is the

greatest number of nonzero term in decomposition,

mmN
1−β

2

m!
≤ Km, (35)

then by Theorem 4 Xt ∈ (L2)−β (see (33), now h(u) = exp(u), hm = 1
m! for each m ∈ N). Note

that estimates (35) are fulfilled if and only if N ≤ 2
1−β , this fact is proved in [14].
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2.2 Wick calculus and operators of stochastic differentiation

In this subsection we consider an interconnection between the Wick calculus and the oper-

ator of stochastic differentiation D (see (23)). In particular, we’ll prove that this operator is a

differentiation (satisfies the Leibniz rule) with respect to the Wick multiplication.

We define a characterization set of the space (L2)−β in terms of the S-transform, setting

Bβ := S(L2)−β ≡
{

SF : F ∈ (L2)−β
}

. It is clear that Bβ is a linear space, which consists of

formal series
∞

∑
m=0

(F(m), ·⊗m)ext (see (25)) with the kernels F(m) ∈ H
(m)
ext satisfying a condition:

there exists q ∈ Z+ such that
∞

∑
m=0

(m!)1−β2−qm|F(m)|2ext < ∞. It follows from Definition 8 and

Theorem 1 that Bβ is an algebra with respect to the pointwise multiplication.

Let g ∈ H
(1)
ext = HC. We define a "directional derivative" D⋄

g : Bβ → Bβ as follows. Set for

(SF)(·) =
∞

∑
m=0

(F(m), ·⊗m)ext ∈ Bβ (F ∈ (L2)−β, F(m) ∈ H
(m)
ext are the kernels from decomposi-

tion (5) for F)

(D⋄
gSF)(·) :=

∞

∑
m=0

(m + 1)(F(m+1), g ⋄ (·⊗m))ext =
∞

∑
m=0

(m + 1)((g, F(m+1))ext, ·
⊗m)ext ∈ Bβ (36)

(see (19)). Since S−1(D⋄
gSF) =

∞

∑
m=0

(m + 1): 〈◦⊗m, (g, F(m+1))ext〉 : = (DF)(g) ∈ (L2)−β (see

(22)), the operator D⋄
g is well-defined and the following statement is valid.

Proposition. The operator of stochastic differentiation (D◦)(g), g ∈ H
(1)
ext = HC, is the pre-

image of the "directional derivative" D⋄
g of S◦ under the S-transform, i.e. for all F ∈ (L2)−β

(DF)(g) = S−1(D⋄
gSF) ∈ (L2)−β. (37)

Remark. If we introduce on Bβ a topology induced by the (inductive limit) topology of (L2)−β,

then the S-transform will be a topological isomorphism between a topological algebra (L2)−β

with the Wick multiplication and a topological algebra Bβ with the pointwise multiplication.

Now the "directional derivative" D⋄
g, g ∈ H

(1)
ext , is the image on Bβ of the operator of stochastic

differentiation (D◦)(g) on (L2)−β (under the S-transform). Of course, D⋄
g : Bβ → Bβ is a linear

continuous operator.

The main result of this subsection is the following

Theorem 6. The operator of stochastic differentiation D is a differentiation with respect to the

Wick multiplication, i.e. for arbitrary F, G ∈ (L2)−β and g ∈ H
(1)
ext = HC

(
D(F♦G)

)
(g) = (DF)(g)♦G + F♦(DG)(g) ∈ (L2)−β. (38)

Proof. First we note that the expressions in the left hand side and in the right hand side of (38)

belong to (L2)−β, this follows from the definition of operator (23) and Theorem 1. Let us prove

the equality (38). By (37) and the first formula in (26)
(
D(F♦G)

)
(g) = S−1(D⋄

g(S(F♦G))) = S−1(D⋄
g(SF · SG)),

(DF)(g)♦G = S−1(S(DF)(g) · SG) = S−1(D⋄
g(SF) · SG),

F♦(DG)(g) = S−1(SF · S(DG)(g)) = S−1(SF · D⋄
g(SG)),
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therefore it is sufficient to prove that

D⋄
g(SF · SG) = D⋄

g(SF) · SG + SF · D⋄
g(SG). (39)

Let F(m), G(m) ∈ H
(m)
ext be the kernels from decompositions (5) for F and G respectively.

Using (25), (29) and (36), we obtain

(SF)(λ) =
∞

∑
n=0

(F(n), λ⊗n)ext, (SG)(λ) =
∞

∑
m=0

(G(m), λ⊗m)ext,

(SF)(λ) · (SG)(λ) =
∞

∑
n,m=0

(F(n) ⋄ G(m), λ⊗n+m)ext,

D⋄
g

(
(SF)(λ) · (SG)(λ)

)
=

∞

∑
n,m=0

(n + m)(F(n) ⋄ G(m), g ⋄ λ⊗n+m−1)ext,

D⋄
g(SF)(λ) =

∞

∑
n=0

n(F(n), g ⋄ λ⊗n−1)ext, D⋄
g(SG)(λ) =

∞

∑
m=0

m(G(m), g ⋄ λ⊗m−1)ext,

D⋄
g(SF)(λ) · (SG)(λ) =

∞

∑
n,m=0

n(F(n), g ⋄ λ⊗n−1)ext(G
(m), λ⊗m)ext,

(SF)(λ) · D⋄
g(SG)(λ) =

∞

∑
n,m=0

m(F(n), λ⊗n)ext(G
(m), g ⋄ λ⊗m−1)ext,

here λ ∈ DC. So, in order to prove (39), it is sufficient to show that for all n, m ∈ Z+

(n + m)(F(n) ⋄ G(m), g ⋄ λ⊗n+m−1)ext = n(F(n), g ⋄ λ⊗n−1)ext(G
(m), λ⊗m)ext

+ m(F(n), λ⊗n)ext(G
(m), g ⋄ λ⊗m−1)ext.

(40)

It is easy to see that for n = 0 or m = 0 equality (40) is valid, therefore we consider the case

n, m ∈ N only.

Let us consider (n + m)(F(n) ⋄ G(m), g ⋄ λ⊗n+m−1)ext. Denote by ḟ (n) ∈ F(n) and ġ(m) ∈

G(m) representatives of the equivalence classes F(n) and G(m). Set ˜f (n)g(m) := ˜ḟ (n) · ġ(m) (an

operation ◦̃ is defined in (17)). Let ̂f (n)g(m) be the symmetrization of ˜f (n)g(m) with respect to

all arguments. We remind that F(n) ⋄ G(m) is an equivalence class in H
(n+m)
ext that is generated

by ̂f (n)g(m): ̂f (n)g(m) ∈ F(n) ⋄ G(m). Similarly for λ ∈ DC and a representative ġ ∈ g, g ∈ H
(1)
ext ,

set ˜λ⊗n+m−1g := ˜λ⊗n+m−1 · ġ, and denote by ̂λ⊗n+m−1g the symmetrization of ˜λ⊗n+m−1g with

respect to all arguments. Then ̂λ⊗n+m−1g ∈ g ⋄ λ⊗n+m−1 (an equivalence class g ⋄ λ⊗n+m−1 ∈

H
(n+m)
ext is generated by ̂λ⊗n+m−1g).

Without loss of generality, one can assume that ḟ (n) and ġ(m) are symmetric functions, and

m ≥ n. Taking this into consideration, we obtain

̂f (n)g(m)(u1, . . . , un; un+1, . . . , un+m) =
n!m!

(n + m)!

× ∑
1≤p1,...,pn≤n,n+1≤q1,...,qm≤n+m

0≤r≤n,p1<···<pr,pr+1<···<pn,q1<···<qn−r,qn−r+1<···<qm

˜f (n)g(m)(up1 , . . . , upr , uq1 , . . . , uqn−r;

upr+1, . . . , upn , uqn−r+1, . . . , uqm),

(41)
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here for r = n the argument in the right hand side of (41) is (u1, . . . , un; un+1, . . . , un+m); for r =

0 this argument is (uq1 , . . . , uqn ; u1, . . . , un, uqn+1, . . . , uqm) (see [7] for a detailed explanation).

Substituting (41) in the left hand side of (40), we obtain (see (6))

(n + m)(F(n) ⋄ G(m), g ⋄ λ⊗n+m−1)ext = (n + m)( ̂f (n)g(m), ̂λ⊗n+m−1g)ext

= (n + m) ∑
k,lj,sj∈N:j=1,...,k, l1>l2>···>lk,

l1s1+···+lksk=n+m

(n + m)!

s1! · · · sk!

(
‖pl1‖ν

l1!

)2s1

· · ·

(
‖plk

‖ν

lk!

)2sk

×
∫

R
s1+···+sk
+

̂f (n)g(m)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× ( ̂λ⊗n+m−1g)(u1, · · · , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)du1 · · · dus1+···+sk
=

= (n + m) ∑
k,lj,sj∈N:j=1,...,k, l1>l2>···>lk,

l1s1+···+lksk=n+m

n!m!

s1! · · · sk!

(
‖pl1‖ν

l1!

)2s1

· · ·

(
‖plk

‖ν

lk!

)2sk

×
[ ∫

R
s1+···+sk
+

˜f (n)g(m)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× ( ̂λ⊗n+m−1g)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)du1 · · · dus1+···+sk
+ . . .

]
.

(42)

We say that a collection of equal among one another arguments (e.g., (u1, . . . , u1)) is called

a procession. It follows from the ordering in ascending of indexes in (41) and in (6) that proces-

sions in summands in interior sums [· · · ] from (42) can "tear" only so that different parts of a

"torn" procession will be for different parties from ’;’; processions being for one side from ’;’

do not switch places; and elements in processions do not switch places. In addition, it follows

from a construction of ˜f (n)g(m) (see (17)) that summands in interior sums [· · · ] from (42), in

which a procession is divided by ’;’, are equal to zero. Another summands (if there exist for a

collection k, lj, sj) disintegrate on groups of equal among one another integrals. These groups

arise by means of transpositions of processions with equal quantity of members, which are

placed before ’;’ and after ’;’, an equality of integrals under such transpositions from the sym-

metric property of a function ̂λ⊗n+m−1g follows: this symmetry gives a possibility to transpose

mutually processions with equal quantity of members in the argument of ̂λ⊗n+m−1g. It is clear

that if there are s′ processions of length l before ’;’ and s′′ processions of length l after ’;’ tnen by

means of mutual transpositions of these processions one can obtain (s′+s′′)!
s′!s′′! equal summands.

So, nonzero terms in the last expression in (42) are "connected" with equalities

l1s1 + · · ·+ lksk = n + m, (43)

that can be presented in the form

l′1s′1 + · · ·+ l′k′s
′
k′ = n, l′′1 s′′1 + · · ·+ l′′k′′s

′′
k′′ = m,

k′, k′′, l′1, . . . , l′k′ , s′1, . . . , s′k′ , l′′1 , . . . , l′′k′′ , s′′1 , . . . , s′′k′′ ∈ N,

l′1 > · · · > l′k′ , l′′1 > · · · > l′′k′′

(44)
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(the first sum in (44) corresponds to first n arguments of ˜f (n)g(m), the second sum corresponds

to last m arguments) as follows. For each sj from (43) either there exists s′i = sj (l′i = lj) or there

exists s′′i = sj (l′′i = lj) or there exist s′i and s′′w such that s′i + s′′w = sj (l′i = l′′w = lj). Inequalities

for l′· , l′′· in (44) follow from inequalities l1 > · · · > lk and ordering of indexes in (41) and (6)

(more long processions have smaller indexes of arguments).

We will replace each group of the above-described equal among one another integrals in

the right hand side of (42) by a representative multiplied by a quantity of terms in the group.

Also, since the Lebesgue measure is non-atomic, we can replace here ˜f (n)g(m) by ḟ (n) · ġ(m) (in

summands that remain elements of each procession are placed on the same side of ’;’). Now,

taking into account that ws′+s′′ = ws′ws′′ , one can rewrite the last expression in (42) in the form

∑
l′1s′1+···+l′

k′
s′
k′
=n, l′′1 s′′1 +···+l′′

k′′
s′′
k′′

=m,

k′,k′′,l′1,...,l′
k′

,s′1,...,s′
k′

,l′′1 ,...,l′′
k′′

,s′′1 ,...,s′′
k′′

∈N,

l′
1
>···>l′

k′
, l′′

1
>···>l′′

k′′

n!m!(n + m)

s′1! · · · s′k′ !s
′′
1 ! · · · s′′k′′ !

×

(
‖pl′1

‖ν

l′1!

)2s′1

· · ·

(
‖pl′

k′
‖ν

l′k′ !

)2s′
k′
(
‖pl′′1

‖ν

l′′1 !

)2s′′1

· · ·

(
‖pl′′

k′′
‖ν

l′′k′′ !

)2s′′
k′′

×
∫

R
s′
1
+···+s′

k′
+s′′

1
+···+s′′

k′′
+

ḟ (n)(u1, . . . , u1︸ ︷︷ ︸
l′1

, . . . , us′1+···+s′
k′

, . . . , us′1+···+s′
k′︸ ︷︷ ︸

l′
k′

)

× ġ(m)(un+1, . . . , un+1︸ ︷︷ ︸
l′′1

, . . . , un+s′′1+···+s′′
k′′

, . . . , un+s′′1+···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

)

× ( ̂λ⊗n+m−1g)(u1, . . . , u1︸ ︷︷ ︸
l′1

, . . . , us′1+···+s′
k′

, . . . , us′1+···+s′
k′︸ ︷︷ ︸

l′
k′

,

un+1, . . . , un+1︸ ︷︷ ︸
l′′1

, . . . , un+s′′1+···+s′′
k′′

, . . . , un+s′′1+···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

)

× du1 · · · dus′1+···+s′
k′

dun+1 · · · dun+s′′1+···+s′′
k′′

.

(45)

Further, the symmetrization of a function ˜λ⊗n+m−1g has a form

( ̂λ⊗n+m−1g)(u1, . . . , un+m) =
1

(n + m)! ∑
π∈Sn+m

( ˜λ⊗n+m−1g)(uπ(1), . . . , uπ(n+m)), (46)

where Sn+m is the set of all permutations of numbers 1, . . . , n + m. This representation can

be essentially simplified if we take into account that ˜λ⊗n+m−1g is a symmetric function with

respect to first n + m − 1 arguments. Namely, consider all summands from (46) with the last

argument un+m. It is clear that there are (n + m − 1)! such summands, because they can be ob-

tained by arbitrary permutations of arguments u1, . . . , un+m−1. Taking into account the above-

mentioned symmetry one can conclude that all these summands are equal among one another.

So, it is possible to replace them by an arbitrary representative multiplied by (n+m− 1)!. Sim-

ilarly one can group summands with the last arguments un+m−1, un+m−2, . . . , u1. Substituting
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multiplied by (n + m − 1)! representatives of these groups of summands in (46), we obtain

( ̂λ⊗n+m−1g)(u1, . . . , un+m) =
1

(n + m)

[
( ˜λ⊗n+m−1g)(u1, . . . , un+m)

+ ( ˜λ⊗n+m−1g)(un+m, u1, . . . , un+m−1) + . . . + ( ˜λ⊗n+m−1g)(u2, . . . , un+m, u1)
] (47)

(representatives of the above-described groups of summands are selected subject to conse-

quent calculations).

Substituting (47) in (45), we obtain

∑
l′1s′1+···+l′

k′
s′
k′
=n, l′′1 s′′1 +···+l′′

k′′
s′′
k′′

=m,

k′,k′′,l′
1

,...,l′
k′

,s′
1

,...,s′
k′

,l′′
1

,...,l′′
k′′

,s′′
1

,...,s′′
k′′

∈N,

l′1>···>l′
k′

, l′′1 >···>l′′
k′′

n!m!

s′1! · · · s′k′ !s
′′
1 ! · · · s′′k′′ !

×

(
‖pl′1

‖ν

l′1!

)2s′1

· · ·

(
‖pl′

k′
‖ν

l′k′ !

)2s′
k′
(
‖pl′′1

‖ν

l′′1 !

)2s′′1

· · ·

(
‖pl′′

k′′
‖ν

l′′k′′ !

)2s′′
k′′

×
∫

R
s′1+···+s′

k′
+s′′1+···+s′′

k′′
+

ḟ (n)(u1, . . . , u1︸ ︷︷ ︸
l′1

, . . . , us′1+···+s′
k′

, . . . , us′1+···+s′
k′︸ ︷︷ ︸

l′
k′

)

× ġ(m)(un+1, . . . , un+1︸ ︷︷ ︸
l′′1

, . . . , un+s′′1+···+s′′
k′′

, . . . , un+s′′1+···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

)

×
[
( ˜λ⊗n+m−1g)(u1, . . . , u1︸ ︷︷ ︸

l′1

, . . . , us′1+···+s′
k′

, . . . , us′1+···+s′
k′︸ ︷︷ ︸

l′
k′

,

un+1, . . . , un+1︸ ︷︷ ︸
l′′1

, . . . , un+s′′1+···+s′′
k′′

, . . . , un+s′′1+···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

) + . . .
]

× du1 · · · dus′1+···+s′
k′

dun+1 · · · dun+s′′1+···+s′′
k′′

,

(48)

where each next term in the sum [· · · ] with n + m summands is obtained from the previous

term by the "shift of arguments": (·1, . . . , ·n+m−1, ·n+m) → (·n+m, ·1, . . . , ·n+m−1) etc. Taking

into account the structure of ˜λ⊗n+m−1g (in particular, its symmetry with respect to first n +

m − 1 arguments), the non-atomicity of the Lebesgue measure, and equalities (47) for λ̂⊗m−1g

and λ̂⊗n−1g, we can continue (48) as follows:

(n + m)(F(n) ⋄ G(m), g ⋄ λ⊗n+m−1)ext

= ∑
l′
1

s′
1
+···+l′

k′
s′
k′
=n, l′′

1
s′′
1
+···+l′′

k′′
s′′
k′′

=m,

k′,k′′,l′1,...,l′
k′

,s′1,...,s′
k′

,l′′1 ,...,l′′
k′′

,s′′1 ,...,s′′
k′′

∈N,

l′1>···>l′
k′

, l′′1 >···>l′′
k′′

n!m!

s′1! · · · s′k′ !s
′′
1 ! · · · s′′k′′ !

×

(
‖pl′1

‖ν

l′1!

)2s′1

· · ·

(
‖pl′

k′
‖ν

l′k′ !

)2s′
k′
(
‖pl′′1

‖ν

l′′1 !

)2s′′1

· · ·

(
‖pl′′

k′′
‖ν

l′′k′′ !

)2s′′
k′′

×
∫

R
s′1+···+s′

k′
+s′′1+···+s′′

k′′
+

ḟ (n)(u1, . . . , u1︸ ︷︷ ︸
l′1

, . . . , us′1+···+s′
k′

, . . . , us′1+···+s′
k′︸ ︷︷ ︸

l′
k′

)
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× ġ(m)(un+1, . . . , un+1︸ ︷︷ ︸
l′′1

, . . . , un+s′′1+···+s′′
k′′

, . . . , un+s′′1+···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

)×
[
λl′1(u1) · · · λl′

k′ (us′1+···+s′
k′
)

×
(
(λ̃⊗m−1g)(un+1, . . . , un+1︸ ︷︷ ︸

l′′1

, . . . , un+s′′1+···+s′′
k′′

, . . . , un+s′′1+···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

) + · · ·
)]

× du1 · · · dus′1+···+s′
k′

dun+1 · · · dun+s′′1+···+s′′
k′′

+ ∑
l′
1

s′
1
+···+l′

k′
s′
k′
=n, l′′

1
s′′
1
+···+l′′

k′′
s′′
k′′

=m,

k′,k′′,l′1,...,l′
k′

,s′1,...,s′
k′

,l′′1 ,...,l′′
k′′

,s′′1 ,...,s′′
k′′

∈N,

l′1>···>l′
k′

, l′′1 >···>l′′
k′′

n!m!

s′1! · · · s′k′ !s
′′
1 ! · · · s′′k′′ !

×

(
‖pl′1

‖ν

l′1!

)2s′1

· · ·

(
‖pl′

k′
‖ν

l′k′ !

)2s′
k′
(
‖pl′′1

‖ν

l′′1 !

)2s′′1

· · ·

(
‖pl′′

k′′
‖ν

l′′k′′ !

)2s′′
k′′

×
∫

R
s′1+···+s′

k′
+s′′1+···+s′′

k′′
+

ḟ (n)(u1, . . . , u1︸ ︷︷ ︸
l′1

, . . . , us′1+···+s′
k′

, . . . , us′1+···+s′
k′︸ ︷︷ ︸

l′
k′

)

× ġ(m)(un+1, . . . , un+1︸ ︷︷ ︸
l′′1

, . . . , un+s′′1+···+s′′
k′′

, . . . , un+s′′1+···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

)

×
[(
(λ̃⊗n−1g)(u1, . . . , u1︸ ︷︷ ︸

l′1

, . . . , us′1+···+s′
k′

, . . . , us′1+···+s′
k′︸ ︷︷ ︸

l′
k′

) + · · ·
)

× λl′′1 (un+1) · · · λl′′
k′′(un+s′′1+···+s′′

k′′
)
]

du1 · · · dus′1+···+s′
k′

dun+1 · · · dun+s′′1+···+s′′
k′′

= m( ḟ (n), λ⊗n)ext(ġ(m), λ̂⊗m−1g)ext + n( ḟ (n), λ̂⊗n−1g)ext(ġ(m), λ⊗m)ext

= m(F(n), λ⊗n)ext(G
(m), g ⋄ λ⊗m−1)ext + n(F(n), g ⋄ λ⊗n−1)ext(G

(m), λ⊗m)ext.

So, (40) is fulfilled, hence (39) is valid and therefore equality (38) is proved.

Corollary. Let F ∈ (L2)−β, g ∈ H
(1)
ext = HC, and h : C → C be a holomorphic at (SF)(0)

function. Then

(Dh♦(F))(g) = h′♦(F)♦(DF)(g) ∈ (L2)−1, (49)

where h′♦ is the Wick version of the usual derivative of a function h.

Proof. First we’ll prove by the mathematical induction method that for each m ∈ Z+
(

D (F − (SF)(0))♦m
)
(g) = m (F − (SF)(0))♦m−1

♦(DF)(g). (50)

In fact, in the case m = 0 equality (50) is, obviously, true (we remind that (F − (SF)(0))♦0 = 1

by definition and for G ∈ C ⊂ (L2)−β DG = 0). Let us suppose that (50) is valid for m ≤ k,

k ∈ Z+. In particular,
(

D (F − (SF)(0))♦k
)
(g) = k (F − (SF)(0))♦k−1

♦(DF)(g). (51)

We have to show that
(

D (F − (SF)(0))♦k+1
)
(g) = (k + 1) (F − (SF)(0))♦k

♦(DF)(g).
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Using (38) and (51) we obtain

(
D (F − (SF)(0))♦k+1

)
(g) =

(
D
[
(F − (SF)(0))♦k

♦ (F − (SF)(0))
])

(g)

=
(

D (F − (SF)(0))♦k
)
(g)♦ (F − (SF)(0)) + (F − (SF)(0))♦k

♦ (D (F − (SF)(0))) (g)

= k (F − (SF)(0))♦k−1
♦(DF)(g)♦ (F − (SF)(0)) + (F − (SF)(0))♦k

♦(DF)(g)

= k (F − (SF)(0))♦k
♦(DF)(g) + (F − (SF)(0))♦k

♦(DF)(g)

= (k + 1) (F − (SF)(0))♦k
♦(DF)(g),

which is what had to be proved.

Further, consider decomposition (28) for h♦(F). Let h♦N(F) :=
N

∑
m=0

hm (F − (SF)(0))♦m be

the N-th partial sum of this decomposition. It follows from the linearity of D, (50), and Theo-

rems 2 and 1 that

(
Dh♦N(F)

)
(g) =

N

∑
m=1

hm

(
D (F − (SF)(0))♦m

)
(g)

=
N

∑
m=1

hmm (F − (SF)(0))♦m−1
♦(DF)(g) →

N→∞
h′♦(F)♦(DF)(g)

in (L2)−1, where h′♦ is the Wick version of the usual derivative of a function h. On the other

hand, since (D◦)(g) is a continuous operator on (L2)−1,
(

Dh♦N(F)
)
(g) →

N→∞

(
Dh♦(F)

)
(g) in

(L2)−1. So, equality (49) is valid.
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Math. Bull. Shevchenko Sci. Soc. 2013, 10, 169–188.

[17] Kachanovsky N.A. On extended stochastic integrals with respect to Lévy processes. Carpathian Math. Publ. 2013,
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2000, 90 (1), 109–122. doi: 10.1016/S0304-4149(00)00035-1

[25] Schoutens W. Stochastic Processes and Orthogonal Polynomials. In: Bickel P., Diggle P. (Eds.) Lecture notes

in statistics, 146 (1). Springer-Verlag, New York, 2000.

[26] Skorohod A.V. Integration in Hilbert Space. Springer-Verlag, New York and Heidelberg, 1974. (translation of

Skorohod A.V. Integration in Hilbert Space. Nauka, Moskow, 1974.(in Russian))

[27] Skorohod A.V. On a generalization of a stochastic integral. Theory Probab. Appl. 1976, 20 (2), 219–233. (transla-

tion of Teor. Veroyatn. Primen. 1975, 20 (2), 223–238. (in Russian))
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Russian Math. Surveys 2003, 58 (3), 427–472. doi: 10.1070/RM2003v058n03ABEH000627

Received 26.11.2017

Revised 22.06.2018

Фрей М.М. Вiкiвське числення на просторах регулярних узагальнених функцiй аналiзу бiлого шуму

Левi // Карпатськi матем. публ. — 2018. — Т.10, №1. — C. 82–104.

Багато об’єктiв Гауссiвського аналiзу бiлого шуму (простори основних i узагальнених фун-

кцiй, стохастичнi iнтеграли та похiднi, тощо) можна будувати i дослiджувати у термiнах так

званих хаотичних розкладiв, що базуються на властивостi хаотичного розкладу (ВХР): грубо ка-

жучи, кожну квадратично iнтегровну вiдносно гауссiвської мiри випадкову величину можна

розкласти у ряд стохастичних iнтегралiв Iто вiд невипадкових функцiй. У аналiзi Левi нема

ВХР (крiм гауссiвського та пуассонiвського частинних випадкiв). Тим не менш, iснують рiзнi

узагальнення цiєї властивостi. Використовуючи цi узагальнення, можна будувати рiзнi про-

стори основних i узагальнених функцiй. I у кожному випадку необхiдно уводити природний

добуток на просторах узагальнених функцiй, та вивчати пов’язанi питання. Цей добуток на-

зивається вiкiвським добутком, як у гауссiвському аналiзi.

Конструкцiя вiкiвського добутку у аналiзi Левi залежить, зокрема, вiд обраного узагальне-

ння ВХР. У цiй статтi ми маємо справу з литвинiвським узагальненням ВХР та з вiдповiдними

просторами регулярних узагальнених функцiй. Метою статтi є увести та вивчити вiкiвський

добуток на цих просторах, та розглянути деякi пов’язанi питання (вiкiвськi версiї голомор-

фних функцiй, взаємозв’язок вiкiвського числення з операторами стохастичного диференцi-

ювання). Основнi результати статтi полягають у вивченнi властивостей вiкiвського добутку

та вiкiвських версiй голоморфних функцiй. Зокрема, ми довели, що оператор стохастичного

диференцiювання є диференцiюванням (задовольняє правило Лейбнiца) вiдносно вiкiвського

множення.

Ключовi слова i фрази: Процес Левi, стохастичне диференцiювання, вiкiвський добуток.


