Carpathian Math. Publ. 2018, **10** (1), 71–78 doi:10.15330/cmp.10.1.71-78

FERAHTIA N.¹, ALLAOUI S.E.²

A GENERALIZATION OF A LOCALIZATION PROPERTY OF BESOV SPACES

The notion of a localization property of Besov spaces is introduced by G. Bourdaud, where he has provided that the Besov spaces $B_{p,q}^s(\mathbb{R}^n)$, with $s\in\mathbb{R}$ and $p,q\in[1,+\infty]$ such that $p\neq q$, are not localizable in the ℓ^p norm. Further, he has provided that the Besov spaces $B_{p,q}^s$ are embedded into localized Besov spaces $(B_{p,q}^s)_{\ell^p}$ (i.e., $B_{p,q}^s\mapsto(B_{p,q}^s)_{\ell^p}$, for $p\geq q$). Also, he has provided that the localized Besov spaces $(B_{p,q}^s)_{\ell^p}$ are embedded into the Besov spaces $B_{p,q}^s$ (i.e., $(B_{p,q}^s)_{\ell^p}\mapsto B_{p,q}^s$, for $p\leq q$). In particular, $B_{p,p}^s$ is localizable in the ℓ^p norm, where ℓ^p is the space of sequences $(a_k)_k$ such that $\|(a_k)\|_{\ell^p}<\infty$. In this paper, we generalize the Bourdaud theorem of a localization property of Besov spaces $B_{p,q}^s(\mathbb{R}^n)$ on the ℓ^r space, where $r\in[1,+\infty]$. More precisely, we show that any Besov space $B_{p,q}^s$ is embedded into the localized Besov space $(B_{p,q}^s)_{\ell^r}$ (i.e., $B_{p,q}^s\mapsto(B_{p,q}^s)_{\ell^r}$), for $r\geq \max(p,q)$). Also we show that any localized Besov space $(B_{p,q}^s)_{\ell^r}$ is embedded into the Besov space $B_{p,q}^s$ (i.e., $(B_{p,q}^s)_{\ell^r}\mapsto B_{p,q}^s$, for $r\leq \min(p,q)$). Finally, we show that the Lizorkin-Triebel spaces $F_{p,q}^s(\mathbb{R}^n)$, where $s\in\mathbb{R}$ and $p\in[1,+\infty)$ and $q\in[1,+\infty]$ are localizable in the ℓ^p norm (i.e., $F_{p,q}^s=(F_{p,q}^s)_{\ell^p}$).

Key words and phrases: Besov spaces, Lizorkin-Triebel spaces, localization property.

INTRODUCTION

Functional calculus is one of the basic theory in functional analysis [5]. It has enabled to study function-analytic in topological (in particular, normed) spaces of functions. For instance, several authors such as Peetre [7], Dahlberg [4], Marcus and Mizel [6] have studied functional calculus in certain Sobolev and Besov spaces. In particular, Bourdaud [1, 2] have established a way of functional calculus in localized Besov spaces. More precisely, in [1] he has proved the following result.

Theorem 1. Let $p, q \in [1, +\infty]$, $s \in \mathbb{R}$, $B_{p,q}^s$ and $(B_{p,q}^s)_{\ell^p}$ are respectively the Besov and localized Besov spaces. Then

(i)
$$B_{p,q}^s \hookrightarrow (B_{p,q}^s)_{\ell^p}$$
, for $p \ge q$,

(ii)
$$(B_{p,q}^s)_{\ell^p} \hookrightarrow B_{p,q}^s$$
, for $p \leq q$.

In particular, $B_{p,p}^s$ is localizable in the ℓ^p norm, where ℓ^p is the space of sequences $(a_k)_k$ such that $\|(a_k)\|_{\ell^p} = (\sum_{k=0}^{\infty} |a_k|^p)^{\frac{1}{p}} < \infty$.

УДК 517.98

2010 Mathematics Subject Classification: 46E35, 47H30.

¹ Laboratory of Pures and Applied Mathematics, Department of Mathematics, Mohamed Boudiaf University of Msila, P.O. Box 166 Ichbilia, Msila 28000, Algeria

² Department of Mathematics and Informatics, Laghouat University, Laghouat 03000, Algeria E-mail: na.ferahtia@gmail.com(Ferahtia N.), shallaoui@yahoo.fr(Allaoui S.E.)

In this paper, we generalize this result by proving that it is valid for any ℓ^r space, where $r \in [1, +\infty]$. This paper is organized as follows. In section 1, we recall basic concepts of Besov and Lizorkin-Triebel spaces, the decomposition of Littlewood-Paley, and some notations that will be needed throughout this paper. In section 2, we give a generalization of Bourdaud theorem of a localization property of Besov spaces on the ℓ^r space, where $r \in [1, +\infty]$. Also, we show that the Lizorkin-Triebel spaces are localizable in the ℓ^p norm. Finally, we present some conclusions and discuss future research in section 3.

1 Preliminaries and notations

This section contains the basic definitions and notations that will be needed throughout this paper.

1.1 Notations

We note (e_1, \ldots, e_n) the canonical basis of \mathbb{R}^n , $x.y = x_1y_1 + \cdots + x_ny_n$ the scalar product in \mathbb{R}^n , and for $\alpha \in \mathbb{N}^n$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $\frac{\partial^{|\alpha|} f}{\partial^{\alpha_1} x_1 \dots \partial^{\alpha_n} x_n}$ the partial derivative of the function f is denoted by $\partial^{\alpha} f$.

If $f: \mathbb{R}^n \longrightarrow \mathbb{C}$, the support of f denoted by suppf. $\mathcal{D}(\mathbb{R}^n)$ is the space of test functions, i.e. of smooth functions which have compact support, $\mathcal{D}'(\mathbb{R}^n)$ is the dual of $\mathcal{D}(\mathbb{R}^n)$. $\mathcal{S}(\mathbb{R}^n)$ is the Schwartz space of functions $\mathcal{C}^{\infty}(\mathbb{R}^n)$ rapidly decreasing on \mathbb{R}^n , the dual $\mathcal{S}'(\mathbb{R}^n)$ is the space of tempered distributions.

If $f \in \mathcal{S}(\mathbb{R}^n)$, then it Fourier transform defined by

$$\mathcal{F}(f(x))(\xi) = \int_{\mathbb{R}^n} \exp(-ix.\xi) f(x) dx$$

and its inverse Fourier transform defined by

$$\mathcal{F}^{-1}(\widehat{f}(\xi))(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \exp(ix.\xi) \widehat{f}(\xi) d\xi.$$

Let A_1 and A_2 be two spaces, we say that $A_1 \hookrightarrow A_2$ if there exists c > 0 such that $\|.\|_{A_2} \le c\|.\|_{A_1}$. Let p' be the conjugate exponent of p, $\frac{1}{p} + \frac{1}{p'} = 1$ where $p \in [1, +\infty]$.

Let $k \in \mathbb{Z}^n$; τ_k is the translation operator defined by $\tau_k f(\cdot) = f(\cdot - k)$; L^p is the space of the measurable functions f such that $\|f\|_{L^p} = (\int_{\mathbb{R}^n} |f(x)|^p dx)^{\frac{1}{p}} < \infty$; ℓ^q is the space of sequences $(a_k)_k$ such that $\|(a_k)\|_{\ell^q} = (\sum_{k=0}^\infty |a_k|^q)^{\frac{1}{q}} < \infty$.

Let
$$0 , $0 < q \le \infty$, so$$

$$||f_k||_{\ell^q(L^p)} = (\sum_{k=0}^{\infty} ||f_k(x)||_p^q)^{\frac{1}{q}} < \infty, \quad ||f_k||_{L^p(\ell^q)} = ||(\sum_{k=0}^{\infty} |f_k(x)|^q)^{\frac{1}{q}}||_p < \infty.$$

1.2 The decomposition of Littlewood-Paley

Let $\varphi \in \mathcal{S}(\mathbb{R}^n)$, which satisfy the conditions:

(i)
$$supp \ \varphi \subset \{\xi \in \mathbb{R}^n : 1 \le |\xi| \le 3\}$$
,

(ii)
$$\varphi(\xi) > 0$$
, for $1 \le |\xi| \le 3$,

(iii)
$$\sum_{j\in\mathbb{Z}} \varphi(2^{-j}\xi) = 1$$
, for $\xi \in \mathbb{R}^n \setminus \{0\}$.

The construction of φ does not pose any difficulty, see for example [3] . We put $\varphi(\xi) = 1 - \sum_{j=1}^{\infty} \varphi(2^{-j}\xi)$, then it follows that the function $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^n)$, such that $supp \ \varphi \subset \{\xi \in \mathbb{R}^n : |\xi| \leq 3\}$. In the following, we fix the partition of the unit and we obtain:

$$\varphi(\xi) + \sum_{j=1}^{\infty} \varphi(2^{-j}\xi) = 1$$
 (for all $\xi \in \mathbb{R}^n$).

To this partition we associate a sequence of convolution operators $\Delta_j: \mathcal{S}' \longrightarrow \mathcal{C}^{\infty}$, defined by $\mathcal{F}(\Delta_j f)(\xi) = \varphi(2^{-j}\xi)\widehat{f}(\xi)$, for $j = 1, 2, \ldots$ and $\mathcal{F}(\Delta_0 f)(\xi) = \varphi(\xi)\widehat{f}(\xi)$. Also, we define the operators Q_k by $\mathcal{F}(Q_k f)(\xi) = \varphi(2^{-k}\xi)\widehat{f}(\xi)$, $k = 1, 2, \ldots$, for all $f \in \mathcal{S}'$, the decomposition of f of the Littlewood-Paley type given by

$$f = \sum_{j \ge 0} \Delta_j f. \tag{1}$$

The series (1) converges in the sense of tempered distributions. The series (1) can be written as

$$f = Q_k f + \sum_{j \ge k+1} \Delta_j f,$$

This formula is valid for any $f \in \mathcal{S}'$ and $k \in \mathbb{N}$, such that $Q_k f = \sum_{j \le k} \Delta_j f$.

Definition 1 ([10]). Let $f \in S'$ and a > 0. We define the maximal operators associated to the Δ_k and Q_k by

$$\Delta_k^{*,a} f(x) = \sup_{y \in \mathbb{R}^n} \frac{|\Delta_k f(x-y)|}{(1+2^k|y|)^a} \quad \text{and} \quad Q_k^{*,a} f(x) = \sup_{y \in \mathbb{R}^n} \frac{|Q_k f(x-y)|}{(1+2^k|y|)^a}.$$

Definition 2 ([8]). Let $s \in \mathbb{R}$, $p,q \in [1,+\infty]$. The Besov space $B_{p,q}^s(\mathbb{R}^n)$ is the set of all $f \in \mathcal{S}'(\mathbb{R}^n)$ satisfying

$$||f||_{B_{p,q}^{s}(\mathbb{R}^{n})} = \begin{cases} (\sum_{j\geq 0} (2^{sj} ||\Delta_{j}f||_{p})^{q})^{\frac{1}{q}} < +\infty, & \text{for } q \neq \infty, \\ \sup_{j\geq 0} (2^{sj} ||\Delta_{j}f||_{p}) < +\infty, & \text{for } q = \infty. \end{cases}$$
(2)

Definition 3 ([8]). Let $s \in \mathbb{R}$, $p \in [1, +\infty[$ and $q \in [1, +\infty]$. The Lizorkin-Triebel space $F_{p,q}^s(\mathbb{R}^n)$ is the set of all $f \in \mathcal{S}'(\mathbb{R}^n)$ satisfying

$$||f||_{F_{p,q}^{s}(\mathbb{R}^{n})} = \begin{cases} ||(\sum_{j\geq 0} (2^{sj}|\Delta_{j}f|)^{q})^{\frac{1}{q}}||_{p} < +\infty, & \text{for } q \neq \infty. \\ ||\sup_{j\geq 0} (2^{sj}|\Delta_{j}f|)||_{p} < +\infty, & \text{for } q = \infty. \end{cases}$$
(3)

Remark 1. In the formula (2) (resp. (3)), we can replace Δ_j by $\Delta_j^{*,a}$ with $a > \frac{n}{p}$ (resp. $a > \frac{n}{\min(p,q)}$), and we obtain an equivalent norm in $B_{p,q}^s(\mathbb{R}^n)$ (resp. $F_{p,q}^s(\mathbb{R}^n)$).

For more details, see Peetre [7] and Triebel [10].

Proposition 1 ([2]). Let $s \in \mathbb{R}$.

(i) For all $\gamma > 1$ there exists c > 0 such that for any sequence of functions $(f_j)_{j \geq 0}$, where $supp \mathcal{F} f_j \subset \{\xi : \gamma^{-1} 2^j \leq |\xi| \leq \gamma 2^j\}$, we have

$$\|\sum_{j=0}^{\infty} f_j\|_{B_{p,q}^s} \le c(\sum_{j=0}^{\infty} 2^{sjq} \|f_j\|_p^q)^{\frac{1}{q}}.$$

(ii) For all a > 1 there exists c > 0 such that for any sequence of functions $(f_j)_{j \in \mathbb{N}}$, where $supp \mathcal{F} f_j \subset \{\xi : a^{-1}2^j \leq |\xi| \leq a2^j\}$, we have

$$\|\sum_{j=0}^{\infty} f_j\|_{F_{p,q}^s} \le c \|(\sum_{j=0}^{\infty} 2^{sjq} |f_j|^q)^{\frac{1}{q}}\|_p.$$

2 LOCALIZATION OF BESOV SPACES

In this section, we give a generalization of Bourdaud theorem of a localization property of Besov spaces on the ℓ^r space, where $r \in [1, +\infty]$. Also, we show that the Lizorkin-Triebel spaces are localizable in the ℓ^p norm. We start with these important concepts.

Let *E* be a Banach space of distributions. We associate on the space *E* the following hypothesis.

- 1) Translation invariance; if we denote τ_x the operator given by $\tau_x f(t) = f(x t)$, then τ_x is an isometric of E;
- 2) Localization invariance; for all $f \in E$ and $\varphi \in \mathcal{D}(\mathbb{R}^n)$, we have that $\varphi f \in E$.

Let $\varphi \in \mathcal{D}(\mathbb{R}^n)$. The notion of localized is defined by $f_x = \tau_x \varphi \cdot f$, it follows immediately from the hypothesis 1) and 2) that the family $(f_x)_{x \in \mathbb{R}^n}$ is bounded in E. We consider the set A as the class of all the functions $\varphi \in \mathcal{D}(\mathbb{R}^n)$ satisfying

$$\sum_{k \in \mathbb{Z}^n} \varphi(x - k) = 1 \quad \text{for all } x \in \mathbb{R}^n.$$

Definition 4 ([1]). Let *E* be a Banach space of distributions, *E* is localizable in the ℓ^p norm $(1 \le p \le \infty)$, if there exist $\varphi \in A$ and a constant $c \ge 1$, such that

$$c^{-1}||f||_{E} \leq \left(\sum_{k \in \mathbb{Z}^{n}} ||\tau_{k}\varphi.f||_{E}^{p}\right)^{\frac{1}{p}} \leq c||f||_{E},$$

i.e. $E = (E)_{\ell^p}$, we denote by $(E)_{\ell^p}$ the distribution space of u such that

$$||u||_{(E)_{\ell^p}} = ||(||\tau_k \varphi.u||_E)_{k \in \mathbb{Z}^n}||_{\ell^p} < \infty.$$

Proposition 2 ([1]). Let S be the Schwartz space, if the function $\theta \in S$ is not null on the support of φ , then we have

$$||u||_{(E)_{\ell^p}} \sim ||(||\tau_k \theta. u||_E)_{k \in \mathbb{Z}^n}||_{\ell^p}.$$

Proposition 3 ([1]). Let $B_{p,q}^s$ be a Besov space, and N be a natural number fulfill N > s, and $\lambda, \mu \in \mathcal{S}$, such that

- (i) $\mu(\xi) \neq 0$, for $|\xi| \leq 3$,
- (ii) $\lambda(\xi) \neq 0$, for $1 \leq |\xi| \leq 3$ and $\lambda^{(\alpha)}(0) = 0$ for $|\alpha| < N$.

We denote by $L_j(j \ge 1)$ the respective symbol operators $\lambda(2^{-j}\xi)$ and by L_0 the symbol operator $\mu(\xi)$, therefore

$$||u||_{B_{p,q}^s} \sim ||(2^{js}||L_ju||_p)_{j\in\mathbb{N}}||_{\ell^q}.$$

In the following theorem we give a generalization of Bourdaud theorem of a localization property of Besov spaces on the ℓ^r spaces, by using Proposition 2 and Proposition 3.

Theorem 2. Let $p,q,r \in [1,+\infty]$, $s \in \mathbb{R}$, and $B^s_{p,q}$ and $(B^s_{p,q})_{\ell^r}$ are respectively the Besov and localized Besov spaces. Then

(i)
$$B_{p,q}^s \hookrightarrow (B_{p,q}^s)_{\ell^r}$$
 for $r \ge \max(p,q)$,

(ii)
$$(B_{p,q}^s)_{\ell^r} \hookrightarrow B_{p,q}^s$$
 for $r \leq \min(p,q)$.

In particular, $B_{p,p}^s$ space is localizable in the ℓ^p norm.

Proof. (i) We will show that

$$||u||_{(B_{p,q}^s)_{\ell^r}} \le c||u||_{B_{p,q}^s}$$
 for $c > 0$.

By Proposition 1, it follows that

$$\|\sum_{j\geq 0} \tau_k \theta. \Delta_j u\|_{B^s_{p,q}} \leq c \left(\sum_{j\geq 0} 2^{sjq} \|\tau_k \theta. \Delta_j u\|_p^q\right)^{\frac{1}{q}}.$$

This implies that, $\|\tau_k \theta.u\|_{B^s_{p,q}}^r \leq c(\sum_{j=0}^\infty 2^{sjq} \|\tau_k \theta.\Delta_j u\|_p^q)^{\frac{r}{q}}$. Then it holds that

$$\left(\sum_{k\in\mathbb{Z}^n} \|\tau_k \theta. u\|_{B^s_{p,q}}^r\right)^{\frac{1}{r}} \leq c \left(\sum_{k\in\mathbb{Z}^n} \left(\sum_{j=0}^{\infty} 2^{sjq} \|\tau_k \theta. \Delta_j u\|_p^q\right)^{\frac{r}{q}}\right)^{\frac{1}{r}}.$$

Consequently

$$\left(\sum_{k \in \mathbb{Z}^n} \|\tau_k \theta. u\|_{B^s_{p,q}}^r\right)^{\frac{1}{r}} \le c(\|(2^{sj}\|\tau_k \theta. \Delta_j u\|_p)_{k \in \mathbb{Z}^n}\|_{\ell^r(\ell^q)}). \tag{4}$$

Since, $r \ge \max(p, q)$ implies that $q \le r$. Then from Minkowski inequality we have

$$\|(2^{sj}\|\tau_k\theta.\Delta_ju\|_p)_{k\in\mathbb{Z}^n}\|_{\ell^r(\ell^q)}\leq c\|(2^{sj}\|\tau_k\theta.\Delta_ju\|_p)_{k\in\mathbb{Z}^n}\|_{\ell^q(\ell^r)}.$$

So, we can see that the inequality (4) becomes as follows

$$\left(\sum_{k\in\mathbb{Z}^n} \|\tau_k \theta. u\|_{B^s_{p,q}}^r\right)^{\frac{1}{r}} \leq c(\|(2^{sj}\|\tau_k \theta. \Delta_j u\|_p)_{k\in\mathbb{Z}^n}\|_{\ell^q(\ell^r)}).$$

Consequently $(\sum_{k\in\mathbb{Z}^n} \|\tau_k \theta.u\|_{B^s_{p,q}}^r)^{\frac{1}{r}} \leq c(\sum_{j=0}^{\infty} 2^{sjq}(\sum_{k\in\mathbb{Z}^n} \|\tau_k \theta.\Delta_j u\|_p^r)^{\frac{q}{r}})^{\frac{1}{q}}$. Therefore,

$$\left(\sum_{k \in \mathbb{Z}^n} \|\tau_k \theta. u\|_{B^s_{p,q}}^r\right)^{\frac{1}{r}} \le c \left(\sum_{j=0}^\infty 2^{sjq} (\|\tau_k \theta. \Delta_j u\|_{\ell^r(L^p)})^q\right)^{\frac{1}{q}}.$$
 (5)

Also, we have $r \geq \max(p,q)$ implies that $p \leq r$, i.e. $\ell^p \hookrightarrow \ell^r$, it follows that $\ell^p(L^p) \hookrightarrow \ell^r(L^p)$. Consequently $\|(\tau_k \theta. \Delta_j u)_{k \in \mathbb{Z}^n}\|_{\ell^p(L^p)} \leq c \|(\tau_k \theta. \Delta_j u)_{k \in \mathbb{Z}^n}\|_{\ell^p(L^p)}$. So, we can see that the inequality (5) becomes as follows $(\sum_{k \in \mathbb{Z}^n} \|\tau_k \theta. u\|_{B^s_{p,q}}^r)^{\frac{1}{r}} \leq c (\sum_{j=0}^\infty 2^{sjq} (\|\tau_k \theta. \Delta_j u\|_{\ell^p(L^p)})^q)^{\frac{1}{q}}$. Since L^p is a space localizable in the ℓ^p norm, then it holds that $\|\tau_k \theta. \Delta_j u\|_{\ell^p(L^p)} \backsim \|\Delta_j u\|_p$. Hence,

$$\left(\sum_{k\in\mathbb{Z}^n} \|\tau_k \theta. u\|_{B^s_{p,q}}^r\right)^{\frac{1}{r}} \leq c \left(\sum_{j=0}^\infty 2^{sjq} \|\Delta_j u\|_p^q\right)^{\frac{1}{q}} \leq c \|u\|_{B^s_{p,q}}.$$

Thus, $B_{p,q}^s \hookrightarrow (B_{p,q}^s)_{\ell^r}$.

(ii) Now, we will show that

$$||u||_{B_{p,q}^s} \le c||u||_{(B_{p,q}^s)\ell^r}$$
 for $c > 0$.

Let $u \in \mathcal{S}'(\mathbb{R}^n)$. Then it holds that

$$||L_{j}(u)||_{p} = ||L_{j}(\sum_{k \in \mathbb{Z}^{n}} \tau_{k} \varphi.u)||_{p} = ||\sum_{k \in \mathbb{Z}^{n}} L_{j}(\tau_{k} \varphi.u)||_{p} \leq c(\sum_{k \in \mathbb{Z}^{n}} ||L_{j}(\tau_{k} \varphi.u)||_{p}^{p})^{\frac{1}{p}}.$$

Since $r \leq \min(p, q)$, it holds that $\ell^r \hookrightarrow \ell^p$, i.e.

$$\|(\|L_j(\tau_k\varphi.u)\|_p)_{k\in\mathbb{Z}^n}\|_{\ell^p}\leq c\|(\|L_j(\tau_k\varphi.u)\|_p)_{k\in\mathbb{Z}^n}\|_{\ell^r}.$$

So, we have

$$||L_j(u)||_p \le c(\sum_{k\in\mathbb{Z}^n} ||L_j(\tau_k\varphi.u)||_p^p)^{\frac{1}{p}} \le c(\sum_{k\in\mathbb{Z}^n} ||L_j(\tau_k\varphi.u)||_p^r)^{\frac{1}{r}}.$$

This implies that

$$\left(\sum_{j=0}^{\infty} 2^{sjq} \|L_j u\|_p^q\right)^{\frac{1}{q}} \le c\left(\sum_{j=0}^{\infty} 2^{sjq} \left(\sum_{k \in \mathbb{Z}^n} \|L_j(\tau_k \varphi. u)\|_p^r\right)^{\frac{q}{r}}\right)^{\frac{1}{q}}.$$

Consequently

$$\left(\sum_{j=0}^{\infty} 2^{sjq} \|L_j u\|_p^q\right)^{\frac{1}{q}} \le c(\|(2^{sj} \|L_j(\tau_k \varphi. u)\|_p)_{k \in \mathbb{Z}^n} \|_{\ell^q(\ell^r)}). \tag{6}$$

Since $r \leq \min(p,q)$, it holds that $r \leq q$. Then from Minkowski inequality we have

$$\|(2^{sj}\|L_j(\tau_k\varphi.u)\|_p)_{k\in\mathbb{Z}^n}\|_{\ell^q(\ell^r)}\leq c\|(2^{sj}\|L_j(\tau_k\varphi.u)\|_p)_{k\in\mathbb{Z}^n}\|_{\ell^r(\ell^q)}.$$

So, we can see that the inequality (6) becomes as follows

$$(\sum_{j=0}^{\infty} 2^{sjq} \|L_j u\|_p^q)^{\frac{1}{q}} \le c(\|(2^{sj} \|L_j(\tau_k \varphi. u)\|_p)_{k \in \mathbb{Z}^n} \|\ell^r(\ell^q)).$$

Consequently

$$(\sum_{j=0}^{\infty} 2^{sjq} \|L_j u\|_p^q)^{\frac{1}{q}} \leq c(\sum_{k \in \mathbb{Z}^n} (\sum_{j=0}^{\infty} 2^{sjq} \|L_j (\tau_k \varphi. u)\|_p^q)^{\frac{r}{q}})^{\frac{1}{r}} \leq c(\sum_{k \in \mathbb{Z}^n} \|\tau_k \varphi. u\|_{B^s_{p,q}}^r)^{\frac{1}{r}} \leq c \|u\|_{(B^s_{p,q})_{\ell^r}}.$$

Thus,
$$(B_{p,q}^s)_{\ell^r} \hookrightarrow B_{p,q}^s$$
.

Remark 2. The generalization of Bourdaud Theorem given by Sickel and Smirnov in 1999 [9] using the wavelet method, the aim of this work is to generalize the same Theorem of a localization property by using a different method.

Theorem 3. Let $p \in [1, +\infty)$, $q \in [1, +\infty]$, $s \in \mathbb{R}$, $F_{p,q}^s$ and $(F_{p,q}^s)_{\ell^p}$ are respectively the Lizorkin-Triebel and localized Lizorkin-Triebel spaces. Then the space $F_{p,q}^s$ is localizable in the ℓ^p norm, i.e. $F_{p,q}^s = (F_{p,q}^s)_{\ell^p}$.

Proof. (i) $(F_{p,q}^s)_{\ell^p} \hookrightarrow F_{p,q}^s$. We will show that

$$||f||_{F_{p,q}^s} \le c||f||_{(F_{p,q}^s)_{\ell^p}} \quad \text{for } c > 0.$$

From Definition 3, $\|f\|_{F_{p,q}^s} = \|(\sum_{j=0}^{\infty} 2^{sjq} |\Delta_j f|^q)^{\frac{1}{q}}\|_p$. We put $\Delta_j f = \sum_{k \in \mathbb{Z}^n} \tau_k \varphi. \Delta_j f$, it follows that $\|f\|_{F_{p,q}^s} = \|(\sum_{j=0}^{\infty} (\sum_{k \in \mathbb{Z}^n} 2^{sj} |\tau_k \varphi \Delta_j f|)^q)^{\frac{1}{q}}\|_p$. Consequently

$$||f||_{F_{p,q}^s} = ||||2^{sj}(\tau_k \varphi \Delta_j f)_{k \in \mathbb{Z}^n}||_{\ell^q(\ell^1)}||_p.$$

Since, $1 \le q$. Then from Minkowski inequality we have

$$\|f\|_{F^s_{p,q}} = \|\|2^{sj}(\tau_k \varphi \Delta_j f)_{k \in \mathbb{Z}^n}\|_{\ell^q(\ell^1)}\|_p \leq \|\|2^{sj}(\tau_k \varphi \Delta_j f)_{k \in \mathbb{Z}^n}\|_{\ell^1(\ell^q)}\|_p.$$

Consequently

$$||f||_{F_{p,q}^s} \le c ||\sum_{k \in \mathbb{Z}^n} (\sum_{j=0}^{\infty} 2^{sjq} |\tau_k \varphi \Delta_j f|^q)^{\frac{1}{q}} ||_p \le c (\sum_{k \in \mathbb{Z}^n} ||(\sum_{j=0}^{\infty} 2^{sjq} |\tau_k \varphi \Delta_j f|^q)^{\frac{1}{q}} ||_p^p)^{\frac{1}{p}}.$$

Hence, $||f||_{F_{p,q}^s} \le c(\sum_{k \in \mathbb{Z}^n} ||\tau_k \varphi. f||_{F_{p,q}^s}^p)^{\frac{1}{p}}$. Thus, $(F_{p,q}^s)_{\ell^p} \hookrightarrow F_{p,q}^s$. (ii) $F_{p,q}^s \hookrightarrow (F_{p,q}^s)_{\ell^p}$. Now, we will show that

$$||f||_{(F_{p,q}^s)_{\ell^p}} \le c||f||_{F_{p,q}^s} \quad \text{for } c > 0.$$

Let $p, q \in [1, +\infty]$ and $s \in \mathbb{R}$. Then it holds that

$$(\sum_{k\in\mathbb{Z}^n} \|\tau_k \varphi. f\|_{F^s_{p,q}}^p)^{\frac{1}{p}} = (\sum_{k\in\mathbb{Z}^n} \|\tau_k \varphi \sum_{j=0}^\infty \Delta_j f\|_{F^s_{p,q}}^p)^{\frac{1}{p}} = (\sum_{k\in\mathbb{Z}^n} \|\sum_{j=0}^\infty \Delta_j f \tau_k \varphi\|_{F^s_{p,q}}^p)^{\frac{1}{p}}.$$

From Proposition 1, it follows that

$$\left(\sum_{k \in \mathbb{Z}^{n}} \|\tau_{k} \varphi.f\|_{F_{p,q}^{s}}^{p}\right)^{\frac{1}{p}} \leq c\left(\sum_{k \in \mathbb{Z}^{n}} \|\left(\sum_{j=0}^{\infty} 2^{sjq} |\Delta_{j} f \tau_{k} \varphi|^{q}\right)^{\frac{1}{q}} \|_{p}^{p}\right)^{\frac{1}{p}} \\
\leq c\left(\sum_{k \in \mathbb{Z}^{n}} \|\tau_{k} \varphi\left(\sum_{j=0}^{\infty} 2^{sjq} |\Delta_{j} f|^{q}\right)^{\frac{1}{q}} \|_{p}^{p}\right)^{\frac{1}{p}}.$$

Since L^p is a space localizable in the ℓ^p norm, then it holds that

$$\left(\sum_{k\in\mathbb{Z}^n} \|\tau_k \varphi.f\|_{F^s_{p,q}}^p\right)^{\frac{1}{p}} \leq c \|\left(\sum_{j=0}^\infty 2^{sjq} |\Delta_j f|^q\right)^{\frac{1}{q}} \|_p \leq c \|f\|_{F^s_{p,q}}.$$

Thus,
$$F_{p,q}^s \hookrightarrow (F_{p,q}^s)_{\ell^p}$$
.

3 CONCLUSION

In this work, we have generalized the Bourdaud theorem of a lacalization property of Besov spaces $B^s_{p,q}(\mathbb{R}^n)$ on the ℓ^r space, where $s \in \mathbb{R}$, $p,q,r \in [1,+\infty]$. Also, we have provided that the Lizorkin-Triebel spaces are localizable in the ℓ^p norm. In future work, we will investigate the localization property on other functional spaces.

REFERENCES

- [1] Bourdaud G. Localisations des espaces de Besov. Studia Math. 1988, 90 (2), 153–163. (in French)
- [2] Bourdaud G. Analyse fonctionnelle dans l'espace Euclidien. In: Publications mathématiques de l'Université Paris 7, 23. UER de mathematiques de Paris VII, Paris, 1979. (in French)
- [3] Bergh J., Löfstrom J. Interpolation spaces. In: Chenciner A., Coates J. Grundlehren der mathematischen Wissenschaften, 223. Springer, Heidelberg, 1976.
- [4] Dahlberg B.E.J. A note on Sobolev spaces. Proc. Sympos. Pure Math. 1979, 35 (1), 183–185.
- [5] Hazewinkel M. Encyclopaedia of Mathematics. Springer Science+Business Media, Dordrecht.
- [6] Marcus M., Mizel V.J. Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 1979, **33** (2), 217–229. doi: 10.1016/0022-1236(79)90113-7
- [7] Peetre J. New thoughts on Besov spaces. In: Duke University mathematics series, 1. Mathematics Department Duke University, Durham N.C., 1976.
- [8] Runst T., Sickel W. Sobolev spaces of fractional order, Nemytzkij operators and nonlinear partial differential equations. De Gruyter, Berlin, 1996.
- [9] Sickel W., Smirnov I. *Localization properties of Besov spaces and of its associated multiplier spaces*. Jenaer Schriften zur Mathematik und Informatik 1999, Math/Inf/99/21.
- [10] Triebel H. Theory of Function Spaces. Birkhäuser, Basel, 1983.

Received 13.02.2018

Revised 28.05.2018

Ферахтія Н., Аллауі С.Е. Узагальнення локалізаційної властивості просторів Бєсова // Карпатські матем. публ. — 2018. — Т.10, №1. — С. 71–78.

Поняття локалізаційної властивості просторів Бєсова введене Γ . Бурдо, він показав, що простори Бєсова $B^s_{p,q}(\mathbb{R}^n)$, де $s\in\mathbb{R}$ і $p,q\in[1,+\infty]$ такі, що $p\neq q$, є нелокалізовними у нормі ℓ^p . Також він показав, що простори Бєсова $B^s_{p,q}$ вкладені в локалізовані простори Бєсова $(B^s_{p,q})_{\ell^p}$ (тобто $B^s_{p,q}\hookrightarrow (B^s_{p,q})_{\ell^p}$ при $p\geq q$). Також було показано, що локалізовані простори Бєсова $(B^s_{p,q})_{\ell^p}$ вкладені в простори Бєсова $B^s_{p,q}$ (тобто $(B^s_{p,q})_{\ell^p}\hookrightarrow B^s_{p,q}$ при $p\leq q$). Зокрема $B^s_{p,p}$ є локалізовним в нормі ℓ^p , де ℓ^p простір послідовностей $(a_k)_k$ таких, що $\|(a_k)\|_{\ell^p}<\infty$. У цій статті ми узагальнили теорему Бурдо про локалізаційну властивість просторів Бєсова $B^s_{p,q}(\mathbb{R}^n)$ на простір ℓ^r , де $r\in[1,+\infty]$. А точніше ми довели, що будь-який простір Бєсова $B^s_{p,q}$ є вкладений в локалізований простір Бєсова $(B^s_{p,q})_{\ell^r}$ (тобто $B^s_{p,q}\hookrightarrow (B^s_{p,q})_{\ell^r}$ при $r\geq \max(p,q)$). Також ми показали, що будь-який локалізований простір Бєсова $(B^s_{p,q})_{\ell^r}$ бъсово $(B^s_{p,q})_{\ell^r}$ вкладений в простір Бєсова $(B^s_{p,q})_{\ell^r}$ (тобто $(B^s_{p,q})_{\ell^r}$ обто $(B^s_{p,q})_{\ell^r}\hookrightarrow B^s_{p,q}$ при $r\leq \min(p,q)$). І на завершення було показано, що простори Лізоркіна-Трібеля $F^s_{p,q}(\mathbb{R}^n)$, де $s\in\mathbb{R}$ і $p,q\in[1,+\infty]$ є локалізовними в нормі ℓ^p (тобто $F^s_{p,q}=(F^s_{p,q})_{\ell^p}$).

Kлючові слова і фрази: простори Бесова, простори Лізоркіна-Трібеля, локалізаційна властивість.