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(L)
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ADVANCEMENT ON THE STUDY OF GROWTH ANALYSIS OF DIFFERENTIAL
POLYNOMIAL AND DIFFERENTIAL MONOMIAL IN THE LIGHT OF SLOWLY
INCREASING FUNCTIONS

Study of the growth analysis of entire or meromorphic functions has generally been done thro-
ugh their Nevanlinna’s characteristic function in comparison with those exponential functions. But
if one is interested to compare the growth rates of any entire or meromorphic function with respect
to another, the concepts of relative growth indicators will come. The field of study in this area may

be more significant through the intensive applications of the theories of slowly increasing functions

L{ar) _
L(arr) =1

where L = L (r) is a positive continuous function increasing slowly. Actually in the present paper,
we establish some results depending on the comparative growth properties of composite entire and
meromorphic functions using the idea of relative ,L*-order, relative ,L*- type, relative ,L*-weak
type and differential monomials, differential polynomials generated by one of the factors which
extend some earlier results, where ,L* is nothing but a weaker assumption of L.

which actually means that L(ar) ~ L(r) as r — oo for every positive constant 4, i.e. lim
r—00

Key words and phrases: entire function, meromorphic function, relative ,L*-order, relative ,L*-
type, relative ,L*-weak type, growth, differential monomial, differential polynomial, slowly increas-
ing function.
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INTRODUCTION, DEFINITIONS AND NOTATIONS

Let us consider that the reader is familiar with the fundamental results and the standard
notations of the Nevanlinna theory of meromorphic functions which are available in [13, 16,
22, 23]. We also use the standard notations and definitions of the theory of entire functions
which are available in [24] and therefore we do not explain those in details.

For x € [0,00) and k € IN, we define the following functions exp¥l x = exp (exp[k_l] x)

and log[k]

x = log <log[k*” x) , where IN be the set of all positive integers.
Let f be an entire function defined in the open complex plane C. The maximum modulus
function M (r) corresponding to f is defined on |z| = r as My (r) = max|z| = 7 |f (z)|. In this

connection the following definition is relevant.

Definition 1 ([4]). A non-constant entire function f is said have the Property (A) if for any
o > 1 and for all sufficiently large r, [ M (r)}z < M (r7) holds.
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For examples of functions with or without the Property (A) we refer the reader to [4].

When f is meromorphic, one may introduce another function Ty (r) known as Nevanlinna’s
characteristic function of f, playing the same role as Mg (7).

Now we just recall the following properties of meromorphic functions which will be need-
ed in the sequel.

Let ngj, n1j, ..., ngj (k > 1) be non-negative integers such that for each j the following in-

k
equality holds }° n;; > 1. For a non-constant meromorphic function f, we call M;[f] =
i=0

Aj (f)" <f(1)>nlj e <f(k)>nkj, where T (r,Aj) = S(r,f) to be a differential monomial gen-

k k
erated by f. The numbers vy;; = Y n;andl'y; = ) (i + 1)n;; are called the degree and weight
i=0 =
S
of M; [f] respectively [6, 19]. The expression P [f] = j;lM]- [f] is called a differential polyno-
mial generated by f. The numbers vp = max 7y and I'p = max I'y; are called the degree
1<j<s 1<j<s

and weight of P [f] respectively [6, 19]. Also we call the numbers yp = 1111i_r<1 vmj and k (the
_ <j<s

order of the highest derivative of f) the lower degree and the order of P [f] respectively. If
Yp = vp, P[f] is called a homogeneous differential polynomial. Throughout the paper, we

consider only the non-constant differential polynomials and we denote by P, [f] a differential
polynomial not containing f, i.e. for which ng; = 0 forj =1,2,...,s. We consider only those
P[f], Py [f] singularities of whose individual terms do not cancel each other. We also denote
by M [f] a differential monomial generated by a transcendental meromorphic function f.

However, the Nevanlinna’s Characteristic function of a meromorphic function f is defined
as

T¢(r) = Np (r) +mg(r),

wherever the function N¢ (r,4) <1\7 £ (r,a) ) known as counting function of a-points (distinct
a-points) of meromorphic f is defined as follows:

r

t,a) —ng (0,
Ny (r,a) = /nf( il t”f( a)dt—l—nf (0,a)logr
0
. -
- t,a) — 0, -
(Nf (r,a) :/nf( i t”f( a)dt—l—nf (0,a) logr) ,
0

in addition we represent by n¢ (r,a) <n} (r,a)) the number of a-points (distinct a-points) of
fin |z| < r and an co-point is a pole of f. In many occasions Ny (r,c0) and Z\_If (r,00) are

symbolized by N¢ (r) and N r (r) respectively.
On the other hand, the function m (r,c0) alternatively indicated by my (r) known as the
proximity function of f is defined as follows

27
my (r) = 1 log™ )f (rem) ‘ dd, where log" x = max (log x,0) for all x > 0.
27 A
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Also we may employ m <r, j%ﬂ) by mg (r,a).
If f is entire, then the Nevanlinna’s Characteristic function T (r) of f is defined as

Ty (r) = mg (r).

Moreover for any non-constant entire function f, T (r) is strictly increasing and continuous

functions of r. Also its inverse T L. (| T (0)] ,00) — (0, 00) exists, where li_>m Tf_1 (s) = oo.
S§—00

In this connection we 1mmed1ately remmd the following definition which is relevant.

Definition 2. Let a be a complex number, finite or infinite. The Nevanlinna’s deficiency and
the Valiron deficiency of a with respect to a meromorphic function f are defined as

—_N¢(r,a) my(r,a)
) — 1 T S — i S
oa f) =1~ lim Tr () lim, Ty (1)
and N
A(a; f) =1— lim s (7.2) = lim my (r,)

r—00 Tf (7’) r—oo Tf (1’) .
Definition 3. The quantity ©(a; f) of a meromorphic function f is defined as follows

Z\_lf(r,a)
(a f) _1_}”1%00 Tf(i’) '

Definition 4 ([21]). Fora € CU {oo}, we denote by ny|_(r,a), the number of simple zeros of
f—ain|z| <r.Nf_y(r,a) is defined in terms of ny_; (r,a) in the usual way. We put

af)=1-— 1rn7Nf| 1)
e f) =1- =y

the deficiency of a corresponding to the simple a-points of f, i.e. simple zeros of f — a.

Yang [20] proved that there exists at most a denumerable number of complex numbers
a € CU{co} forwhichéy(a; f) >0and Y. &(af) <4
a€CU{o0}
Definition 5 ([14]). For a ¢ C U {co}, let ny(r,a; f) denotes the number of zeros of f — a in
|z| < r, where a zero of multiplicity < p is counted according to its multiplicity and a zero of
multiplicity > p is counted exactly p times and N,(r,a; f) is defined in terms of n,(r,a; f) in
the usual way. We define

B lmN (r,a; f)
Sp(a; f) =1— rlﬁooin() .

Definition 6 ([1]). P[f] is said to be admissible if

(i) P[f] is homogeneous, or
(ii) P[f] is non homogeneous and m¢(r) = S¢(r).

. . . . T
However in case of any two meromorphic functions f and g, the ratio T asr = o
Te(r)

is called as the growth of f with respect to g in terms of their Nevanlinna’s Characteristic
functions. Further the concept of the growth measuring tools such as order and lower order
which are conventional in complex analysis and the growth of entire or meromorphic functions
can be studied in terms of their orders and lower orders are normally defined in terms of their
growth with respect to the exp function which are shown in the following definition.
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Definition 7. The order p; (the lower order A¢) of a meromorphic function f is defined as

_ = log Ty (r) _ mlong( r) i - log Ty (r)
of = r%oolog Texpz (1) 1o log(’) r—elog (1) + 0(1)

\o— fim o8Tr(r) . logTy(r) . =~ logTy(r)

=M ————"r = lim ———" = lim ————— | .
rﬁoolog TeXpZ ( ) r—»00 log (7—_[) r%oolog (1’) + O(l)

If f is entire, then

— loglog Mg (r) — logm Mg (r)

Pr= rlggologlog Mexpz (1) - rlggo logr

v — Lim loglog My (7) ~ tim log? Mg (r)
f= r%oologlog Mexpz (1) 150 logr '

Somasundaram and Thamizharasi [18] introduced the notions of L-order and L-type for
entire functions, where L = L(r) is a positive continuous function increasing slowly, i.e.
L(ar) ~ L(r) asr — oo for every positive constant a. The more generalized concept of
L-order and L-type of meromorphic functions are L*-order and L*-type (resp. L*- lower type)
respectively which are as follows.

Definition 8 ([18]). The L*-order pJLc* and the L*-lower order AJLC* of a meromorphic function f
are defined by
. — logTys(r) log Ty ()
p% = rlgnlifL(r) and )‘f = hmifur),
<log [rel ()] r—eolog [rel ()]
where L = L (r) is a positive continuous function increasing slowly.
If f is entire, then

. loed M log? M
pjé = lim 28 £ () and Af = lim 8 T £ ()
r—o log [rel()] r—oo log [rel()]

Definition 9 ([18]). The L*-type chL* and L*-lower type EF of a meromorphic function f such
that 0 < pjé* < oo are defined as
— Tf (7’)

x T
O-fL = lim -+ and U'f == llm f (r) * 7
r—00 [T@L(”)} Of r—00 [reL(r)} Of

where L = L (r) is a positive continuous function increasing slowly.
If f is entire, then

. — logeM . log M
fL—hmiog f(*) and E%—li 7og f()

r—0o0 |:1"eL( ):| pf

r—00 [T’EL( )]Pf

Analogously in order to determine the relative growth of two meromorphic functions hav-
ing same non zero finite L*-lower order one may introduce the definition of L*-weak type of
meromorphic functions having finite positive L*-lower order in the following way.
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Definition 10. The L*-weak type denoted by TfL* of a meromorphic function f having
0< )\F < oo is defined as follows

T
Tf = lim r () =
r—>00 [T@L(r)] )\f

where L = L (r) is a positive continuous function increasing slowly.
Similarly the growth indicator ?F is defined as

. T
7 = fim f(”)L*’

———"—  where 0< )\J%* < 00,
r—>00 [TEL(")}A]C

If f is entire, then

. log M . —logM .
} = li_mLf(z*) and Tf = lim Lf(zz, where 0 < )\J@ < 00.
r—roo [reL(V)} /\f rmreo [reL(V)} /\f

Extending the notion of Somasundaram and Thamizharasi [18], one may introduce concept
of ,L*-order, ,L*-type and ,L*-weak type of a meromorphic function f as follows.

Definition 11. For any positive integer p, the ,L*-order pl%* (f) and the ,L*-lower order )\’%* (f)
of a meromorphic function f are defined by
L —  logTy(r)

oy (f) = }Lr?olog [rexplPI L (r)]

. log Ty (r)
and Aj(f) = lim JE]
r—oolog [rexpl?! L (r)] ’

where L = L (r) is a positive continuous function increasing slowly.
If f is entire, then

. _ loed M . logl? M
oL (f) = lim 0g” My (r) and AL (f) = lim 0g” My (r)
P r—olog [rexplP! L (r)] P r—oolog [rexpl?! L (r)]

Definition 12. For any positive integer p, the ,L*-type (rlg* (f) and ,L*-lower type E’Lf (f) ofa
meromorphic function f such that(0 < p’%* (f) < oo are defined by

T ] T
(f) = lim 7 (7) = and 5’% f) = lim 7 (7) ,
r—00 [Texpm L (r)}Pp (f) r—00 [1, exp[l’] L ( )} (f)
where L = L (r) is a positive continuous function increasing slowly.
If f is entire, then
. — log M ] log M
(Tl% (f) = lim og M (1) = and 7;% (f) = im 08 My (1) I
r—00 [7’ exp[m L (r)]p" (f) F—00 [1, exp [p] L 1,) P

J”
Definition 13. For any positive integer p, the ,L*-weak type denoted by T " (f) of a meromor-
phic function f having 0 < )\’Lq* (f) < oo is defined by

: Ty (r)
Tlg (= rlggo [ ]f A5 ()
[rexplP L(r)]™
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where L = L (r) is a positive continuous function increasing slowly.

Similarly the growth indicator ?le* (f) is defined by

Ty ()
oL ()] F 0
If f is entire, then for 0 < Al%* (f) < oo,
log M (r)

L) -

where 0 < Aé*(f) < 0o

. ) . — log M¢ (r)
p (f) = lim g d T () =lm e
"7 [rexplP L ()] [rexplP! L(r)]™

Lahiri and Banerjee [17] introduced the following definition of relative order of a meromor-
phic function with respect to an entire function.

T,

Definition 14 ([17]). Let f be meromorphic and g be entire functions. The relative order of f
with respect to ¢ denoted by p (f) is defined as
p(f,g) =inf{u>0:Ts(r) < Ty (r") forall sufficiently larger}
_ log T, ' Tf (r
m 8lg 1f ( ) .

r—00 log r

The definition coincides with the classical one [17] if g (z) = expz.
Similarly one can define the relative lower order of a meromorphic function f with respect
to an entire ¢ denoted by A¢ (f) in the following manner

_ log Tg_le (r)
A(f,8) = lim ogr "
In order to make some progress in the study of relative order, now we introduce relative
pL*-order and relative ,L*- lower order of a meromorphic function f with respect to an entire
function g.

Definition 15. The relative ,L*-order denoted as p;%* (f,8) and relative ,L*- lower order de-
noted as Al%* (f,g) of a meromorphic function f with respect to an entire g are defined as

— log T T, (r . log T 1T, (r
&g f()} and A;%(f,g):hm Y

L* ; -1
oy (:8) V1—>r£1°log [rexplPl L (r) r—wlog [rexpl?! L (r)]

4

where p is any positive integers and L = L (r) is a positive continuous function increasing
slowly.

Further to compare the relative growth of two meromorphic functions having same non
zero finite relative ,L*-order with respect to another entire function, one may introduce the
definitions of relative ,L*-type and relative ,L*-lower type in the following manner.

Definition 16. The relative ,L*-type and relative ,L*-lower type denoted respectively by
0’5* (f,g) and E;%* (f,g) of a meromorphic function f with respect to an entire function g such

that 0 < p;%* (f,g) < oo are respectively defined by

Ty Ty (r) Ty Ty (r)

O—L* (f’g) = m * and FL* (ffg) = h_m * 7
P r—00 [1’ exp[m L (r)}Plﬁ (f.8) P r—00 [1, exp[m L (r)}Pé (f.8)

where L = L (r) is a positive continuous function increasing slowly.
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Analogously to determine the relative growth of two meromorphic functions having same
non zero finite relative ,L*-lower order with respect to an entire function one may introduce
the definition of relative ,L*-weak type in the following way.

Definition 17. The relative ,L*-weak type denoted by T’F (f,g) of a meromorphic function f
with respect to an entire function g such that 0 < Aé* (f,g) < oo is defined by

Tg_le (r

. )
7 (f,¢) = lim —,
P r—00 [7’ exp[p] L (7’)]/\% (f.8)

where L = L (r) is a positive continuous function increasing slowly.
Similarly one may define the growth indicator ?’Lf (f,g) of a meromorphic function f with
respect to an entire function g as follows

Tg_le (r)

T, (f,8) = lim , 0<Ay (f,8) <o

T [rexplPI L (r)] M)

In the paper we establish some new results depending on the comparative growth proper-
ties of composite entire or meromorphic functions using relative ,L*-order, relative ,L*- type,
relative ,L*-weak type and differential monomials, differential polynomials generated by one
of the factors which in fact extend and improve some results of [9] and [10].

1 LEMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([7]). Let f be a meromorphic function either of finite order or of non-zero lower
order such that © (co; f) = Y. 6, (a;f) = Loré(oo;f) = Y 0(a;f) = 1 and h be an entire
a#co aF#oo

function with regular growth and non zero finite type. Also let ® (o0;h) = Y 6, (a;h) =1 or
a#oo
0 (oco;h) = Y 6(a;h) = 1. Then for homogeneous Py [f] and Py [g],
#00

a

-1 1

i T Tt () (mm) g

im————— = —— :
roe T Ty (r) TPy (]

Lemma 2 ([8]). Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and Y, 61(a; f) = 4 and h be a transcendental entire function with regular
aeCU{oo}
growth and non zero finite type. Alsolet Y, 61(a;h) = 4. Then
aeCU{oo}

_ 1
Tpp Tes) (1) _ (rM[f] — (Tmg _'YM[f])®(°°/'f)>ph

lim =
r—ee T, 1T (1) o) — (Taang — ) © (00 )

4

where

— N«(r) — Ny (r)
n f . 1T h
1 and O(oco;h) =1 rlggo T,
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Lemma 3 ([5]). Let f be a meromorphic function either of finite order or of non-zero lower
order such that ® (oo; f) = Y 0y (a;f) = lord(co;f) = ) 6(a;f) = 1 and h be an entire
aoo aoo

function with regular growth having non zero finite order and © (co;h) = ) 6, (a;h) = 1 or
aoo

d(co;h) = Y. 6 (a;h) = 1. Then for any positive integer p, the relative ,L*-order and relative
a#oo
pL*-lower order of Py [f] with respect to Py[h] are same as those of f with respect to h for

homogeneous Py [f]| and Py [h].

Lemma 4 ([5]). Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and Y, 61(a; f) = 4 and h be a transcendental entire function with regular
aeCU{o0}
growth and non zero finite order. Alsolet Y. & (a;h) = 4. Then for any positive integer
aeCU{oo}
p, the relative ,L*-order and relative ,L*-lower order of M([f] with respect to M[h] are same as

those of f with respect toh., i.e.
oy (MIf],M[H)) =py; (f,h) and Ay (M[f], M[h]) =2y (f,h).
Lemma 5. Let f be a meromorphic function either of finite order or of non-zero lower order

such that© (co; f) = Y 6y (a;f) =1 ord(co;f) = ¥ &(a; f) =1 and h be an entire function
azoo aoo

of regular growth having non zero finite type and © (co;h) = Y. 6, (a;h) = 1 or 6 (c0;h) =
a#oo

Y. 6 (a;h) = 1. Then for any positive integer p, the relative ,L*-type and relative ,L*-lower

a7#oo
1
type of Py | f] with respect to Py [h] are <%> ’I' times that of f with respect to h ifp;%* (f,h)is
0

positive finite, where P [f] and Py [h] are homogeneous.

Proof. By Lemma 3 and Lemma 1 and above we get that

Tpo i Trots] (1)

ok (Py[f], P [h]) = lim

r—o0 [1,. exp[p] L (r)}p%* (PO[f]/PO[h])
-1 _ 1
— lim TPo[h]TPO[f] () - Tim T, 1Tf (r) _ ('YPo[f]) & oL (f,h)
r—»00 T{le (1’) r—»00 [1’ expm L (T)}Plﬁ (f.h) ')'Po[h] P
1
. g+ _ (el Pr =L
Similarly o, (Po [f], Po[h]) = (ﬁ) "Ty (fh). O

In the line of Lemma 5 we may state the following lemma without its proof.

Lemma 6. Let f be a meromorphic function either of finite order or of non-zero lower order
such that © (co; f) = Y 6y (a;f) =1 ord(co;f) = ¥ d(a; f) =1 and h be an entire function
azoo aoo

of regular growth having non zero finite type and © (co;h) = Y. 6, (a;h) = 1 or 6 (c0;h) =
a#oo

1
Y 6 (a;h) = 1. Then T (Py[f],Po[h]) and T, (Po[f], Po [H]) are (W)ph times that of f
a#oo Pylh]

with respect toh, i.e.
1

L _ [ TRl pl".TL* and =L _ [ "Rlf] Ph_?L*
p (Polf], Po[h]) (m)[h]) y (fh) and T, (Ro[f], Po[h]) (“Ymm) p (fh),
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when Al%* (f,h) is positive finite and Py [f], Py [h] are homogeneous.

In the line of Lemma 5 and with the help of Lemma 2 and Lemma 4, we may state the
following two lemmas without their proofs.

Lemma 7. Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and Y, 41(a;f) = 4 and h be a transcendental entire function of regular
aeCU{o0}
growth having non zero finite type and Y, J1(a;h) = 4. Then for any positive inte-
aeCU{co}

ger p, the relative ,L*-type and relative ,L*-lower type of M|f]| with respect to M[h] are
Doty = Caarg = 1ms)) ©(0f)
T g — (T =1 M) ©(00;h)
where

1
>ph times that of f with respect to h if p;%* (f,h) is positive finite,

(oo f) = 1 Tim )

! r—00 Tf(r)

Lemma 8. Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and Y, 41(a;f) = 4 and h be a transcendental entire function of regular
aeCU{co}

growth having non zero finite type and Y. 61(a;h) = 4. Then T’F (M [f],M[h]) and
aeCU{o0}
1

—L* rMm—(rM[f]—’)/M[f])®(OO,f) E . . .
T, (M[f], M[h]) are (rM[h](rM[h]'YM[h])@(oo/'h) times that of f with respect to h, i.e.

oy 1 o= Nu()
and O(oo;h) =1 rh_g)lo T, (")

1

e _ (T — Cuag = )@ N
p (ML), MIA) = (rM[h] — (g — “YM[h})@(OO}h)) p (0

1

i) = Coagg) = vaap) O f) \ 7
T — (Coagng — Vg © (005 1)

T (0,

and T (MIf], M[h]) = (

when AlLﬂ* (f,h) is positive finite and

g N oy e Na(r)
©(co; f) =1 lim ) and ©(co;h) =1 lim T:(r).

Lemma 9 ([2]). If f is a meromorphic function and g is an entire function then for all suffi-
ciently large values of r we have

Trog (r) < {1+0(1)} %Tf (Mg (r)).

Lemma 10 ([3]). Let f be meromorphic function and g be entire function and suppose that
0 < u < pg < 0. Then for a sequence of values of r tending to infinity

Trog (r) > Tr (exp (r*)).

Lemma 11 ([15]). Let f be meromorphic function and g be entire function such that(0 < pg < o
and 0 < Ay . Then for a sequence of values of r tending to infinity

Tfog(r) > Ty (exp (")),
where 0 < p < pq.
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Lemma 12 ([11]). Let f be a meromorphic function and g be an entire function such that A4 <
p <ooand0 < Ay < pr < co. Then for a sequence of values of r tending to infinity

Trog(r) < Ty (exp (r")).

Lemma 13 ([11]). Let f be a meromorphic function of finite order and g be an entire function
such that0 < Ay < u < oo. Then for a sequence of values of r tending to infinity

Trog(r) < Ty (exp (")) .

Lemma 14 ([12]). Let f be an entire function which satisfies the Property (A), p > 0, > 1 and
« > 2. Then

BTr (r) < Ty ((xr‘5> .

2 THEOREMS

In this section we present the main results of the paper. It is needless to mention that in the
paper, the admissibility and homogeneity of Py [f] for meromorphic f will be needed as per
the requirements of the theorems.

Theorem 1. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 3. Also let § be an entire function and 0 < AlLﬂ* (f,h) < oo, (715* (g) < oo, where p is

any positive integer. If h satisty the Property (A) and exp!?~UL (M, (r)) = o <[r exp L (r)]ﬁ>
asr — oo and for some positive p < pl%* (g), then
log Th_leog (r) I+

lim <t (g).
—>®]og Tl;o%h] Tpy(f] <exp [rexp L (r)] (g))

Proof. Let us consider that « > 2 and § — 17 in Lemma 14. Since T, L(r) is an increasing
function of 7, it follows from Lemma 9, Lemma 14 and the inequality Ty (r) < log M (r) ([13])
for a sequence of values of r tending to infinity that

T, ' Trog (r) < T, ' [{140(1)} Ty (Mg ()],

fie. Ty 1 Tpog (r) < [T, 1Ty (M ()],

ie. log T 'Trog (r) < log T, ' Ty (Mg (r)) + O(1),

r) < <)\IL7* (f,h) + s) [logMg (r) +expP UL (M, (r))] +0(1), (1)
< (A5 () +e)

< | (oL (g) +e rexp[ﬁ] L (r) Pﬁ* (8) + exp[pil] L (Mg (7'))
p

i.e. log T}fleog(
i.e. log T}fleog(

+0(1).

Further in view of Lemma 3, we obtain for all sufficiently large values of r that

_ L*
log T 1 Try ) (exp [rexp L (r)]f7 )
> <)‘l%* (P [f], Polh]) — e) [[rexp L (r)]pé ©) +explr~1 L <exp [rexp L (r)]plﬁ (g))} ,
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ie.  log Tyl Tayy (explresp L ()" ¥) > (AL () —¢) - [rexp L(r)}* ).

Now from (1) and above it follows for a sequence of values of r tending to infinity that
log Th_leog (r)

log Tl;o%h] Tpy 1] (exp [rexp L (r)]plﬁ* (g))

O(1)+ (A5 (£ +e) - [(oF (8) +e) rexpL ()7 ) +explr U L (Mg ()]
- (AL (F,1) —e) - [rexpL(n)F

log T;, ' Tfog (1) _ o(1) (2)

log Tl;o%h] Tpy(f] (exp [rexp L (r)]pé* (g)) B <)\’Lﬂ* (f,h) — e) [rexpL (r)]plﬁ* 8

(3 G o) | (o )+ 220D

4

rexpL(r)]? ©

+

(A5 (£, 1) —e)
As B < pf (g) and explP"UL (Mg (r)) =0 <[r expL (r)]5> as r — 00, we obtain that
=1L (M
lim ( f*(r)) —0. 3)
= [rexp L (r)]f? ©)
Since e (> 0) is arbitrary, it follows from (2) and (3) that

. log Th_leog (r) L+
rha%q T-1 T L(r)er © < % (8)-
08 L py 1] * Polf] <exp [rexp L (r)] )
Thus the theorem is established. O

Remark 1. In Theorem 1 the condition 0 < Al%* (f,h) < oo can be replaced by the condition
0< pl%* (f,h) < co. If we will replace this condition by 0 < Al%* (f,h) < pp* (f,h) < oo, then
— log T;, ' Tyog (1) ey (fh)- o (3)
lgm . 5 < T (F /
r—00 _
log Tpy 11 Ty 1 <exp [rexp L (r)]7 '8 ) p (fh)
L*

and if in addition we will replace the condition oy (g) < co by E’%* () < oo then

. log T, Ty (1) ok () 7 (9)
108 Ty Tay (exp lrexp LI ) = A (0

In the line of Theorem 1 and with the help of Lemma 4, one can easily prove the following
theorem and therefore its proof is omitted.

Theorem 2. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 4. Also let § be an entire function and 0 < A;Lf (f,h) < oo, (7;5* (g) < oo, where p is

any positive integer. If h satisty the Property (A) and exp!P~ L (M, (r)) = o <[r exp L (r)]ﬁ>
asr — oo and for some positive p < pl%* (g), then

log T 1T, )
lim 8 " fg(”) - < of

===t L
r=®log T]\?I%h] Tif) <exp [rexp L (r)]? (g))




42 Biswas T.

Remark 2. In Theorem 2 the condition 0 < Al%* (f,h) < oo can be replaced by the condition
0< pg* (f,h) < oo. If we will replace this condition by 0 < Aé* (f,h) < p;%* (f,h) < oo, then

- 108 T, 'Tyeg (1 o5 () of (8)
= — T Ay (fh)
1og Ty, Tmi) <exp [rexp L (r)]F? ) p \Jr

and if in addition we will replace the condition o}’

p (g) <ooby E’Lf (g) < oo then

-~ log T, 'Tfoq (1) _ Py ()T ()
r=olog Tl Tare (exp [rexp L (r pp ()} Ay (foh)
& L min t M) \ EXP [ EXP

Now we state the following theorem without proof as it can be carried out in the line of
Theorem 1.

Theorem 3. Let g be an entire function either of finite order or of non-zero lower order such
that © (c0;8) = )} 0p(a;8) = loré(oo;¢) = Y 6(a;¢) = 1 and k be an entire function
aoo azoo

with regular growth having non zero finite order and ® (c0; k) = Y 0, (a;k) = 1 oré (c0;k) =
a#oo
Y. 0(a;k) = 1. Also let f be a meromorphic function and h be an entire function such that
a#oo
A;%* (f,h) < oo, A;%* (g,k) > 0 and 0';%* (g) < oo, where p is any positive integer. If h satisfy the

Property (A) and expP~U L (M, (r)) = o ([r expL (r)]ﬁ) asr — oo and for some positive f <
Py (g), then

lim log Ty Tog (7) _ A )0y (g)
] _ L* — L* M
®log Tyl Toy g (exp [rexp L (r)]F ) Ay (&)

(4)

Remark 3. In Theorem 3, if we will replace the conditions Aﬁ* (f,h) < o and )\y (g, k) >0
by p;%* (f,h) < oo and p;%* (g, k) > 0 respectively, then is need to go the same replacement in
right part of (4). Also if we will replace only the condition )\’%* (f,h) < o by pl%* (f,h) < c0in
Theorem 3, then

fm log T, Tyeg (1) o5 (£,h) - o (g)
e ~1 o5 () AL (g k)
log Ty, B Tpy[g] <exp [rexp L (r)]°7 ) 5 (&

Remark 4. In Theorem 3, if we will replace the conditions Ale* (f,h) < o0 and 0';%* (g) < o0 by

p;%* (f,h) < o0 and (7;%* (g) < oo respectively, then is need to go the same replacement in right
part of (4).

In the line of Theorem 3 and with the help of Lemma 4, one can easily prove the following
theorem and therefore its proof is omitted.

Theorem 4. Let g be a transcendental entire function of finite order or of non-zero lower order

such that Y, ¢1(a;g) = 4 and k be a transcendental entire function with regular growth
aeCU{co}
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and non zero finite order and Yy,  J1(a;k) = 4. Also let f be a meromorphic function and
aeCU{o0}

h be an entire function such that Al%* (f,h) < oo, Al%* (g,k) > 0 and 0’5 (g) < oo, where p is
any positive integer. If h satisty the Property (A) and exp!?~UL (M, (r)) = o <[r exp L (r)]ﬁ>

asr — oo and for some positive p < pl%* (g), then

lim log T, " Tyeg (1) A (o h) - o (8)
r=]og TA_A%k] T (exp [rexp L (r)]Plﬁ (8)) N AL (k)

(5)

Remark 5. In Theorem 4, if we will replace the conditions Aé* (f,h) < o and Aé* (g,k) >0
by p;%* (f,h) < oo and py (g,k) > 0 respectively, then is need to go the same replacement in
right part of (5). Also if we will replace only the condition )\;%* (f,h) < o by p;%* (f,h) < c0in
Theorem 4, then
— log Ty, ' Trog () o5 (f 1) o5 (3)
A — FeN = AL (gk)
log Ty Twvg] (exp [rexp L (r)]f" '8 ) A&

Remark 6. In Theorem 4, if we will replace the conditions )\;%* (f,h) < o0 and 0’5* (g) < o by

pl%* (f,h) < o0 and E’%* () < oo respectively, then is need to go the same replacement in right
part of (5).

Further we state the following two theorems which are based on pL*-weak type.

Theorem 5. Let the meromorphic function f and entire function h satisty the conditions of
Lemma 3. Let g be an entire function and 0 < A;Lf (f,h) < pp* (f,h) < oo, Tﬁ* () < oo, where p

is any positive integer. If h satisfy the Property (A) and expP =1 L (M, (r)) = o <[r exp L (r)]5>

o L*
asr — oo and for some positive p < A; (g), then

-~ log Ty, ' Troq (1) _ o -5 Q)
Pt o L* — L* .
" *1og Ty iy Tryr, <eXP [rexp L(n))" (g)> Ay (foh)

Theorem 6. Let g be an entire function either of finite order or of non-zero lower order such
that © (c0;8) = )} 0p(a;8) = loré(oo;¢) = Y 6(a;¢) = 1 and k be an entire function
aoo azoo

with regular growth having non zero finite order and © (oo; k) = ; Op (a;k) = 1oré (o0;k) =
a+oo
Y. 0(a;k) = 1. Also let f be a meromorphic function and h be an entire function such that
a#oo
p;%* (f,h) < oo, A;Lq* (g,k) > 0 and Tﬁ* (g) < oo, where p is any positive integer. If h satisfy the

Property (A) and expP "1 L (M, (1)) = 0 ([r exp L (r)]ﬁ) asr — oo and for some positive <
A;Lf (g), then
log T, 'Tyog (1) e T ()

®log Ty 1 Ty (exp [rexp L (r) ) Ay (8k)
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The proofs of the above two theorems can be carried out in the line of Theorem 1 and
Theorem 3 respectively and therefore their proofs are omitted.

In the line of Theorem 5 and Theorem 6 respectively and with the help of Lemma 4, one
can easily prove the following two theorems and therefore their proofs are omitted.

Theorem 7. Let meromorphic function f and entire function h satisty the conditions of Lemma
4. Also let g be an entire function and 0 < AlLﬂ* (f,h) < p’%* (f,h) < oo, Tlg* (g) < oo, where p is
any positive integer. If h satisty the Property (A) and exp!?~UL (M, (r)) = o <[r exp L (r)]ﬁ>
asr — oo and for some positive p < Al%* (g), then

. log T}, ' Tfog (1) < BTy (8)

faiil) _ L* — L*
log Ty Ty (exp [rexp L ()] @) Ay 1)

Theorem 8. Let g be a transcendental entire function of finite order or of non-zero lower order

such that Y, 61(a;g) = 4 and k be a transcendental entire function with regular growth
aeCU{co}

and non zero finite order and Y, J1(a;k) = 4. Also let f be a meromorphic function and
aeCU{co}

h be an entire function such that pp* (f,h) < oo, A;Lj* (g,k) > 0 and Tﬁ* (g) < oo, where p is
any positive integer. If h satisfy the Property (A) and exp!? UL (M, (r)) = o <[r exp L (r)]5>

asr — oo and for some positive < Aﬁ* (g), then

i log Ty, 'Troq (1) _ ()
=olog Ty by Tugg) (exp [rexp L] @) = Ay (&/0)

Using the concept of the growth indicator Té* (g) of an entire function g, we may state the

subsequent two theorems without their proofs since those can be carried out in the line of
Theorem 1 and Theorem 3 respectively.

Theorem 9. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 3. Also let g be an entire function and 0 < A’Lq* (f,h) < oo, T’Lq* (g) < oo, where p is

any positive integer. If h satisfy the Property (A) and exp!? "L (M, (r)) = o ([r exp L (r)]5>
asr — oo and for some positive < Al%* (g), then

log Tl;leog (r) < 7L (2)
= 4 .

lim =
=log Tyl Tryis) (exp [rexp L ()] )

Remark 7. In Theorem 9 the condition 0 < A;Lf (f,h) < oo can be replaced by the condition
0< pl%* (f,h) < oo. If we will replace this condition by 0 < AlLﬂ* (f,h) < pp* (f,h) < oo, then

— 108 Ty Tyeg (1) oy ()T ()
S — Wy S AL (A
log TPO[h] Tpy[f] (exp [rexp L (r)]"" ) p

Theorem 10. Let entire functions § and k satisfy the conditions of Theorem 3. Let f be a
meromorphic function and h be an entire function such that )\’Lq* (f,h) < oo, )Ll%* (g,k) >0
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and ?l%* (§) < oo, where p is any positive integer. If h satisfy the Property (A) and
expP UL (Mg (r)) =0 <[r expL (r)]/g) asr — oo and for some positive p < AL (g), then

8T T ) G T @
=222 _ L* _— L* .
r=10g Ty iy T <eXP rexp L (r)]" (g)> Ay (k)

(6)

Remark 8. In Theorem 10, if we will replace the condition Ale* (f,h) < co by p;%* (f,h) < oo,
then is need to go the same replacement in right part of (6).

Remark 9. In Theorem 10, if we will replace the conditions Al%* (f,h) < o0 and )\y (g,k) >0
by p;%* (f,h) < o and p;%* (g,k) > 0 respectively, then is need to go the same replacement in
right part of (6).

In the line of Theorem 9 and Theorem 10 respectively, one can easily prove the following
six theorems and therefore their proofs are omitted.

Theorem 11. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 4. Also let § be an entire function and 0 < )\’Lf (f,h) < oo, ?’Lﬂ* (g) < oo, where p is

any positive integer. If h satisfy the Property (A) and exp!P~U L (M, (r)) = o ([r exp L (r)]ﬁ>
asr — oo and for some positive p < )‘l%* (g), then

log T 1T, .
lim %ol Tel) ot (q).

7log Tyhy Tuis (exp [rexp L (n)] )

Remark 10. In Theorem 11 the condition 0 < A;Lf (f,h) < oo can be replaced by the condition
0< pl%* (f,h) < oo. If we will replace this condition by 0 < AlLﬂ* (f,h) < pp* (f,h) < oo, then

fim log T, ' Tyog (1) o5 (f1) -7 (3)
e FE) S AL (fh)
log Taain Ty <exp [rexp L (r)]"" ) p o\

Theorem 12. Let the entire functions ¢ and k satisfy the conditions of Theorem 4. Let f be
a meromorphic function and h be an entire function such that A’Lq* (f,h) < oo, Al%* (g, k) >0

and ?;%* (§) < oo, where p is any positive integer. If h satisfy the Property (A) and
explP"UL (Mg (r)) =0 ([r exp L (r)]ﬁ) asr — oo and for some positive f < )\;%* (g), then

im log Ty Ty (1) M T ()
r=log TA_/I%k]TM[g] <eXP [r eXPL(V)]AI’; (g)) - Ay (8:k)

(7)

Remark 11. In Theorem 12, if we will replace the condition A;Lf (f,h) < co by p;%* (f,h) < oo,
then is need to go the same replacement in right part of (7).

Remark 12. In Theorem 12, if we will replace the conditions )\’%* (f,h) < o0 and AlLﬂ* (g,k) >0

by p’%* (f,h) < oo and pl%* (g,k) > 0 respectively, then is need to go the same replacement in
right part of (7).
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Theorem 13. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 5. Also let g be an entire function and 0 < pp (f h) <pg 0p L™ (f,h) > 0, where p is any

positive integer. If expP~1 L <exp <reL( ))ﬁ> =0 <[r expl’l L (r)r;) (r = o) forany g > 0,
then

log T, 'Tfoq (ret ™) AL* h
_log 1}, "Lfog < ) - (f.h)

lim = >
Tyt Trots) (1) (Tt ) b (f, 0

r—rco
TPyH]

Proof. From the definition of relative ,L*- type of meromorphic function and in view of Lemma
5, we obtain for all sufficiently large values of r that

o5 (Polf1,Polh])

T Tag (1) < (o8 (Rof], Po[h]) +e) [rexpl! L(r)] :
. : T, E(f)
i.e. P [h] TPO[f] ( ) < ( (::Z)EZ ) ;% (f/ h) + 8) |:1" exp[p] L (r)]p . (8)

As0 < p’%* (f,h) < pg, we obtain in view of Lemma 10 for a sequence of values of r tending to
infinity that

log T, 1Tfog (re (r )) > logT, Tf (exp (T’e (r ))%*(fﬁ)) e
log Th_leog <reL(r)> > <)‘;L9* (f,h)— 8) “reL(V)]plﬁ* () + exp[l’—ﬂ L (exp <reL(7))pI’;* Ulh))] .

Therefore from (8) and above, it follows for a sequence of values of r tending to infinity that

log T_le (ret) (A5 (7)) [[”L(r)rﬁ*(f'h) +expl-lL <exp (reL(r)y%*(f,h))]
o8
- .

el 1 «
Toul Toots) (1) ((M) ok (Fh) + e) [rexplt L ()] U

TPy[n]

exp[”’*” L <exp(reL(r))PlL’*<f’h>> ; .
Si li 7 =0 =11, ( L(r) > _ < vl >
1mnce rl_{?o [rexp[’”] L(r)]p;Lz £ as exp exp <7’€ ) 0 [1’ exp (1’)}

(r = oo) for any a > 0, we obtain from above that

_og Ty o (1) A (1)

lim
IS -1 -
r— TPO [I’l] TPO [f] (r) (::1;051(] ) Ph . (f h)
0
Thus the theorem follows. O

Remark 13. If we take T " (f,h) > 0 instead of 0’ " (f,h) > 0 and the other conditions remain
the same, then with the help of Lemma 6, one can easily verify that the conclusion of Theorem
13 remains valid with Uﬁ (f,h) replaced by T T " (f,h).
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In the line of Theorem 13 and in view of Lemma 7, one can easily prove the following
theorem and therefore its proofs is omitted.

Theorem 14. Let the meromorphic function f and entjre function h satisfy the conditions of
Lemma 7. Also let g be an entire function and 0 < p’7 (f, 1) < pg 0y L (f,h) > 0, where p is any

positive integer. If expP~1 L <exp <reL( ))ﬁ> =0 <{r expl’l L (r)r> (r — co) forany g > 0,
then

E1ogT,;1Tfog (ret) N AL (F )
o 1 = T :
" TM[h] Tmis) (r) Ty — (D —Yms)©(005f) \ Ph Lol (f,h)
Taain) — (T =7 mpn)) © (00;h) P\

Remark 14. If we take T " (f,h) > 0 instead of 0’ " (f,h) > 0 and the other conditions remain
the same, then with the help of Lemma 8, one can easily verify that the conclusion of Theorem
14 remains valid with 0’ " (f,h) replaced by T T " (f,h).

Theorem 15. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 5. Also let '8 be an entire function, h satisfy the Property (A), p;%* (f,h) = p;%* (9),

0’5* (g) < ooando (7 " (f,h) > 0, where p is any positive integer.
(a) If explP~ 1 L (Mg( ) = { moli Trols] (7 )} then

im 10g T}? Tfog (T) < pL* (f h) L*( )

r~>00TP i Tpi (1) + explP~1 L (Mg (1)) — <7P0[f]> 7 __L* (f, h)

Vrolh)
(b) I Ty Ty () = 0 {exp[vfll L (M, (r))} then
Tim 1o Ty Tyeg (1) < (.
— 'p

lim
H<><>TP i Teors) (1) + expP~U L (M, (r))

Proof. Let us consider that « > 2 and § — 17 in Lemma 14. Since T, 1 (r) is an increasing func-
tion of r, it follows from Lemma 9, Lemma 14 and the inequality Tg(r) < log Mg (r) (cf. [13])
for all sufficiently large values of r that

T Trog (r) < T, ' [{140(1)} T (Mg (1)) ],
ie. T, 'Trog (r) <a [T (Mg ()],
ie. logT, 'Tfoeg (r) <log Ty 1Tf (Mg (r)) +0(1),
ie. logT, 'Tog(r) < <pp (f, ~|—e) <logMg( r) +expP UL (M, (r))) +0(1),
L*(
ie. logTy Trog (1) < (p5 (£, 1) +¢) (oF (8)+¢) [rexpl? L (r)]" ¢
+ (05 (1) +¢) expl L (Mg (1)) +O(1).
In view of condition (ii) we obtain from above for all sufficiently large values of r that
' : b
log Ty Trog (1) < (o} (£,1) +¢) (0 () +¢) [rexp L(1)]”

)
+ (pp (fh) +¢) expl = L (Mg (r) +O(1).
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Again from the definition of relative ,L*-lower type we get in view of Lemma 5, for all suffi-
ciently large values of r that

_ g+ o5 (Polf),Polh])
Toly ot (1) = (@5 (R A1, Po[h)) —¢) [rexpl? L (r)]” e

1
~ TRl \ " oL ()
T Trots] (1) = (( ‘m) Ty (f,h)e) [reXpML(r)] P e

Y Py[h] (10)

Fun Tyt Trots) (1)
(i L '
<<7Pg[h})ph 7y (A ) _8>

Now from (9) and (10), it follows for all sufficiently large values of r that

Tpofh] Tpyip) (7)

Trylf) —L*
((”Vpg[h]) h. (f h> )
+ (p;%* (f,h) + e) expP UL (Mg (1)) +O(1),

log T{leog (r) < O(1)
Tl;o%h] Tpyp) () +expl? 1L (Mg (r)) — 1;0%11] Ty (r) +explP =1 L (Mg (r))
(05" (£, h)+8)( “(9)+e)
TRl \ Ph .
((”P&h]) 7 ()= ) (o} (f) +¢)

1 exp[P*l] L(Mg(r)) " TI;Ol[h] TPOU] (7‘)
leol[h] Tpy5(r) explp—1l L(Mg(r)>

log Ty, Tyog (r) < (5 (f,1) +¢) (oF () +e)

(11)

+

IfexplP =1L (Mg (r)) =0 {Tlgo%h} Thy(f] (r)} then from (11) we get that

- log T ' Tyo, (1 oL (f.h) +¢) (o} (g) +e
T, HTPom(%feX;“’g‘(”)L (M () (((W)pl’ 3L< (; ljs>).
TPyl P
Since e (> 0) is arbitrary, it follows from above that
— 108 Ty Tyeg (1) AR A
= Ty i Trots) () +explP L (Mg (r)) (%)Plh TV (Fh)

Thus the first part of the theorem follows.
Since e (> 0) is arbitrary, and if TP o ol (r) = o {exp[f’_l] L (Mg (r))} then from (11) it

follows that .

T log T, " Tfog (7)

r—reo TPo[h} Tpyip) (r) +explP~U L (Mg (1))

Thus the second part of the theorem is established. O

< oy (fh).
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Theorem 16. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 5. Also let g be an entire function, h satisfy the Property (A), p;%* (f,h) = p;%* (9),

A;Lq* (f,h) < oo, E;%* (f,h) > 0and 0'5* (g) < oo, where p is any positive integer.

(a) IfexplP~UL (Mg (r)) = 0 {Tl’_o%h} Tpy(f] (r)} then

10g T, Tyog (1 _ A (@)

lim — = < : .
r=oTp iy Tryjf) () +expl? U L (Mg (1)) (i)™ L (£, )
0

(b) If Tl;o%h] Tpyf) (1) =0 {exp[f’_l] L (M, (r))} then

log T, T,
Jim — ogT), T g(lr)
rﬁooTPO[h] Tpo[f] (1’) —}—exp[p* ] L (Mg (1’))

< AL (fh).

We omit the proof of the above theorem as it can be carried out in the line of Theorem 15.

Remark 15. In Theorem 16, if we take p" (f, h*) =05 (8), 0F (f,h) > 0and o} (g) < co in-
stead ofpl%* (f,h) = pl%* (2), )\’%* (f,h) < oo, E’% (f,h) > 0and O’F (g) < oo and the other con-
ditions remain the same, then one can easily verify that the conclusion of Theorem 16 remains
valid with Al%* (f,h) replaced by p’%* (f,h) and E’Lf (f,h) replaced by 0’5 (f,h) respectively.

Remark 16. {n Theorem *16, if we take p;%* (f, h) = p;%* (9), 55* (f, hz > 0 and F;L: (g) < o0
instead ofp;% (f,h) = p;% (2), A;% (f,h) < oo, E; (f,h) > 0 and 0’5 (g) < o0 and the other
conditions remain the same, then one can easily verity that the conclusion of Theorem 16 re-
mains valid with )\’%* (f,h) replaced by p’%* (f,h) and (715* (g) replaced by E’%* (g) respectively.

Similarly using the concept of the growth indicator TPL* (f,h) and Tg* (g) we may state the
subsequent two theorems without their proofs since those can be carried out in view of Lemma
6 and in the line of Theorem 15 and Theorem 16 respectively.

Theorem 17. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 6. Also let g be an entire function, h satisty the Property (A), pl%* (f,h) < oo, Al%* (f,h) =

Al%* (g), ?l%* (g) < o0 and T’F (f,h) > 0, where p is any positive integer.

(a) IfexpP=U L (M, (r)) = o {TI;O}M Tp (r)} then
= log T, Ty (1) _ AT (©
S Tt Trois) () +explP L (Mg (1) — (%)ﬁfﬁ* (f, 1)
0

(b) I Ty by Ty gy (r) = 0 {exp[P—ll L (M, (r))} then

= logT}lefog (r) < pL* ().
=Ty i Trr) (r) +explr = L (Mg () — 77

Remark 17. In Theorem 17, if we replace the condition )\;%* (f,h) = A;Lf (g) and ?5 (g) < oo by
AlLﬂ* (f,h) = plLﬂ* (g) and O’F (g) < oo and the other conditions remair*l the same, then onf' can
easily verify that the conclusion of Theorem 17 remains valid with ?l% (g) replaced by (rlg (9)-
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Remark 18. In Theorem 17, if we take p’%* (f,h) = Al%* (g), Tl%* (g) < oo and T (7 “(f,h) >

instead ofp;%* (f,h) < oo, A;%* (f,h) = A;%* (9), ?;%* (g) < o0 and Tp “(f,h) >0 and the other

conditions remain the same, then one can easily verify that the conclusion of Theorem 17
remains valid with Tig (f,h) replaced by(T (f,h).

Theorem 18. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 6. Also let g be an entire function, h satisfy the Property (A), Al%* (f,h) = Al%* (g),
—L*
T
p

(a) IfexpP~U L (M, (r)) = {TI;O}M Tp (r)} then

(¢) < o0 and Tﬁ* (f,h) > 0, where p is any positive integer.

i log T, Tyeg (1) MU
r=oo Ty 00 Tpp) (r) + explP UL (Mg () — (nyy
Po[n) L Polf) T £ <7Pz[h]) . (f h)

(b) I Ty Ty () = 0 {exp[vfll L (M, (r))} then

log T, 1Ty,
li_m — 0g 1y f g(f)
rﬁooTPO[h] Tpo[f] (1’) —}—exp[p* ] L (Mg (1’))

< Ag‘ (f,h).

Remark 19. In Theorem 18, if we take p;%* (f,h) < oo, )\;%* (f,h) = )\;%* (g), ?5 (g) < oo and

?’%* (f,h) > 0 instead of}\l%* (f,h) = AlLﬂ* (g) ,?’%* (g) < o0 and Tlg* (f,h) > 0 and the other con-
ditions remain the same, then one can easily Verjfy that the conclusion of Theorem 18 remains

valid with Al%* (f, h) replaced by p’%* (f,h) and T " (f, h) replaced byT " (f, h) respectively.

Re*mark 20. In Theorem 18,*1’f we take pé* (f, h) *< 0o, A;%* (f, h) :*A;L: (g), Tﬁ* (g) < o0 and
Tﬁ (f,h) > 0 instead of)\;% (f,h) = A;% (g),?;% (g) < o0 and Tﬁ (f,h) > 0 and the other
conditions remain the same, then one can easily verify that the conclusion of Theorem 18

remains valid with AlLﬂ* (f,h) replaced by pl%* (f,h) and ?’%* (g) replaced by Tlg* (g) respectively.

Remark 21. In Theorem 18, if we replace the conditions Al%* (f,h) = Al%* (g) and ?’Lj () < o0
by A;Lj* (f,h) = ple* (g) and 0';%* (g) < o0 and the other conditions remain the same, then one can
easily verify that the conclusion of Theorem 18 remains valid with T;Lq* (g) replaced by (7;5* (8)-

Remark 22. In Theorem 18, if we take pp* (f,h) = AlLﬂ* (g), TIL: (g) < o0 and T 0’ “(f,h) >

instead of)\’%* (f,h) = )\’Lq* (g), ?l%* (g) < o0 and T’F (f,h) > 0 and the other cond1t1ons remain

the same, then one can easily verify that the conclusion of Theorem 18 remains valid with
(f h) replaced by‘O’ " (f,h).

In the line of Theorem 15, Theorem 16, Theorem 17 and Theorem 18 and in view of Lemma
7 and Lemma 8, one can easily prove the following four theorems and therefore their proofs
are omitted.

Theorem 19. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 7. Also let g be an entire function, h satisfy the Property (A), p’%* (f,h) = p’%* (g),
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L*
Ty

(a) Ifexp[vfllL(Mg( ) = { Ty b Toygr) (7 )} then

(¢) < o0 and T (T " (f,h) > 0, where p is any positive integer.

E T, logTh_leog (1’) < (f h) L ( )

lim =y < Ip
rﬁOOT Mlh ]TM[f] ( ) + exp p L (Mg (1’)) T i~ (FM[f] i) @(c0;f) _p
Tt — (T papn) =7 ) ©(003h)

(b) I Ty by Ty ) (r) = 0 {exp[vfll L (M, (r))} then

T log Th’leog (r)
m
F*“YXRMthﬂ(r)%—eprF4]L(A4g(r»

< oy (f/h).

Theorem 20. Let the meromorphic function f and entire function h satisfy the conditions
of Lemma 7. Also let ¢ be an entire function h satisty the Property (A), AL* (f,h) < oo,

p;%* (f,h) = p;%* (8), (75 (¢) <andc (7 " (f,h) > 0, where p is any positive integer.
(a) IfexplP=U L (Mg (r)) = {TP_o[h} Tpy i) (7 )} then

Lim log T}lefog (r) < /\ILﬂ* (f/h)-o L* (8)

2300 ] _ — 1 :

r=eo Ty iy T (r) +expl? =1 L (Mg (r)) g~ (g =1 )OO\ ot gy
Taapn) — (T =Y mpn)) @ (o05h) Tp U

(b) If Tl;[h] Tpyf) (1) =0 {exp[f’_l] L (M, (r))} then
lim log T, 'Tyog )
r%ooTM[h] M) (1) +explP~U L (Mg ()

Remark 23. In Theorem 20, if we take p%’ (f, @ =05 (8), 0F (f,h) > 0and o} (g) < oo in-
stead ofpl%* (f,h) = pl%* (2), )\’%* (f,h) < oo, E’% (f,h) > 0and O’F (g) < oo and the other con-
ditions remain the same, then one can easily Verify that the conclusion of Theorem 20 remains
valid with AL (f, h) replaced by p’7 (f,h) and o (7 (f,h) replaced by‘O’ " (f, h) respectively.

< AS(fh).

Remark 24. In Theorem 20, if we take Pp (f,h) = p;% (2), Eé* (f,h) > 0 and F;L: (g) < o0
instead ofp;%* (f,h) = p;%* (2), A;Lf (f,h) < oo, E;%* (f,h) > 0 and 0’5* (g) < o0 and the other
conditions remain the same, then one can easily verify that the conclusion of Theorem 20
remains valid with )\’%* (f,h) replaced by p’%* (f,h) and (715* (g) replaced by(_rl%* (g) respectively.

Theorem 21. Let the meromorphic function f and entire function h satisfy the conditions
of Lemma 8. Also let ¢ be an entire function, h satisfy the Property (A), pl%* (f,h) < oo,

A;Lq* (f,h) = A;Lq* (g), ?;%* (g) < o0 and TL* (f,h) > 0, where p is any positive integer.

(a) IfexplPr~U L (Mg (1)) = { moli TPo 1] (r)} then

im log Tﬁleog( ) < p;Lﬂ* (f/h> .?;Lﬂ* (g>
T )
H°°TM[h] mif) (r) +explP U L (Mg (r) o= (Cag) = 7)) O(oif) N £ s (f,h)
T aain) = (T =1 M) © (00;h) P\
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(b) I Ty Ty () = 0 {exp[vfll L (M, (r))} then

e log Th_leog (r)
rﬁooT M[h }TM[f] (r) +explP~1 L (Mg (7))

Remark 25. In Theorem 21, if we replace the condition )\;%* (f,h) = A;Lf (g) and ?;L?* (g) < coby
AlLﬂ* (f,h) = pl%* (g) and O’F (g) < oo and the other conditions remain the same, then one can

< py (f.h).

easily verify that the conclusion of Theorem 21 remains valid with ?L* (g) replaced by O’L* (9)-

Remark 26. In Theorem 21, if we take pp* (f,h) = )\’Lf (g), ?l%* (g) < o0 and 0 0’ “(f,h) >

instead ofpl%* (f,h) < oo, Al%* (f,h) = Al%* (3), ?l%* (g) < o0 and Tp “(f,h) >0 and the other
conditions remain the same, then one can easily verify that the conclusion of Theorem 21

remains valid with TPL (f,h) replaced by(T (f,h).

Theorem 22. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 8. Also let g be an entire function, h satisfy the Property (A), A;%* (f,h) = A;%* (g),

Té* (g) < o0 and Tig* (f,h) > 0, where p is any positive integer.
(a) IfexplP~U L (Mg (1)) = { moli TPo 1] (r)} then

log T;leog (1) < A;%* (f,h)-T _L* (8)

lim =y = T :
r_>°°TM[h] MI[f] (r) +explP=HL (Mg (r)) Tparf = (Daagg =Yg ©(005f) P TL* (F, )
Tt — (Tt =7 i) ©(00;h)

(b) I Ty Ty (1) = 0 {exp[vfll L (M, (r))} then

log T 1Ty,
lim — og Ty Troq (:)
r=eo Ty Ty () + expP~U L (Mg (r))

Remark 27. In Theorem 22, if we take pl%* (f,h) < oo, AlLﬂ* (f,h) = AlLﬂ* (g), ?’%* (g) < oo and

?’Lﬂ* (f,h) > 0 instead of}\l%* (f,h) = Al%* (g) ,?’Lﬂ* (g) < o0 and Tﬁ* (f,h) > 0 and the other con-

ditions remain the same, then one can easily Verify that the conclusion of Theorem 22 remains
valid with Al%* (f, h) replaced by p’%* (f,h) and T " (f, h) replaced byT " (f, h) respectively.

< Ay (fh).

Remark 28. In Theorem 22, if we take p’%* (f,h) < oo, Al%* (f,h) = Al%* (g), T’F (g) < oo and

T’F (f,h) > 0 instead of A’Lq* (f,h) = Al%* (g), ?l%* (g) < oo and T’F (f,h) > 0 and the other

conditions remain the same, then one can easily verify that the conclusion of Theorem 22
remains valid with A;Lq* (f,h) replaced by pp* (f,h) and ?ﬁ* (g) replaced by Tﬁ* (g) respectively.

Remark 29. In Theorem 22, if we replace the condition Al%* (f,h) = A;Lj* (g) and Tl%* (g) < oo by
A;Lq* (f,h) = p;%* () and 0'5* (g) < oo and the other conditions remaiz;l the same, then onf' can
easily verify that the conclusion of Theorem 22 remains valid with ?L (g) replaced by O’L (9)-

Remark 30. In Theorem 22, if we take p;%* (f,h) = )\;%* (g), ?;L?* (¢) < c0and o (7 “(f,h) >

instead of)\’%* (f,h) = )\’%* (g), TIL: (g) < o0 and T’F (f,h) > 0 and the other cond1t1ons remain

the same, then one can easily verify that the conclusion of Theorem 22 remains valid with
(f h) replaced by o 0’ (f, h).
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Theorem 23. Let f be a meromorphic function either of finite order or of non-zero lower order
such that© (co; f) = Y 6y (a;f) =1 ord(co;f) = ¥ &(a; f) =1 and h be an entire function
azoo a#oo

having regular growth and non zero finite order with ® (co;h) = Y 0y (a;h) = 1 ord (co;h) =
a#oo

ﬂ;ooé (a;h) = 1. Also let g be an entire function and 0 < A;Lf (f,h) < p;%* (f,h) < oo, where p is
any positive integer. Then

— log T;, ' Tfog (1) >A,Lj (f,h)

lm - * 4
r=®log Ty b Ty (expr) — o (f/h)

where 0 < p < pg < co.
Proof. In view of Lemma 10, we obtain for a sequence of values of r tending to infinity that
log T{leog (r) > log T}lef (exprt),
ie. log T,;leog (r) > (Al%* (f,h) — s) [rV +explP UL (exp r”)} : 12

Also in view of Lemma 5, and for any arbitrary € (> 0), it follows for all sufficiently large
values of r that

log Tlgo%h] Tpy(f) (expr?) < <p§* (Po [f], Po[h]) + s) {r” + exp[p’” L (exp r”)} ,

. (13)
ie. log Tlgo%h] Tpy(f) (exprt) < <pf7 (f, h)+ 8) {r” +expP UL (exp r”)] .
Now from (12) and (13), we get for a sequence of values of r tending to infinity that
log Ty 'Trog (1) (AL (£, 1) —e) | +explr U L (exprt)]
log Ty, Tas) (P ™)~ (k" (f,h) +¢) [ +explP~ L (exp )]
Since € (> 0) is arbitrary, it follows from above that
—_ log T, 'Trog(r) . AL (fh)
e oy T o) 74 U1
Thus the theorem follows. O

Theorem 24. Let f be a meromorphic function, g be an entire function either of finite order or
of non-zero lower order such that © (o0;¢) = Y 6, (a;8) = 1ord(o0;8) = YL d(a;8) =1
aoo aoo

and h be an entire function having regular growth and non zero finite order with ® (oo; h) =

Y Op(a;h) =1oré(co;h) = 3 6(a;h) =1. Let0 < Afand 0 < A;Lf (g,h) < p;%* (g, h) < oo,
a#co aF#oo
where p is any positive integer. Then

*

T log T;leog (r) - A’Lq (g, h)
r=log Ty iy Trfg (expr™) — Py (&/h)

4

where 0 < p < pq.
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We omit the proof of the above theorem as it can be carried out in the line of Theorem 23
and with the help of Lemma 11.

In the line of Theorem 23 and Theorem 24 respectively, one can easily prove the following
two theorems and therefore their proofs are omitted.

Theorem 25. Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and Y, d1(a;f) = 4 and h be a transcendental entire function of regular
aeCU{co}
growth having non zero finite order with Y.  61(a;h) = 4. Also let g be an entire function
aeCU{oo}

and 0 < A;Lf (f,h) < p;%* (f,h) < oo, where p is any positive integer. Then

—_ log T, 'Trog () - AL (f.h)
r—]og T]\?I%h] Typ) (exprt) — o5 (f,h)’

where 0 < p < pg < 0.

Theorem 26. Let f be a meromorphic function and g be a transcendental entire function of

finite order or of non-zero lower order such that Y.  J1(a;g) = 4 and h be a transcendental
aeCU{co}
entire function of regular growth having non zero finite order with Y.  61(a;h) = 4. Also
aeCU{co}

let0 < Afand0 < A;Lj* (g,h) < p;%* (g,h) < oo, where p is any positive integer. Then
T log Th_leog (r) - AlLﬂ* (g, h)
g T o (exp™) = (5,10

where 0 < p < pq.
Theorem 27. Let f be a meromorphic function either of finite order or of non-zero lower order
such that © (co; f) = Y 6y (a;f) =1 ord(eo;f) = ¥ 6(a; f) =1 and h be an entire function
azoo aoo
having regular growth and non zero finite order with ® (co; ) = Y 0y (a;h) = 1 ord (co;h) =
a#oo

Y. 6 (a;h) = 1. Also let g be an entire function and 0 < A;Lf (f,h) < p;%* (f,h) < oo, where p is
a#oo
any positive integer. Then
. log Ty, ' Treg (7) oy (f/h)
1im 1 S L* h 7
r%oolog TPO [4] Tpom (exp 7’”) Ap (f’ )

where Ag < p < 0.

Proof. In view of Lemma 12, we obtain for a sequence of values of r tending to infinity that
log Th_leog (r) <log Th_le (exprt),

ie. logT, T (r) < <ple* (f,h) + e) {rﬂ +expl? UL (exp rﬂ)] :

Also in view of Lemma 5, and for any arbitrary € (> 0), it follows for all sufficiently large
values of r that

log Tl;o%h] Tpy(f) (exprt) > <Al%* (Po[f],Po[h]) — e) [1’” +expl? UL (exp r”)] ,
ie. log TI;o%h] Tp(f (expr?) > <AIL; (f,h) — 8) {r” + exp[p_l] L (exp r?‘)] :

(14)

(15)
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Now from (14) and (15) , we get for a sequence of values of r tending to infinity that

_ L* -1
log Ty 'Treg (1) _ (o5 (f,h) +¢) [ +expl¥ }L(exw”)].
log Ty, Tris (XP ™) (AL' (£,1) — ) [ +explr =1 L (exp )]

Since e (> 0) is arbitrary, it follows from above that

 legT My () e ()
r—wlog Tl;o%h] Tpy(f (exprt) — AL (f 1)

Thus the theorem follows. O

Now we state the following theorem without its proof as it can be carried out in the line of
the above theorem and with the help of Lemma 13.

Theorem 28. Let f be a meromorphic function and g be an entire function either of finite order
or of non-zero lower order such that ® (00;¢) = ). 0y (a;8) = 1loréd(co;8) = Y. d(a;8) =1
azoo aoo
and h be an entire function having regular growth and non zero finite order with ® (oo; h) =
Y Op(a;h) =1oré(co;h) = 3 6(a;h) =1. Let0 < Afand 0 < AlLﬂ* (g,h) < p’%* (g, h) < oo,
a#co aF#oo
where p is any positive integer. Then

L 10T T (1) _ ey (&)
r—wlog Tl%%h]Tpo[g} (exprt) — AL (g, 1)

where 0 < Ag < < oo0.

In the line of Theorem 27 and Theorem 28 respectively, one can easily prove the following
two theorems and therefore their proofs are omitted.

Theorem 29. Let f be a transcendental meromorphic function of finite order or of non-zero

lower order with Y.,  61(a; f) = 4 and h be a transcendental entire function of regular
aeCU{oo}

growth having non zero finite order with Y.  é1(a;h) = 4. Also let g be an entire function
aeCU{oo}

and 0 < Al%* (f,h) < p’%* (f,h) < oo, where p is any positive integer. Then

T Mg () e (W)
r—wlog Tﬁh] Tyf (exprt) — AL (f. 1)

where A¢ < p < 0.

Theorem 30. Let f be a meromorphic function and g be a transcendental entire function of

finite order or of non-zero lower order such that Y.  61(a;g) = 4 and h be a transcendental
aeCU{o0}
entire function of regular growth having non zero finite order with Y.  61(a;h) = 4. Also
aeCU{co}

let0 < Afand0 < )\’Lf (g,h) < p’%* (g,h) < oo, where p is any positive integer. Then

L 10T T (1) _ ey (&)
r—wlog TA;I%h]TM[g] (expri) — AL (g 1)

where 0 < Ay < p < co.
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Bicsac T. I1poepec y susuenni ananisy pocmy ougpepeHyianoHux noniHomis i OugpepeHyiatoHUX MOHOMIB
6 KoHmexcmi noginvto 3pocmatouux gynkyiii // KapmaTtcbki maTem. my6a. — 2018. — T.10, Nel. — C.
31-57.

AOCAipAXKeHHsT aHaAi3y POCTy WiAMX UM MepOMOp(pHMX (PYHKMIM, SIK IIPaBMAO, TIPOBOAVIAVICS
Jepes Ix xapakTepucTiuHy pyHkIifo HeBaHAIHM B TOpiBHSHHI 3 TMMM eKCITOHEHIIMHMMI OYHKITI-
SIMI.  AAe SIKITIO TIOTPi6HO MOPiBHATH TeMIM 3POCTaHHsI 6yAb-SIKOI ITiA0l um MepoMopdHOi pyH-
K1Iil BiAHOCHO iHIIIO1, TO TOTPi6HO BMKOPMCTOBYBATH IOHSTTSI iHAMKATOPiB BiAHOCHOTO 3pOCTaHHSI.
O6AacTb AOCAIAXKEHHS B Till TaAy3i MoXke OyTH GiABIT 3HAUMMOIO Yepe3 iHTeHCMBHI 3aCTOCYBaHHS
TeOpili MOBIABHO 3pocTarouX pyHKII, 110 dpakTidHO o3Havae, wo L(ar) ~ L(r) mpur — 00 AAs
KOXXHOI AOAQTHBOI KOHCTAaHTU 4, TO6TO rlgglo %%) =1, ae L = L (r) — aonaTHs HemepepBHa (PyH-
KIIisI, SIKa TTOBIABHO 3pocTae. BaacHe, B 11ilf po6OTi MU OTpMMAaAU AesIKi pe3yAbTaTH, IO 3aAeXaTh
BiA BAACTMBOCTEN BiAHOCHOTO 3pOCTaHHSI KOMIIO3MIINM HiAMX i MepoMopdHMX (pyHKIIi, BUKOPU-
CTOBYIOUM iA€H0 BiAHOCHOTO p,L*-TIOpSIAKY, BiAHOCHOTO ,L*-THry, BiAHOCHOTO ,L*-cAabkoro Tumy i
AdpepeHIiaAbHIX MOHOMIB, AMdpepeHIIiaAbHIX IIOAIHOMIB, IOPOAKEHIMX OAHMM 3 KoedpillieHTiB; 11
Pe3yAbTaTH MOLIMPIOIOTH AesIKi TIONepeAHi pe3yAbTaTH, Ae ,L* € Hiumm iHImM sIK cAabrmmm npury-
IIeHHsIM Ha L.

Kmouosi cnosa i ¢ppasu: 1ira dpyHxuis, MepomopdHa dyHKIIsI, BiaAHOCHWI ,L* TOpsIAOK, Bia-
HOCHWI ;) L™ Tum, BiaHOCHMI , L* cAabkmit Tvm, picT, AMdepeHIiaAbHMIT MOHOM, AMdDepeHIiaAbHIA
TTOAIHOM, (PYHKIIiSI IOBIABHOTO POCTY.



