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SOME PROPERTIES OF APPROXIMANTS FOR BRANCHED CONTINUED

FRACTIONS OF THE SPECIAL FORM WITH POSITIVE AND ALTERNATING-SIGN

PARTIAL NUMERATORS

The paper deals with research of convergence for one of the generalizations of continued frac-

tions — branched continued fractions of the special form with two branches. Such branched con-

tinued fractions, similarly as the two-dimensional continued fractions and the branched continued

fractions with two independent variables are connected with the problem of the correspondence

between a formal double power series and a sequence of the rational approximants of a function of

two variables.

Unlike continued fractions, approximants of which are constructed unambiguously, there are

many ways to construct approximants of branched continued fractions of the general and the spe-

cial form. The paper examines the ordinary approximants and one of the structures of figured

approximants of the studied branched continued fractions, which is connected with the problem of

correspondence.

We consider some properties of approximants of such fractions, whose partial numerators are

positive and alternating-sign and partial denominators are equal to one. Some necessary and suf-

ficient conditions for figured convergence are established. It is proved that under these conditions

from the convergence of the sequence of figured approximants it follows the convergence of the

sequence of ordinary approximants to the same limit.
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1 Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine
2 Ternopil National Economic University, 11 Lvivska str., 46020, Ternopil, Ukraine

E-mail: tamara_antonova@ukr.net (Antonova T.M.), martadmytryshyn@hotmail.com (Dmytryshyn M.V.),

svitlanavozna@gmail.com (Vozna S.M.)

INTRODUCTION

The paper is devoted to study of the branched continued fractions (BCF) of the form

b0 + F0,0 +
∞

D
i=1

ai,0

1 + Fi,0
+

∞

D
i=1

a0,i

1 + F0,i
, (1)

where Fi,j are continued fractions (CF)

Fi,j =
∞

D
p=1

ap+i,p+j

1
= 1 +

a1+i,1+j

1 +
a2+i,2+j

1 + . . .

, i = 0, 1, . . . , j = 0, 1, . . . , (2)

УДК 517.524
2010 Mathematics Subject Classification: 11A55, 11J70, 30B70, 40A15.

c©Antonova T.M., Dmytryshyn M.V., Vozna S.M., 2018



4 ANTONOVA T.M., DMYTRYSHYN M.V., VOZNA S.M.

b0, ak,j, j = 0, 1, . . ., k = 0, 1, . . ., k + j ≥ 1, are complex numbers or functions of two variables

which are defined in some set D ⊂ C2.

If all elements of BCF (1)–(2) are numbers, then BCF (1)–(2) is said to be numerical BCF of

the special form. If some or all elements of BCF (1)–(2) are functions, then BCF (1)–(2) is said

to be functional BCF of the special form.

The above mentioned BCF is one of two-dimensional generalizations of continued frac-

tions, which were offered for the solution of correspondence problem between a formal dou-

ble power series (FDPS) and a sequence of the rational approximants of a function of two

variables [9, 12, 13]. Functional BCF of the special form is corresponding to FDPS

∞

∑
i+j≥0

ci,jz
i
1z

j
2, (3)

if the expansion of its nth approximant into FDPS ∑
∞
i+j≥0 c

(n)
i,j zi

1z
j
2 coincides with the FDPS (3)

to all terms of power n inclusively, that is c
(n)
i,j = ci,j, i + j ≤ n.

In the paper [13] it is shown, that BCF (1)–(2) is corresponding to the FDPS (3), if

b0 = c0,0, ai,0 = bi,0z1, a0,i = b0,iz2, ai,j = bi,jz1z2, i, j = 1, 2, . . . , the coefficients bk,0, b0,k, ak,j,

j, k = 1, 2, . . . , are calculating by formulas in term of the coefficients of the FDPS (3), and the

nth approximants f̃n are defined as follows

f̃0 = b0, f̃n = b0 + F
([ n

2 ])
0,0 +

n

D
k=1

ai,0

1 + F
([ n−i

2 ])
i,0

+
n

D
k=1

a0,i

1 + F
([ n−i

2 ])
0,i

, n = 1, 2, . . . , (4)

where [α] is an integer part of a real number α,

F
(0)
i,j = 0, F

(k)
i,j =

k

D
p=1

ap+i,p+j

1
, i, j = 0, 1, . . . , k = 1, 2, . . . . (5)

Finite continued fractions (5) are called the kth approximants of CF (2).

We can construct the approximants of BCF in different ways. Ordinary nth approximants

of BCF (1)–(2) are defined as follows

f0 = b0, fn = b0 + F
(n)
0,0 +

n

D
k=1

ai,0

1 + F
(n−i)
i,0

+
n

D
k=1

a0,i

1 + F
(n−i)
0,i

, n = 1, 2, . . . .

Approximants f̃n from (4) are examples of so called figured approximants [5]. Expressions

Q
(0)
i,0 = 1, Q

(k+1)
i,0 = 1 + F

(k+1)
i,0 +

ai+1,0

Q
(k)
i+1,0

, i = 1, 2, . . . , k = 0, 1, . . . , (6)

Q
(0)
0,i = 1, Q

(k+1)
0,i = 1 + F

(k+1)
0,i +

a0,i+1

Q
(k)
0,i+1

, i = 1, 2, . . . , k = 0, 1, . . . , (7)

are said to be the tails of ordinary approximants for BCF (1)–(2). Tails of figured approximants

(4) for BCF (1)–(2) are defined by following formulas

Q̃
(0)
i,0 = 1, Q̃

(k+1)
i,0 = 1 + F

([ k+1
2 ])

i,0 +
ai+1,0

Q̃
(k)
i+1,0

, i = 1, 2, . . . , k = 0, 1, . . . , (8)
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Q̃
(0)
0,i = 1, Q̃

(k+1)
0,i = 1 + F

([ k+1
2 ])

0,i +
a0,i+1

Q̃
(k)
0,i+1

, i = 1, 2, . . . , k = 0, 1, . . . . (9)

Taking into account notations (6)–(9), it is possible to write

fn = b0 + F
(n)
0,0 +

a1,0

Q
(n−1)
1,0

+
a0,1

Q
(n−1)
0,1

, n = 1, 2, . . . ,

f̃n = b0 + F
([ n

2 ])
0,0 +

a1,0

Q̃
(n−1)
1,0

+
a0,1

Q̃
(n−1)
0,1

, n = 1, 2, . . . .

Approximants fk, f̃k have sense if in process of reduction of BCF (calculations of their

tails by formulas (6)–(9)) uncertainty of the type
0

0
don’t appears (it is assumed, that

1

0
= ∞,

1

∞
= 0 and

α1

0
+ . . . +

αm

0
=

0

0
, if m > 1 ). We say that BCF (1)–(2) is figured convergent if,

beginning from some number n0, all its figured approximants have sense and there is finite

limit f̃ = lim
n→∞

f̃n. The value of this limit can be the value of figured convergent BCF.

BCF (1)–(2) is said to be convergent, if beginning from some number n0, all its ordinary

approximants have sense and there is finite limit f = lim
n→∞

fn. The value of this limit also it is

possible to assume as the value of convergent BCF.

BCF (1)–(2) is said to be divergent (figured divergent) if infinite numbers of its approxi-

mants (figured approximants) have not sense or there isn’t only one finite limit of sequence of

its approximants (figured approximants).

A lot of works of analytic theory of multidimensional generalization for continued fractions

are devoted to research of convergence [5, 10]. This problem is important till now [3, 4, 6, 7].

For research of properties of sequences of approximants for BCF of the special form the

formulas of difference for two their approximants are used. There are such formulas [5]:

f̃n − f̃m = F
([ n

2 ])
0,0 − F

([m
2 ])

0,0 +
m

∑
i=1

(−1)i

(

F
([ n−i

2 ])
i,0 − F

([m−i
2 ])

i,0

)

i

∏
j=1

aj,0

i

∏
j=1

Q̃
(n−j)
j,0 Q̃

(m−j)
j,0

+

(−1)m
m+1

∏
j=1

aj,0

m+1

∏
j=1

Q̃
(n−j)
j,0

m

∏
j=1

Q̃
(m−j)
j,0

+
m

∑
i=1

(−1)i

(

F
([ n−i

2 ])
0,i − F

([m−i
2 ])

0,i

)

i

∏
j=1

a0,j

i

∏
j=1

Q̃
(n−j)
0,j Q̃

(m−j)
0,j

+

(−1)m
m+1

∏
j=1

a0,j

m+1

∏
j=1

Q̃
(n−j)
0,j

m

∏
j=1

Q̃
(m−j)
0,j

, n > m, and (10)

fn − f̃m = F
(n)
0,0 − F

([m
2 ])

0,0 +
m

∑
i=1

(−1)i

(

F
(n−i)
i,0 − F

([m−i
2 ])

i,0

)

i

∏
j=1

aj,0

i

∏
j=1

Q
(n−j)
j,0 Q̃

(m−j)
j,0

+

(−1)m
m+1

∏
j=1

aj,0

m+1

∏
j=1

Q
(n−j)
j,0

m

∏
j=1

Q̃
(m−j)
j,0

+
m

∑
i=1

(−1)i

(

F
(n−i)
0,i − F

([m−i
2 ])

0,i

)

i

∏
j=1

a0,j

i

∏
j=1

Q
(n−j)
0,j Q̃

(m−j)
0,j

+

(−1)m
m+1

∏
j=1

a0,j

m+1

∏
j=1

Q
(n−j)
0,j

m

∏
j=1

Q̃
(m−j)
0,j

, n > m. (11)

We note that the formulas (10)–(11) have been established in assumption, that the values of

all tails Q̃
(p)
0,k , Q̃

(p)
k,0 , Q

(p)
0,k , Q

(p)
k,0 , which appear in these formulas, differ from 0.
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MAIN RESULTS

This work is the continuation of the study of properties of approximants for numerical BCF

(1)–(2) with real elements [1, 2]. We will consider BCF which elements satisfy such conditions

ai,j > 0, |ai,0| = (−1)i−1ai,0 6= 0, |a0,i| = (−1)i−1a0,i 6= 0, i, j = 1, 2, . . . . (12)

Under the conditions (12) F0,0, Fi,0, F0,i are the continued fractions with positive elements. It

is well known [8, 11] that approximants of even order for such fractions generate a monotone

increasing sequence, approximants of odd order for such fractions generate a monotone de-

creasing sequence and all approximants of even order are less than every approximants of odd

order. Taking these results into account, we have

F
(2m)
0,0 < F

(2m+2)
0,0 < F

(2n+1)
0,0 < F

(2n−1)
0,0 , m = 0, 1, . . . , n = 1, 2, . . . , (13)

F
(2m)
i,0 < F

(2m+2)
i,0 < F

(2n+1)
i,0 < F

(2n−1)
i,0 , m = 0, 1, . . . , n = 1, 2, . . . , (14)

F
(2m)
0,i < F

(2m+2)
0,i < F

(2n+1)
0,i < F

(2n−1)
0,i , m = 0, 1, . . . , n = 1, 2, . . . . (15)

Theorem 1. Let the elements of BCF (1)–(2) satisfy the conditions (12) and

1 + a2i,0 > 0, 1 + a0,2i > 0, i = 1, 2, . . . . (16)

Then the following inequalities are true

f̃4m < f̃4m+4 < f̃4n+2 < f̃4n−2, m = 0, 1, . . . , n = 1, 2, . . . , (17)

f̃4m < f̃4m+2p+3 < f̃4m+2, m = 0, 1, . . . , p = 1, 2, . . . , (18)

and the sequences { f̃4p}, { f̃4p+2}, p = 0, 1, . . . , converge.

Proof. Let k be an arbitrary natural number. Using definitions (8)–(9), by induction on p let us

show that the following inequalities are valid

1 ≤ Q̃
(p)
2k,0 ≤ 1 + a2k+1,1 +

a2k+1,0

1 − |a2k+2,0|
, p = 0, 1, . . . , (19)

1 − |a2k,0| ≤ Q̃
(p)
2k−1,0 ≤ 1 + a2k,1, p = 0, 1, . . . . (20)

Indeed, for p = 0 and p = 1 we have

Q̃
(0)
2k−1,0 = Q̃

(0)
2k,0 = 1, 0 < 1 − |a2k,0| = Q̃

(1)
2k−1,0 < 1, Q̃

(1)
2k,0 = 1 + a2k+1,0, k = 1, 2, . . . .

In assumption that inequality (19) is true for p = r, we obtain

0 < 1 − |a2k,0| < 1 + F
([

p+1
2 ])

2k−1,0 −
|a2k,0|

1
≤ Q̃

(p+1)
2k−1,0 = 1 + F

([
p+1

2 ])
2k−1,0 −

|a2k,0|

Q̃
(p)
2k,0

< 1 + a2k,1,

i.e. (20) is valid for p = r + 1. Assuming that inequality (20) holds true for p = r we get

1 < 1 +
a2k+1,0

1 + a2k+2,1
< Q̃

(p+1)
2k,0 = 1 + F

([
p+1

2 )
2k,0 +

a2k+1,0

Q̃
(p)
2k+1,0

≤ 1 + a2k+1,1 +
a2k+1,0

1 − |a2k+2,0|
,



SOME PROPERTIES OF APPROXIMANTS FOR BCF OF THE SPECIAL FORM 7

i.e. inequality (19) is valid for p = r + 1. Hence, estimations (19)–(20) are true for arbitrary k, p.

Analogously we verify validity of inequalities

1 ≤ Q̃
(p)
0,2k ≤ 1 + a1,2k+1 +

a0,2k+1

1 − |a0,2k+2|
, k = 1, 2, . . . , p = 0, 1, . . . , (21)

1 − |a0,2k | ≤ Q̃
(p)
0,2k−1 ≤ 1 + a1,2k, k = 1, 2, . . . , p = 0, 1, . . . . (22)

Further we consider the differences f̃4m+2p+l − f̃4m, f̃4n+2p+l−2 − f̃4n−2, m, n, p = 1, 2, . . .,

l = 0, 1, . . ., using the formula (10). Let

Z̃
(1)
n,0 = 0, Z̃

(1)
n,m =

m

∑
i=1

(−1)i

(

F
([ n−i

2 ])
i,0 − F

([m−i
2 ])

i,0

)

i

∏
j=1

aj,0

i

∏
j=1

Q̃
(n−j)
j,0 Q̃

(m−j)
j,0

, n > m;

Z̃
(2)
n,0 = 0, Z̃

(2)
n,m =

m

∑
i=1

(−1)i

(

F
([ n−i

2 ])
0,i − F

([m−i
2 ])

0,i

)

i

∏
j=1

a0,j

i

∏
j=1

Q̃
(n−j)
0,j Q̃

(m−j)
0,j

, n > m.

Then

f̃4m+2p+l − f̃4m = F
(2m+p+[ l

2 ])
0,0 − F

(2m)
0,0 + Z̃

(1)
4m+2p+l,4m + Z̃

(2)
4m+2p+l,4m

+

4m+1

∏
j=1

aj,0

4m+1

∏
j=1

Q̃
(4m+2p+l−j)
j,0

4m

∏
j=1

Q̃
(4m−j)
j,0

+

4m+1

∏
j=1

a0,j

4m+1

∏
j=1

Q̃
(4m+2p+l−j)
0,j

4m

∏
j=1

Q̃
(4m−j)
0,j

.

Taking into account conditions (12) and inequalities (13)–(15), (19)–(22), we have

4m+1

∏
j=1

aj,0 =
4m+1

∏
j=1

|aj,0| > 0,
4m+1

∏
j=1

a0,j =
4m+1

∏
j=1

|a0,j | > 0, (23)

Z̃
(1)
4m+2p+l,4m = −

m

∑
i=1

(

F
(2m−2i+p+1+[ l+1

2 ])
4i−3,0 − F

(2m−2i+1)
4i−3,0

)

4i−3

∏
j=1

|aj,0|

4i−3

∏
j=1

Q̃
(4m+2p+l−j)
j,0 Q̃

(4m−j)
j,0

−
m

∑
i=1

(

F
(2m−2i+p+1+[ l

2 ])
4i−2,0 − F

(2m−2i+1)
4i−2,0

)

4i−2

∏
j=1

|aj,0|

4i−2

∏
j=1

Q̃
(4m+2p+l−j)
j,0 Q̃

(4m−j)
j,0

+
m

∑
i=1

(

F
(2m−2i+p+[ l+1

2 ])
4i−1,0 − F

(2m−2i)
4i−1,0

)

4i−1

∏
j=1

|aj,0|

4i−1

∏
j=1

Q̃
(4m+2p+l−j)
j,0 Q̃

(4m−j)
j,0

+
m

∑
i=1

(

F
(2m−2i+p+[ l

2 ])
4i,0 − F

(2m−2i)
4i,0

)

4i

∏
j=1

|aj,0|

4i

∏
j=1

Q̃
(4m+2p+l−j)
j,0 Q̃

(4m−j)
j,0

=
m

∑
i=1

∣

∣

∣

∣

F
(2m−2i+p+1+[ l+1

2 ])
4i−3,0 − F

(2m−2i+1)
4i−3,0

∣

∣

∣

∣

4i−3

∏
j=1

|aj,0|

4i−3

∏
j=1

Q̃
(4m+2p+l−j)
j,0 Q̃

(4m−j)
j,0
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+
m

∑
i=1

∣

∣

∣

∣

F
(2m−2i+p+1+[ l

2 ])
4i−2,0 − F

(2m−2i+1)
4i−2,0

∣

∣

∣

∣

4i−2

∏
j=1

|aj,0|

4i−2

∏
j=1

Q̃
(4m+2p+l−j)
j,0 Q̃

(4m−j)
j,0

+
m

∑
i=1

∣

∣

∣

∣

F
(2m−2i+p+[ l+1

2 ])
4i−1,0 − F

(2m−2i)
4i−1,0

∣

∣

∣

∣

4i−1

∏
j=1

|aj,0|

4i−1

∏
j=1

Q̃
(4m+2p+l−j)
j,0 Q̃

(4m−j)
j,0

+
m

∑
i=1

∣

∣

∣

∣

F
(2m−2i+p+[ l

2 ])
4i,0 − F

(2m−2i)
4i,0

∣

∣

∣

∣

4i

∏
j=1

|aj,0|

4i

∏
j=1

Q̃
(4m+2p+l−j)
j,0 Q̃

(4m−j)
j,0

> 0 .

Similarly Z̃
(2)
4m+2p+l,4m > 0. Consequently

f̃4m+2p+l − f̃4m > 0, m, l = 0, 1, . . . , p = 1, 2, . . . , (24)

f̃4n+2p+l−2 − f̃4n−2 = F
(2n+p−1+[ l

2 ])
0,0 − F

(2n−1)
0,0 + Z̃

(1)
4n+2p+l−2,4n−2 + Z̃

(2)
4n+2p+l−2,4n−2

+

4n−1

∏
j=1

aj,0

4n−1

∏
j=1

Q̃
(4n+2p+l−2−j)
j,0

4n−2

∏
j=1

Q̃
(4n−2−j)
j,0

+

4n−1

∏
j=1

a0,j

4n−1

∏
j=1

Q̃
(4n+2p+l−2−j)
0,j

4n−2

∏
j=1

Q̃
(4n−2−j)
0,j

,

4n−1

∏
j=1

aj,0 = −
4n−1

∏
j=1

|aj,0| < 0,
4n−1

∏
j=1

a0,j = −
4n−1

∏
j=1

|a0,j | < 0,

(25)

Z̃
(1)
4n+2p+l−2,4n−2 = −

n

∑
i=1

(

F
(2n−2i+p+[ l+1

2 ])
4i−3,0 − F

(2n−2i)
4i−3,0

)

4i−3

∏
j=1

|aj,0|

4i−3

∏
j=1

Q̃
(4n+2p+l−2−j)
j,0 Q̃

(4n−2−j)
j,0

+
n−1

∑
i=1

(

F
(2n+p−2i−1+[ l+1

2 ])
4i−1,0 − F

(2n−2i−1)
4i−1,0

)

4i−1

∏
j=1

|aj,0|

4i−1

∏
j=1

Q̃
(4n+2p+l−2−j)
j,0 Q̃

(4n−2−j)
j,0

−
n

∑
i=1

(

F
(2n−2i+p+[ l

2 ])
4i−2,0 − F

(2n−2i)
4i−2,0

)

4i−2

∏
j=1

|aj,0|

4i−2

∏
j=1

Q̃
(4n+2p+l−2−j)
j,0 Q̃

(4n−2−j)
j,0

+
n−1

∑
i=1

(

F
(2n+p−2i−1+[ l

2 ])
4i,0 − F

(2n−2i−1)
4i,0

)

4i

∏
j=1

|aj,0|

4i

∏
j=1

Q̃
(4n+2p+l−2−j)
j,0 Q̃

(4n−2−j)
j,0

= −
n

∑
i=1

∣

∣

∣

∣

F
(2n−2i+p+[ l+1

2 ])
4i−3,0 − F

(2n−2i)
4i−3,0

∣

∣

∣

∣

4i−3

∏
j=1

|aj,0|

4i−3

∏
j=1

Q̃
(4n+2p+l−2−j)
j,0 Q̃

(4n−j−2)
j,0

−
n

∑
i=1

∣

∣

∣

∣

F
(2n−2i+p+[ l

2 ])
4i−2,0 − F

(2n−2i)
4i−2,0

∣

∣

∣

∣

4i−2

∏
j=1

|aj,0|

4i−2

∏
j=1

Q̃
(4n+2p+l−j−2)
j,0 Q̃

(4n−j−2)
j,0

−
n−1

∑
i=1

∣

∣

∣

∣

F
(2n−2i+p−1+[ l+1

2 ])
4i−1,0 − F

(2n−2i−1)
4i−1,0

∣

∣

∣

∣

4i−1

∏
j=1

|aj,0|

4i−1

∏
j=1

Q̃
(4n+2p+l−j−2)
j,0 Q̃

(4n−j−2)
j,0

−
n−1

∑
i=1

∣

∣

∣

∣

F
(2n−2i+p−1+[ l

2 ])
4i,0 − F

(2n−2i−1)
4i,0

∣

∣

∣

∣

4i

∏
j=1

|aj,0|

4i

∏
j=1

Q̃
(4n+2p+l−j−2)
j,0 Q̃

(4n−j−2)
j,0

< 0, Z̃
(2)
4n+2p+l−2,4n−2 < 0 .
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Consequently

f̃4n+2p+l−2 − f̃4n−2 < 0, l = 0, 1, . . . , n, p = 1, 2, . . . . (26)

From the inequalities (24), (26), where l = 0, it follows “fork” property for figured appro-

ximants of even order. This property is described by system of inequalities (17). Therefore

sequences { f̃4k}, { f̃4k+2} are monotone, bounded and convergent. From (24), (26), where

l = 3, n = m + 1, we obtain inequality (18).

Proposition. BCF (1)–(2), with elements that satisfy conditions (12) and (16), is figured con-

vergent if and only if lim
n→∞

( f̃4n+2 − f̃4n) = 0.

Proof. It is above mentioned that under conditions (12) and (16) the sequences { f̃4k}, { f̃4k+2}

converge to finite limits. Condition lim
n→∞

( f̃4n+2 − f̃4n) = 0 implies equality of these limits,

i.e. convergence of the sequence { f̃2k}. Taking into account inequality (18), we conclude that

lim
k→∞

f̃2k = lim
k→∞

f̃2k−1, i.e. BCF (1)–(2) is figured convergent.

Theorem 2. Divergence of the series

∞

∑
n=1

n

∏
k=1

(ak,k)
(−1)n−k+1

,
∞

∑
n=1

n

∏
k=1

(ak+i,k)
(−1)n−k+1

,
∞

∑
n=1

n

∏
k=1

(ak,k+j)
(−1)n−k+1

,

i, j = 1, 2, . . . , is necessary condition of figured convergence of BCF (1)–(2) whose elements

satisfy conditions (12) and (16).

Proof. Using well known results of analytic theory of continued fractions [8, 11], we conclude

that continued fraction (2) converges if and only if the series
∞

∑
n=1

n

∏
k=1

(ak+i,k+j)
(−1)n−k+1

diverges.

It was shown above that every summand which appears in expressions for f̃4m+2p+l − f̃4m,

m, l = 0, 1, . . ., p = 1, 2, . . . , is positive under conditions (12), (16). If series
∞

∑
n=1

n

∏
k=1

(ak,k)
(−1)n−k+1

converges, then lim
m→∞

( f̃4m+2 − f̃4m) ≥ lim
m→∞

(F
(2m+1)
0,0 − F

(2m)
0,0 ) > 0, i.e. BCF (1)–(2) diverges.

Let there exists such i that series
∞

∑
n=1

n

∏
k=1

(ak+i,k)
(−1)n−k+1

converges. Then taking into account

inequalities (19), (20), we obtain

f̃4m+2 − f̃4m >

∣

∣

∣

∣

F
(2m+1−[ i+1

2 ])
i,0 − F

(2m−[ i+1
2 ])

i,0

∣

∣

∣

∣

i

∏
j=1

|aj,0|

i

∏
j=1

Q̃
(4m+2−j)
j,0 Q̃

(4m−j)
j,0

=

∣

∣

∣

∣

F
(2m+1−[ i+1

2 ])
i,0 − F

(2m−[ i+1
2 ])

i,0

∣

∣

∣

∣

i

∏
j=1

|aj,0|

[ i+1
2 ]

∏
j=1

Q̃
(4m−2j+3)
2j−1,0 Q̃

(4m−2j+1)
2j−1,0

[ i
2 ]

∏
j=1

Q̃
(4m−2j+2)
2j,0 Q̃

(4m−2j)
2j,0

, 4m ≥ i,
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lim
m→∞

( f̃4m+2 − f̃4m) ≥

i

∏
j=1

|aj,0| lim
m→∞

∣

∣

∣

∣

F
(2m+1−[ i+1

2 ])
i,0 − F

(2m−[ i+1
2 ])

i,0

∣

∣

∣

∣

[ i+1
2 ]

∏
j=1

(1 + a2j,1)2
[ i

2 ]
∏
j=1

(

1 + a2j+1,1 +
a2j+1,0

1 − |a2j+2,0|

)2
> 0.

From assumption about convergence of the series
∞

∑
n=1

n

∏
k=1

(ak,k+i)
(−1)n−k+1

for some value i and

from inequalities (21), (22) it follows that

lim
m→∞

( f̃4m+2 − f̃4m) ≥

i

∏
j=1

|a0,j| lim
m→∞

∣

∣

∣

∣

F
(2m+1−[ i+1

2 ])
0,i − F

(2m−[ i+1
2 ])

0,i

∣

∣

∣

∣

[ i+1
2 ]

∏
j=1

(1 + a1,2j)2
[ i

2 ]
∏
j=1

(

1 + a1,2j+1 +
a0,2j+1

1 − |a0,2j+2|

)2
> 0.

Remark. “Fork property” for ordinary approximants of even order is not valid. Really, let

b0 = 1, ai,k = 1, a2k−1,0 = a0,2k−1 = 1, a2k,0 = a0,2k = −1
2 , i, k = 1, 2, . . . . Then f0 = 1, f2 = 25

6 ,

f4 = 2139
140 > f2.

Theorem 3. If sequence { f̃k} of figured approximants of BCF (1)–(2) whose elements satisfy

conditions (12) and (16) converges, then sequece { fk} of ordinary approximants converges to

the same limit.

Proof. Using the formulas (6)–(7), conditions (12) and (16) the following inequalities can be

proved in much the same way as inequalities (19)–(20)

1 ≤ Q
(p)
2k,0 ≤ 1 + a2k+1,1 +

a2k+1,0

1 − |a2k+2,0|
, k = 1, 2, . . . , p = 0, 1, . . . , (27)

1 − |a2k,0| ≤ Q
(p)
2k−1,0 ≤ 1 + a2k,1, k = 1, 2, . . . , p = 0, 1, . . . , (28)

1 ≤ Q
(p)
0,2k ≤ 1 + a1,2k+1 +

a0,2k+1

1 − |a0,2k+2|
, k = 1, 2, . . . , p = 0, 1, . . . , (29)

1 − |a0,2k | ≤ Q
(p)
0,2k−1 ≤ 1 + a1,2k, k = 1, 2, . . . , p = 0, 1, . . . . (30)

Using the formula (11), we consider the following differences f4m+p − f̃4m, f4n+p−2 − f̃4n−2,

m, n, p = 1, 2, . . . . We set Z
(1)
n,0 = 0, Z

(2)
n,0 = 0,

Z
(1)
n,m =

m

∑
i=1

(−1)i

(

F
(n−i)
i,0 − F

([m−i
2 ])

i,0

)

i

∏
j=1

aj,0

i

∏
j=1

Q
(n−j)
j,0 Q̃

(m−j)
j,0

, m = 1, 2, . . . , n > m,

Z
(2)
n,m =

m

∑
i=1

(−1)i

(

F
(n−i)
0,i − F

([m−i
2 ])

0,i

)

i

∏
j=1

a0,j

i

∏
j=1

Q
(n−j)
0,j Q̃

(m−j)
0,j

, m = 1, 2, . . . , n > m.
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Then

f4m+p − f̃4m = F
(4m+p)
0,0 − F

(2m)
0,0 + Z

(1)
4m+p,4m + Z

(2)
4m+p,4m

+

4m+1

∏
j=1

aj,0

4m+1

∏
j=1

Q̃
(4m+p−j)
j,0

4m

∏
j=1

Q̃
(4m−j)
j,0

+

4m+1

∏
j=1

a0,j

4m+1

∏
j=1

Q
(4m+p−j)
0,j

4m

∏
j=1

Q̃
(4m−j)
0,j

.

From (23), (27)–(30) it follows that

Z
(1)
4m+p,4m = −

m

∑
i=1

(

F
(4m+p−4i+3)
4i−3,0 − F

(2m−2i+1)
4i−3,0

) 4i−3

∏
j=1

|aj,0|

4i−3

∏
j=1

Q
(4m+p−j)
j,0 Q̃

(4m−j)
j,0

−
m

∑
i=1

(

F
(4m+p−4i+2)
4i−2,0 − F

(2m−2i+1)
4i−2,0

) 4i−2

∏
j=1

|aj,0|

4i−2

∏
j=1

Q
(4m+p−j)
j,0 Q̃

(4m−j)
j,0

+
m

∑
i=1

(

F
(4m+p−4i+1)
4i−1,0 − F

(2m−2i)
4i−1,0

) 4i−1

∏
j=1

|aj,0|

4i−1

∏
j=1

Q
(4m+p−j)
j,0 Q̃

(4m−j)
j,0

+
m

∑
i=1

(

F
(4m−p−4i)
4i,0 − F

(2m−2i)
4i,0

) 4i

∏
j=1

|aj,0|

4i

∏
j=1

Q
(4m+p−j)
j,0 Q̃

(4m−j)
j,0

=
m

∑
i=1

∣

∣

∣
F
(4m+p−4i+3)
4i−3,0 − F

(2m−2i+1)
4i−3,0

∣

∣

∣

4i−3

∏
j=1

|aj,0|

4i−3

∏
j=1

Q
(4m+p−j)
j,0 Q̃

(4m−j)
j,0

+
m

∑
i=1

∣

∣

∣
F
(4m+p−4i+2)
4i−2,0 − F

(2m−2i+1)
4i−2,0

∣

∣

∣

4i−2

∏
j=1

|aj,0|

4i−2

∏
j=1

Q
(4m+p−j)
j,0 Q̃

(4m−j)
j,0

+
m

∑
i=1

∣

∣

∣
F
(4m+p−4i+2)
4i−1,0 − F

(2m−2i)
4i−1,0

∣

∣

∣

4i−1

∏
j=1

|aj,0|

4i−1

∏
j=1

Q̃
(4m+p−j)
j,0 Q̃

(4m−j)
j,0

+
m

∑
i=1

∣

∣

∣
F
(4m+p−4i)
4i,0 − F

(2m−2i)
4i,0

∣

∣

∣

4i

∏
j=1

|aj,0|

4i

∏
j=1

Q
(4m+p−j)
j,0 Q̃

(4m−j)
j,0

> 0.

Similarly Z
(2)
4m+p,4m > 0. Consequently

f4m+p − f̃4m > 0, m, l = 0, 1, . . . , p = 1, 2, . . . . (31)

Further,

f4n+p−2 − f̃4n−2 = F
(4n+p−2)
0,0 − F

(2n−1)
0,0 + Z

(1)
4n+p−2,4n−2 + Z

(2)
4n+p−2,4n−2

+

4n−1

∏
j=1

aj,0

4n−1

∏
j=1

Q
(4n+p−2−j)
j,0

4n−2

∏
j=1

Q̃
(4n−2−j)
j,0

+

4n−1

∏
j=1

a0,j

4n−1

∏
j=1

Q
(4n+p−2−j)
0,j

4n−2

∏
j=1

Q̃
(4n−2−j)
0,j

.
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From (25), (27)–(30) it follows that

Z
(1)
4n+p−2,4n−2=−

n

∑
i=1

(

F
(4n+p−4i+1)
4i−3,0 − F

(2n−2i)
4i−3,0

) 4i−3

∏
j=1

|aj,0|

4i−3

∏
j=1

Q
(4n+p−2−j)
j,0 Q̃

(4n−2−j)
j,0

−
n

∑
i=1

(

F
(4n+p−4i)
4i−2,0 − F

(2n−2i)
4i−2,0

) 4i−2

∏
j=1

|aj,0|

4i−2

∏
j=1

Q
(4n+2p+l−2−j)
j,0 Q̃

(4n−2−j)
j,0

+
n−1

∑
i=1

(

F
(4n+p−4i−1)
4i−1,0 − F

(2n−2i−1)
4i−1,0

) 4i−1

∏
j=1

|aj,0|

4i−1

∏
j=1

Q
(4n+p−2−j)
j,0 Q̃

(4n−2−j)
j,0

+
n−1

∑
i=1

(

F
(4n+p−4i−2)
4i,0 − F

(2n−2i−1)
4i,0

) 4i

∏
j=1

|aj,0|

4i

∏
j=1

Q
(4n+p−2−j)
j,0 Q̃

(4n−2−j)
j,0

< 0.

Similarly Z
(2)
4n+p−2,4n−2 < 0. Consequently

f4n+p−2 − f̃4n−2 < 0, n, p = 1, 2, . . . . (32)

Taking into account the inequalities (17), (31), (32) we obtain f̃4m < f4m+p+2 < f̃4m+2,

m = 0, 1, . . ., p = 1, 2, . . . . In the case of convergence of sequence { f̃2k} we conclude that

lim
n→∞

f̃n = lim
k→∞

fk.
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Антонова Т.М., Дмитришин М.В., Возна С.М. Деякi властивостi наближень гiллястих ланцю-

гових дробiв спецiального вигляду з додатними i знакопочережними частинними чисельниками //

Карпатськi матем. публ. — 2018. — Т.10, №1. — C. 3–13.

Стаття присвячена дослiдженню збiжностi одного iз узагальнень ланцюгових дробiв — гiл-

лястих ланцюгових дробiв спецiального вигляду з двома гiлками розгалужень. Такi дроби, так

само як i двовимiрнi неперервнi дроби та гiллястi ланцюговi дроби з двома нерiвнозначними

змiнними, пов’язанi з проблемою вiдповiдностi мiж формальним подвiйним степеневим ря-

дом i послiдовнiстю рацiональних наближень функцiї двох змiнних.

На вiдмiну вiд неперервних дробiв, наближення яких будуються однозначно, iснує багато

способiв побудови наближень гiллястих ланцюгових дробiв загального та спецiального вигля-

ду. У роботi розглянуто звичайнi наближення та одну з конструкцiй фiгурних наближень

дослiджуваних гiллястих ланцюгових дробiв, яка пов’язана iз задачею вiдповiдностi.

Розглянуто деякi властивостi наближень таких гiллястих ланцюгових дробiв спецiального

вигляду, частиннi чисельники яких додатнi i знакопочережнi, а частиннi знаменники дорiвню-

ють одиницi. Встановлено деякi необхiднi i достатнi умови фiгурної збiжностi. Доведено, що

за сформульованих умов iз збiжностi послiдовностi фiгурних наближень випливає збiжнiсть

послiдовностi звичайних наближень до тої самої границi.

Ключовi слова i фрази: гiллястий ланцюговий дрiб спецiального вигляду, звичайнi наближе-

ння, фiгурнi наближення, збiжнiсть, фiгурна збiжнiсть.


