Карпатські матем. публ. 2017, Т.9, №2, С.198-201

ISSN 2075-9827 e-ISSN 2313-0210

Carpathian Math. Publ. 2017, **9** (2), 198–201 doi:10.15330/cmp.9.2.198-201

VASYLYSHYN T.V.

METRIC ON THE SPECTRUM OF THE ALGEBRA OF ENTIRE SYMMETRIC FUNCTIONS OF BOUNDED TYPE ON THE COMPLEX L_{∞}

It is known that every complex-valued homomorphism of the Fréchet algebra $H_{bs}(L_{\infty})$ of all entire symmetric functions of bounded type on the complex Banach space L_{∞} is a point-evaluation functional δ_x (defined by $\delta_x(f) = f(x)$ for $f \in H_{bs}(L_{\infty})$) at some point $x \in L_{\infty}$. Therefore, the spectrum (the set of all continuous complex-valued homomorphisms) M_{bs} of the algebra $H_{bs}(L_{\infty})$ is one-to-one with the quotient set $L_{\infty}/_{\sim}$, where an equivalence relation " \sim " on L_{∞} is defined by $x \sim y \Leftrightarrow \delta_x = \delta_y$. Consequently, M_{bs} can be endowed with the quotient topology. On the other hand, M_{bs} has a natural representation as a set of sequences which endowed with the coordinatewise addition and the quotient topology forms an Abelian topological group. We show that the topology on M_{bs} is metrizable and it is induced by the metric $d(\xi, \eta) = \sup_{n \in \mathbb{N}} \sqrt[n]{|\xi_n - \eta_n|}$, where $\xi = \{\xi_n\}_{n=1}^{\infty}$, $\eta = \{\eta_n\}_{n=1}^{\infty} \in M_{bs}$.

Key words and phrases: symmetric function, spectrum of the algebra.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine E-mail: taras.v.vasylyshyn@gmail.com

INTRODUCTION

Symmetric functions on Banach spaces were studied by a number of authors [1, 3–8, 10, 12, 13] (see also a survey [2]). In particular, symmetric polynomials and symmetric analytic functions on L_{∞} (see definition below) were studied in [6, 12, 13].

Let L_{∞} be the complex Banach space of all Lebesgue measurable essentially bounded complex-valued functions x on [0,1] with norm $||x||_{\infty} = \operatorname{ess\,sup}_{t \in [0,1]} |x(t)|$.

Let Ξ be the set of all measurable bijections of [0,1] that preserve the measure. A function $f: L_{\infty} \to \mathbb{C}$ is called symmetric if $f(x \circ \sigma) = f(x)$ for every $x \in L_{\infty}$ and for every $\sigma \in \Xi$.

Let $H_{bs}(L_{\infty})$ be the Fréchet algebra of all entire symmetric functions $f: L_{\infty} \to \mathbb{C}$ which are bounded on bounded sets endowed with the topology of uniform convergence on bounded sets. By [6, Theorem 4.3], polynomials $R_n: L_{\infty} \to \mathbb{C}$, $R_n(x) = \int_{[0,1]} (x(t))^n dt$ for $n \in \mathbb{N}$ form an algebraic basis in the algebra of all symmetric continuous polynomials on L_{∞} . Since every $f \in H_{bs}(L_{\infty})$ can be described by its Taylor series of continuous symmetric homogeneous polynomials, it follows that f can be uniquely represented as

$$f(x) = f(0) + \sum_{n=1}^{\infty} \sum_{k_1 + 2k_2 + \dots + nk_n = n} \alpha_{k_1, \dots, k_n} R_1^{k_1}(x) \cdots R_n^{k_n}(x).$$

УДК 517.98

2010 Mathematics Subject Classification: 46J20, 46E15.

Consequently, for every non-trivial continuous homomorphism $\varphi: H_{bs}(L_{\infty}) \to \mathbb{C}$, taking into account $\varphi(1) = 1$, we have

$$\varphi(f) = f(0) + \sum_{n=1}^{\infty} \sum_{k_1 + 2k_2 + \dots + nk_n = n} \alpha_{k_1, \dots, k_n} \varphi(R_1)^{k_1} \cdots \varphi(R_n)^{k_n}.$$

Therefore, φ is completely determined by the sequence of its values on $R_n: (\varphi(R_1), \varphi(R_2), \ldots)$. By the continuity of φ , the sequence $\{\sqrt[n]{|\varphi(R_n)|}\}_{n=1}^{\infty}$ is bounded. On the other hand, we have the following

Theorem 1 ([6, Section 3]). For every sequence $\xi = \{\xi_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sup_{n \in \mathbb{N}} \sqrt[n]{|\xi_n|} < +\infty$, there exists $x_{\xi} \in L_{\infty}$ such that $R_n(x_{\xi}) = \xi_n$ for every $n \in \mathbb{N}$ and $\|x_{\xi}\|_{\infty} \leq \frac{2}{M} \sup_{n \in \mathbb{N}} \sqrt[n]{|\xi_n|}$, where

$$M = \prod_{n=1}^{\infty} \cos\left(\frac{\pi}{2} \frac{1}{n+1}\right). \tag{1}$$

Hence, for every sequence $\xi = \{\xi_n\}_{n=1}^{\infty}$ such that $\sup_{n \in \mathbb{N}} \sqrt[n]{|\xi_n|} < +\infty$, there exists the point-evaluation functional $\varphi = \delta_{x_{\xi}}$ such that $\varphi(R_n) = \xi_n$ for every $n \in \mathbb{N}$. Since every such a functional is a continuous homomorphism, it follows that the spectrum (the set of all continuous complex-valued homomorphisms) of the algebra $H_{bs}(L_{\infty})$, which we denote by M_{bs} , can be identified with the set of all sequences $\xi = \{\xi_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\{\sqrt[n]{|\xi_n|}\}_{n=1}^{\infty}$ is bounded.

Let $\nu: L_{\infty} \to M_{bs}$ be defined by

$$\nu(x) = (R_1(x), R_2(x), \ldots).$$

Let τ_{∞} be the topology on L_{∞} , generated by $\|\cdot\|_{\infty}$. Let us define an equivalence relation on L_{∞} by $x \sim y \Leftrightarrow \nu(x) = \nu(y)$. Let τ be the quotient topology on M_{bs} :

$$\tau = \{\nu(V): \ V \in \tau_{\infty}\}.$$

Note that ν is a continuous open mapping.

The operation of coordinate-wise addition $+: M_{bs}^2 \to M_{bs}$ is defined by

$$a + b = (a_1 + b_1, a_2 + b_2, \ldots)$$

for $a=(a_1,a_2,\ldots)$, $b=(b_1,b_2,\ldots)\in M_{bs}$. In [13] it is shown that $(M_{bs},+,\tau)$ is an Abelian topological group. In this work we show that (M_{bs},τ) is a metrizable topological space. Also we explicitly construct the metric which induces τ .

1 THE MAIN RESULT

Let us denote B(x,r) the open ball of radius r and center x in L_{∞} .

Proposition 1. The identity element 0 = (0, 0, ...) of the topological group $(M_{bs}, +, \tau)$ has a countable local basis of neighborhoods.

Proof. For $n \in \mathbb{N}$ let $U_n = \nu(B(0, \frac{1}{n}))$. Since ν is an open mapping, it follows that $U_n \in \tau$. Note that $0 \in U_n$. Thus, U_n is an open neighborhood of 0 for every $n \in \mathbb{N}$. Let us show that a family $\{U_n : n \in \mathbb{N}\}$ form a local basis of neighborhoods of 0. Let $W \subset M_{bs}$ be an arbitrary open neighborhood of 0. Then $\nu^{-1}(W)$ is open in L_∞ and $\nu^{-1}(W)$ contains 0. Therefore, there exists r > 0 such that $B(0,r) \subset \nu^{-1}(W)$. Let $n \in \mathbb{N}$ be such that $\frac{1}{n} < r$. Then $B(0,\frac{1}{n}) \subset B(0,r) \subset \nu^{-1}(W)$. Therefore, $\nu(B(0,\frac{1}{n})) \subset W$, i. e. $U_n \subset W$. □

We will use Birkhoff-Kakutani theorem.

Theorem 2 ([9, p.34]). Let G be a Hausdorff topological group whose open sets at the identity element have a countable basis. Then G is metrizable and, moreover, there exists a metric which is right-invariant.

Corollary 1. There exists an invariant metric d on M_{bs} which induces topology τ .

Proof. By [13, Corollary 1], $(M_{bs}, +, \tau)$ is an Abelian topological group. By [13, Theorem 2], τ is Hausdorff. By Proposition 1, the identity element of M_{bs} has a countable local basis. Therefore by Theorem 2 there exists a right-invariant metric d on M_{bs} which induces topology τ . Since $(M_{bs}, +, \tau)$ is Abelian, the metric d is also left-invariant.

For
$$a=(a_1,a_2,\ldots)$$
 and $b=(b_1,b_2,\ldots)\in M_{bs}$ let
$$d_I(a,b)=\sup_{n\in\mathbb{N}}\sqrt[n]{|a_n-b_n|}.$$

Note that analogical metric is defined on spaces of entire functions of one complex variable (where a role of sequences a and b play sequences of coefficients of the Taylor series of functions) and it is called Iyer metric (see e. g. [11]). Also note that a metric space (M_{bs}, d_I) is isometric to the space of entire functions $f: \mathbb{C} \to \mathbb{C}$ of the exponential type such that f(0) = 0 with Iyer metric.

Let V(a, r) be the open ball in M_{bs} of radius r and center $a \in M_{bs}$ with respect to the metric d_I .

Lemma 1. Let r > 0 and $0 < \rho < \frac{Mr}{2}$, where M is defined by (1). Then $V(0, \rho) \subset v(B(0, r))$.

Proof. Let $a=(a_1,a_2,\ldots)\in V(0,\rho)$. Let us show that $a\in v(B(0,r))$. By Theorem 1, there exists $x_a\in L_\infty$ such that $v(x_a)=a$ and $\|x_a\|_\infty<\frac{2}{M}\sup_{n\in\mathbb{N}}\sqrt[n]{|a_n|}$. Since $a\in V(0,\rho)$, it follows that $d_I(0,a)<\rho$, i. e. $\sup_{n\in\mathbb{N}}\sqrt[n]{|a_n|}<\rho$. Thus, $\|x_a\|_\infty<\frac{2}{M}\rho$. Since $\rho<\frac{Mr}{2}$, it follows that $\|x_a\|_\infty< r$, i. e. $x_a\in B(0,r)$. Therefore $v(x_a)\in v(B(0,r))$, i. e. $a\in v(B(0,r))$.

Theorem 3. The metric d_I induces the topology τ .

Proof. Since both metrics d_I and d (given by Corollary 1) are invariant with respect to translations (in the sense that d(a+c,b+c)=d(a,b) for every $a,b,c\in M_{bs}$), it suffices to prove that every open neighborhood of 0 with respect to τ contains some open ball with center 0 with respect to d_I and vice versa.

Let $W \in \tau$ such that $0 \in W$. Then $\nu^{-1}(W)$ is the open neighborhood of 0 in L_{∞} . Therefore, there exists r > 0 such that $B(0,r) \subset \nu^{-1}(W)$. By Lemma 1, for $0 < \rho < \frac{2r}{M}$ we have $V(0,\rho) \subset \nu(B(0,r))$. Since $\nu(B(0,r)) \subset W$, it follows that $V(0,\rho) \subset W$.

Let us show that for every open ball V(0,r) there exists $W \in \tau$ such that $0 \in W$ and $W \subset V(0,r)$. Set $W = \nu(B(0,r))$. Let us show that $W \subset V(0,r)$. It suffices to prove that $\nu(x) \in V(0,r)$ for every $x \in B(0,r)$. For $x \in B(0,r)$ we have $\|x\|_{\infty} < r$ and, consequently,

$$|R_n(x)| \leq ||x||_{\infty}^n < r^n.$$

Therefore

$$d_I(0,\nu(x)) = \sup_{n \in \mathbb{N}} \sqrt[n]{|R_n(x)|} < r.$$

Thus,
$$v(x) \in V(0, r)$$
.

REFERENCES

- [1] Aron R., Galindo P., Pinasco D., Zalduendo I. *Group-symmetric holomorphic functions on a Banach space*. Bull. London Math. Soc. 2016, **48** (5), 779–796. doi:10.1112/blms/bdw043
- [2] Chernega I. Symmetric Polynomials and Holomorphic Functions on infinite dimensional spaces. Journal of Vasyl Stefanyk Precarpathian National University 2015, 2 (4), 23–49. doi:10.15330/jpnu.2.4.23-49
- [3] Chernega I., Galindo P., Zagorodnyuk A. *Some algebras of symmetric analytic functions and their spectra*. Proc. Edinburgh Math. Soc. 2012, **55** (1), 125–142. doi:10.1017/S0013091509001655
- [4] Chernega I., Galindo P., Zagorodnyuk A. *The convolution operation on the spectra of algebras of symmetric analytic functions*. J. Math. Anal. Appl. 2012, **395** (2), 569–577. doi:10.1016/j.jmaa.2012.04.087
- [5] Chernega I., Galindo P., Zagorodnyuk A. *A multiplicative convolution on the spectra of algebras of symmetric analytic functions*. Revista Matemática Complutense 2014, **27** (2), 575–585. doi:10.1007/s13163-013-0128-0
- [6] Galindo P., Vasylyshyn T., Zagorodnyuk A. *The algebra of symmetric analytic functions on* L_{∞} . Proc. Roy. Soc. Edinburgh Sect. A 2017, **147** (4), 743–761. doi:10.1017/S0308210516000287
- [7] González M., Gonzalo R., Jaramillo J. A. *Symmetric polynomials on rearrangement invariant function spaces*. J. London Math. Soc. 1999, **59** (2), 681–697. doi:10.1112/S0024610799007164
- [8] Kravtsiv V., Vasylyshyn T., Zagorodnyuk A. On algebraic basis of the algebra of symmetric polynomials on $\ell_p(\mathbb{C}^n)$. J. Funct. Spaces 2017, **2017**, Article ID 4947925, 8 pages. doi:10.1155/2017/4947925
- [9] Montgomery D., Zippin L. Topological transformation groups. Interscience Publishers, New York, 1955.
- [10] Nemirovskii A. S., Semenov S. M. *On polynomial approximation of functions on Hilbert space*. Mat. USSR Sbornik 1973, **21** (2), 255–277. doi:10.1070/SM1973v021n02ABEH002016
- [11] Sisarcick W. C. Metric spaces of entire functions. Indian J. Pure Appl. Math. 1975, 6 (6), 628-636.
- [12] Vasylyshyn T. *Symmetric continuous linear functionals on complex space* $L_{\infty}[0,1]$. Carpathian Math. Publ. 2014, **6** (1), 8–10. doi:10.15330/cmp.6.1.8-10.
- [13] Vasylyshyn T. Topology on the spectrum of the algebra of entire symmetric functions of bounded type on the complex L_{∞} . Carpathian Math. Publ. 2017, **9** (1), 22–27. doi:10.15330/cmp.9.1.22-27

Received 08.10.2017

Revised 23.12.2017

Василишин Т.В. Метрика на спектрі алгебри цілих симетричних функцій обмеженого типу на комплексному просторі L_{∞} // Карпатські матем. публ. — 2017. — Т.9, №2. — С. 198–201.

Відомо, що кожен комплекснозначний гомоморфізм алгебри Фреше $H_{bs}(L_{\infty})$ усіх цілих симетричних функцій обмеженого типу на комплексному банаховому просторі L_{∞} є функціоналом обчислення значення в точці δ_x (визначеного як $\delta_x(f)=f(x)$ для $f\in H_{bs}(L_{\infty})$) у деякій точці $x\in L_{\infty}$. Тому спектр (множина усіх неперервних комплекснозначних гомоморфізмів) M_{bs} алгебри $H_{bs}(L_{\infty})$ є у взаємно однозначній відповідності із фактор-множиною $L_{\infty}/_{\sim}$, де відношення еквівалентності " \sim " на просторі L_{∞} визначене наступним чином: $x\sim y\Leftrightarrow \delta_x=\delta_y$. Як наслідок, на M_{bs} можна задати фактор-топологію. З іншого боку, для M_{bs} існує природне подання у вигляді множини послідовностей, яка разом із заданими на ній операцією покоординатного додавання і фактор-топологією утворює абелеву топологічну групу. У статті доведено, що топологія на M_{bs} є метризовною і породжується метрикою $d(\xi,\eta)=\sup_{n\in\mathbb{N}}\sqrt[n]{|\xi_n-\eta_n|},$ де $\xi=\{\xi_n\}_{n=1}^{\infty},\eta=\{\eta_n\}_{n=1}^{\infty}\in M_{bs}.$

Ключові слова і фрази: симетрична функція, спектр алгебри.