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VASYLYSHYN T.V.

METRIC ON THE SPECTRUM OF THE ALGEBRA OF ENTIRE SYMMETRIC
FUNCTIONS OF BOUNDED TYPE ON THE COMPLEX Lo,

It is known that every complex-valued homomorphism of the Fréchet algebra Hps(Loo) of all
entire symmetric functions of bounded type on the complex Banach space L, is a point-evaluation
functional Jy (defined by 6,(f) = f(x) for f € Hps(Loo)) at some point x € Loo. Therefore, the
spectrum (the set of all continuous complex-valued homomorphisms) M, of the algebra Hys(Loo)
is one-to-one with the quotient set L /~, where an equivalence relation “~" on L is defined by
x ~ 1y & 6y = 4. Consequently, M;; can be endowed with the quotient topology. On the other
hand, My, has a natural representation as a set of sequences which endowed with the coordinate-
wise addition and the quotient topology forms an Abelian topological group. We show that the
topology on My, is metrizable and it is induced by the metric d(, 1) = sup,.p; /|8n — #7u|, Where
¢ =A{Gn}uir = {mn}iis € Mys.
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INTRODUCTION

Symmetric functions on Banach spaces were studied by a number of authors [1, 3-8, 10,
12,13] (see also a survey [2]). In particular, symmetric polynomials and symmetric analytic
functions on L« (see definition below) were studied in [6,12,13].

Let Lo be the complex Banach space of all Lebesgue measurable essentially bounded com-
plex-valued functions x on [0, 1] with norm [[x[[cc = esssup;¢ (o qjx(#)]-

Let E be the set of all measurable bijections of [0, 1] that preserve the measure. A function
f: Lo — Cis called symmetric if f(x o0) = f(x) for every x € Lo and for every o € E.

Let Hys(Lo) be the Fréchet algebra of all entire symmetric functions f : Lo, — C which are
bounded on bounded sets endowed with the topology of uniform convergence on bounded
sets. By [6, Theorem 4.3], polynomials R, : Lee — C, Ry(x) = f[o,l] (x(t))"dt for n € N form
an algebraic basis in the algebra of all symmetric continuous polynomials on Le. Since every
f € Hps(Lo) can be described by its Taylor series of continuous symmetric homogeneous
polynomials, it follows that f can be uniquely represented as

O =fO+Y Y o Rx) - RY ().

n=1ky+2ko+...+nk,=n
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Consequently, for every non-trivial continuous homomorphism ¢ : Hys(Le) — C, taking into
account ¢(1) = 1, we have

o(f) = f(0) + ) Y gy, o @(R1)¥1 - @Ry ).
n=1ki+2ky+...+nk,=n

Therefore, ¢ is completely determined by the sequence of its values on R, : (¢(R1), ¢(R2),...).
By the continuity of ¢, the sequence {{/|¢(R;)|}{>; is bounded. On the other hand, we have
the following

Theorem 1 ([6, Section 3]). For every sequence ¢ = {¢,}5>_; C C such that sup {/|¢,| < +oo,

n=1
nelN
there exists Xz € Lo such that Ry(xz) = &, for every n € N and ||xz]lo < & sup,cn /18],
where
= w1
- T2 ). 1
M HCOS<2n—|—1> (1)

Hence, for every sequence ¢ = {&,}%_; such that sup, p {/[¢:] < —+oo, there exists the
point-evaluation functional ¢ = dy, such that ¢(R,) = ¢, for every n € IN. Since every such a
functional is a continuous homomorphism, it follows that the spectrum (the set of all contin-
uous complex-valued homomorphisms) of the algebra Hy,(Lo ), which we denote by My, can
be identified with the set of all sequences & = {&,}°°; C C such that {{/]¢,]}*_, is bounded.

Let v : Lo — My, be defined by

v(x) = (Ri(x), Ra(x), ...

Let T be the topology on L, generated by || - ||«. Let us define an equivalence relation on Leo
by x ~ y < v(x) = v(y). Let T be the quotient topology on M :

T={v(V): V€ t}
Note that v is a continuous open mapping.
The operation of coordinate-wise addition + : Ml%s — My is defined by
a+b= (611 +by,ay+by,...)

fora = (ay,az,...),b = (by,by,...) € My, In [13] it is shown that (M, +, T) is an Abelian
topological group. In this work we show that (M, T) is a metrizable topological space. Also
we explicitly construct the metric which induces 7.

1 THE MAIN RESULT

Let us denote B(x,r) the open ball of radius r and center x in Le.

Proposition 1. The identity element 0 = (0,0, ...) of the topological group (Mys, +,T) has a
countable local basis of neighborhoods.

Proof. For n € N let U, = v(B(0,1)). Since v is an open mapping, it follows that U, € T.
Note that 0 € U,. Thus, U, is an open neighborhood of 0 for every n € IN. Let us show
that a family {U, : n € IN} form a local basis of neighborhoods of 0. Let W C M, be
an arbitrary open neighborhood of 0. Then v~!(W) is open in Le and v~!(W) contains 0.
Therefore, there exists r > 0 such that B(0,7) C v~!(W). Let n € N be such that 1 < 7. Then
B(0,2) ¢ B(0,r) C v~1(W). Therefore, v(B(0,2)) C W,i.e. U, C W. O
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We will use Birkhoff-Kakutani theorem.

Theorem 2 ([9, p.34]). Let G be a Hausdortf topological group whose open sets at the identity
element have a countable basis. Then G is metrizable and, moreover, there exists a metric
which is right-invariant.

Corollary 1. There exists an invariant metric d on M;; which induces topology T.

Proof. By [13, Corollary 1], (M, +, T) is an Abelian topological group. By [13, Theorem 2], T is
Hausdorff. By Proposition 1, the identity element of My, has a countable local basis. Therefore
by Theorem 2 there exists a right-invariant metric d on M;; which induces topology t. Since
(Mys, +, T) is Abelian, the metric d is also left-invariant. O

Fora = (ay,ay,...) and b = (b, by, ...) € My let

dr(a,b) = sup {/|an — byl

nelN

Note that analogical metric is defined on spaces of entire functions of one complex variable
(where a role of sequences a and b play sequences of coefficients of the Taylor series of func-
tions) and it is called Iyer metric (see e. g. [11]). Also note that a metric space (M, d) is
isometric to the space of entire functions f : C — C of the exponential type such that f(0) = 0
with Iyer metric.

Let V(a, r) be the open ball in M, of radius r and center a € M, with respect to the metric
d.

Lemmal. Letr > 0and 0 < p < M- where M is defined by (1). Then V(0,0) C v(B(0,7)).

Proof. Leta = (ay,a,...) € V(0,p). Let us show that a € v(B(0,7)). By Theorem 1, there
exists x; € Lo, such that v(x,) = a and ||xa|ec < 7 SUp,cpy /|- Since a € V(0, p), it follows
that d;(0,a) < p, i. e. sup,cn ¥/|an| < p. Thus, ||xa]|e < Zp. Since p < X, it follows that
|xalleo < 7,1. €. x, € B(O, ). Therefore v(x,) € v(B(0,7)),i.e.a € v(B(0,r)). O

Theorem 3. The metric d; induces the topology T.

Proof. Since both metrics d; and d (given by Corollary 1) are invariant with respect to transla-
tions (in the sense that d(a 4 ¢, b+ ¢) = d(a, b) for every a,b,c € M), it suffices to prove that
every open neighborhood of 0 with respect to T contains some open ball with center 0 with
respect to d; and vice versa.

Let W € 7 such that 0 € W. Then v—!(W) is the open neighborhood of 0 in Le. Therefore,
there exists r > 0 such that B(0,7) C v~1(W). By Lemma 1, for 0 < p < 2= we have V(0,p) C
v(B(0,r)). Since v(B(0,r)) C W, it follows that V(0,p) C W.

Let us show that for every open ball V(0,r) there exists W € 7 such that 0 € W and
W C V(0,r). Set W = v(B(0,r)). Let us show that W C V(0,r). It suffices to prove that
v(x) € V(0,r) for every x € B(0,r). For x € B(0,7) we have ||x||« < r and, consequently,

R (2)| < [x[l5 < ™.

dr(0,v(x)) = sup {/|Ru(x)| < 1.

nelN
Thus, v(x) € V(0,r). O

Therefore
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BiaoMoO, 110 KOXX€eH KOMIIAeKCHO3HaYHMIE roMoMOpi3m aarebpu Dpettte Hyg(Loo) yCix iAMX cu-
MeTpUUHMX (PYHKIIi 06MeXXEeHOro THIIy Ha KOMIIAeKCHOMY b6aHaXOBOMY IpPOCTOPi L« € dpyHKIIio-
HaAOM OGUMCAEHHsI 3HAUEHHSI B TOULI Jy (BU3HaueHOTO SIK Oy (f) = f(x) Arst f € Hps(Loo)) y A€SIKiIA
Toulli X € Leo. TOMy crlexTp (MHOXMHa YCiX HellepepBHMX KOMIIAEKCHO3HAUHMX roMOMOpdi3MiB)
My anrebpu Hpys(Loo) € Y B3a€MHO OAHO3HAUHII BIAIIOBIAHOCTI 13 paKTOP-MHOXUHOIO Loo / ~, A€ Bia-
HOILIEHHsI €KBiBAAEHTHOCT] "'~" Ha TIPOCTOPi Lo, BU3HAYEHE HACTYIHUM UMHOM: X ~ I <> Oy = Jy. SIK
HacAipOK, Ha My, MOXKHa 3apaTi paKTOP-TOMOAOTII0. 3 iHIIOTo 60Ky, AAsT My, icHye mpupoaHe mo-
AQHHS Y BUTASIAL MHOXMHM IIOCAIAOBHOCTeTA, sIKa pa30oM i3 3apAaHMMM Ha Hilf ollepalliero IOKOOpAM-
HATHOTO AOAABAHHS i paKTOP-TOMOAOTIEI0 YTBOPIOE abeAeBY TOMOAOTIUHY I'PYITy. Y CTAaTTi AOBeAe-
HO, ITI0 TOMOAOTisI Ha M}, € METPU30BHOIO i IOPOAXKYEThCst MeTpuKOI0 d (&, 17) = sup, . 3/ |&n — al,
ae &= {Cutuie = {1n}ily € Mys.

Kntouosi cnosa i ¢ppasu: cvmeTpudaHa pyHKIIisI, CTIEKTP aAre6pi.



