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SOME FIXED POINT RESULTS IN COMPLETE GENERALIZED METRIC SPACES

The Banach contraction principle is the important result, that has many applications. Some
authors were interested in this principle in various metric spaces. Branciari A. initiated the notion
of the generalized metric space as a generalization of a metric space by replacing the triangle in-
equality by more general inequality, d(x,y) < d(x,u) +d(u,v) + d(v,y) for all pairwise distinct
points x,y,u,v of X. As such, any metric space is a generalized metric space but the converse is not
true. He proved the Banach fixed point theorem in such a space. Some authors proved different
types of fixed point theorems by extending the Banach’s result. Wardowski D. introduced a new
contraction which generalizes the Banach contraction. Using a mapping F : R™ — R he introduced
a new type of contraction called F-contraction and proved a new fixed point theorem concerning
F-contraction.

In this paper, we have dealt with F-contraction and F-weak contraction in complete generalized
metric spaces. We prove some results for F-contraction and F-weak contraction and we establish
the existence and uniqueness of fixed point for F-contraction and F-weak contraction in complete
generalized metric spaces. Some examples are supplied in order to support the usability of our
results. The obtained result is an extension and a generalization of many existing results in the
literature.
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INTRODUCTION AND PRELIMINARIES

The Banach contraction principle is the simplest result in fixed point theory [4]. This prin-
ciple has many applications and was extended by several authors (see [5-10, 12, 14-17, 19, 20]).
Some authors gave the fundamental linear contractive conditions and the fundamental non-
linear contractive conditions by using the notion of F-contraction, and proved fixed point the-
orems which generalize Banach contraction principle.

Due to the nature of mathematics science, there have been many attempts to generalize
the metric setting by modifying some of the axioms of metric spaces. Thus, several other
types of spaces have been introduced and a lot of metric results have been extended to new
settings. One of the interesting generalizations of the notion of metric space was introduced
by Branciari A. Later, most of the authors dealing with such spaces made some additional
requirements in order to deduce their results (see [1-3]).

In this paper, we prove fixed point theorems for F-contraction and F-weak contraction in
complete generalized metric spaces. We also present uniqueness of the fixed point.
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Definition 1 ([13]). Let X be a nonempty setand d : X x X — [0,00) a mapping such that for
all x,y € X and all distinct points u,v € X, each distinct from x and y:

(i) d(x,y) =0 x=y,

(i) d(x,y) = d(y, x),

(iii) d(x,y) < d(x,u)+d(u,v) +d(v,y) (quadrilateral inequality).
Then X is called a generalized metric space.

The concepts of convergence, Cauchy sequence, completeness, and continuity on a gener-
alized metric space are defined below.

Definition 2 ([1]). Let (X, d) be a generalized metric space.

(i) A sequence {x,} is called convergent to x € X if and only ifd(x,,x) — 0 asn — oo. In
this case, we use the notation x, — x.

(i) A sequence {x,} is called Cauchy if and only if for each € > 0, there exists a natural
number N (¢) such thatd(x,, x,,) < € foralln > m > N(e).

(iii) A generalized metric space (X, d) is called complete if every Cauchy sequence is con-
vergent in X.

(iv) A mapping T : (X,d) — (X,d) is continuous if for any sequence {x,} in X such that
d(x,,x) — 0 asn — oo, we have d(Tx,, Tx) — 0 asn — oo.
Lemma 1 ([11]). Let (X, d) be a generalized metric space and let {x,} be a Cauchy sequence

in X such that x,, # x, whenever m # n. Then the sequence {x,} can converge to at most one
point.

Lemma 2 ([11]). Let (X,d) be a generalized metric space and let {x,} be a sequence in X
which is both Cauchy and convergent. Then the limit x of {x,} is unique. Moreover, ifz € X
is arbitrary, then 1i_r>n d(xp,z) =d(x,z).

n—oo

Theorem 1 ([13]). Let (X, d) be a complete generalized metric space and suppose the mapping
f X — X satisfiesd(f(x), f(y)) < kd(x,y) forall x,y € X and fixed k € (0,1). Then f has a
unique fixed point x* and nlgr(}of”(x) = x* foreach x € X.

Definition 3 ([18]). Let F be the family of all functions F : (0, +00) — R such that:
(F1) F is strictly increasing, that is, for alla, § € (0,+00) ifa < B then F(x) < F(B);

(F2) for each sequence {a,} of positive numbers, the following holds: nh_r}n ay = 0 if and only

if lim F(a,) = —o0;
n— o0

(F3) there existsk € (0,1) such that lim «FF(a) = 0.

a—0t
Definition 4 ([18]). Let (X,d) be a metric space. Amap T : X — X is said to be an F-contrac-
tion on (X, d) if there exist F € F and T > 0 such that forall x,y € X

from d(Tx,Ty) > 0 follows that T+ F(d(Tx,Ty)) < F(d(x,y)). (1)
Theorem 2 ([18]). Let (X, d) be a complete metric space and let T : X — X be an F-contraction.
Then
(1) T has a unique fixed point x*;
(2) for all x € X the sequence {T"x} is convergent to x*.

Remark 1 ([18]). Let T be an F-contraction. Then d(Tx, Ty) < d(x,y) forall x,y € X such that
Tx # Ty. Also, T is a continuous map.
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1 THE MAIN RESULTS

In this paper, we prove fixed point theorems for F-contraction and F-weak contraction in
complete generalized metric spaces. We also present uniqueness of the fixed point.

Theorem 3. Let (X,d) be a complete generalized metric space and T : X — X be an F-
contraction. If F is continuous, then

(1) T has a unique fixed point x* € X;

(2) for all x € X, the sequence {T"x} is convergent to x*.

Proof. Let xy € X be an arbitrary point. By induction, we easily construct a sequence {x,}
such that
Xpp1 = Ty = T"lxg foralln € N. (2)

If there exists n € IN, x, = x,,41, the proof is complete. So, we assume that x,, # x,,11 for
all n € IN.
Step 1. We shall prove that

}}iirgod(xn, Xp+1) = 0.

Substituting x = x,_1 and y = x,, in (1), we obtain
T+ F(d(Tx,—1,Txy)) < F(d(xy-1,%n)),
ie, F(d(Tx,—1,Txy)) < F(d(x,—1,xn)) — T. Repeating this process, we get
F(d(Txp—1,Txy)) < F(d(xy—1,%xn)) — 7= F(d(Txp—2, Txy_1)) — T
< F(d(xp—2,x4-1)) — 27 = F(d(Txy_3, Txy—2)) — 2T (3)
< F(d(xp—3,x3—2)) — 37 < F(d(x0,x1)) — nt.

From (3), we obtain 1211 F(d(Txy—1,Txn)) = —oo, which together with (F2) and Definition 3
n—oo

gives lgn d(Tx,—1, Tx,) = 0, which implies that
n—oo

lim d(x,, x,41) = 0. 4)

n—oo

Step 2. We will prove that lgn d(xn, xp42) = 0. By (1), we have
n—oo

< F(d(xp—1,%p41)) — T =F(d(Txp—2,Txy)) — T
< F(d(xp—2,x4)) — 2T = F(d(Txy—3,Tx,—1)) — 2T (5)
< F(d(xp—3,x,-1)) — 3T < F(d(x9,x2)) — nt.

From (5) we obtain 1131 F(d(Txy—1,Txy41)) = —oco, which together with (F2) and Definition 3
n—oo
gives lgn d(Tx,—1, Txy11) = 0, which implies that,
n—oo

lim d(x,, x,42) = 0. (6)

n—o0

Step 3. We will prove that x,, # x;, for all m # n. We argue by contradiction. Suppose that
Xn = Xy, for some m,n € N with m # n. Since d(xp, po) > 0, for each p € IN, without loss of
generality, we may assume that m > n + 1. Consider now



174 SANGURLU S.M., TURKOGLU D.

F(d(xp,xp41)) = F(d(xn, Txy)) = F(d(xm, Txm)) = F(d(Txp—1, Txm))
< F(d(xp—1,%m)) — T < F(d(xy41,Xn)) — (m —n)T.
It is a contradiction.
Step 4. We will show that in this case {x, } is a Cauchy sequence. Suppose to the contrary.

Then, there is an € > 0 such that for an integer k, there exist natural numbers m(k) > n(k) > k
such that

A(X (k) Xm(k)) > € (7)
For every integer k let m (k) be the least positive integer exceeding n(k) satisfying (7), we get

A(Xp (k) Xm(ky—1) < €. (8)

Now, using (7), (8) and the quadrilateral inequality, we find that

& <Ay, Xn(k) < AXn(ky Xm(r)—2) + A Xy -2, Xy 1) + A Xk) 15 Xn(x))
< d(Xp(k)s Xm(k)—2) T A(Xm (k) =2/ Xm(k)-1) T &
Then, by (4) and (6), it follows that
lim d(xn(k),xm(k)) = E. (9)

k—o0

Applying (1) with x = x,,4)_1 and y = x,,()_1, we have

F(d (k) Xnk))) = F(A(T2p00 -1, TXp=1)) < F(A(Xp(k)—1, Xn(t)—1)) — T-

If k — oo in the above inequality and using (9) we obtainF(e) < F(e) — 7.

This contradiction shows that {x,} is a Cauchy sequence. (X,d) is complete, there exists
x* € X such that
lggod(xn, x*) =0. (10)

n

Since T is continuous, we obtain from (10) that

nlgrgod(an,Tx ) = nlglo\od(Txn,Tx ) =0.

That is lim x,, 11 = Tx*. Taking into account Lemma 2 we conclude that Tx* = x*. That is x*
n—o0

is a fixed point of T. Now, let us to show that T has at most one fixed point. Indeed if x,y € X
be two distinct fixed points of T, thatis, Tx = x # y = Ty. Therefore d(Tx, Ty) = d(x,y) > 0,
then we get

Fld(x,y)) = F(d(Tx, Ty)) < T+ F(d(Tx, Ty)) < F(d(x,y)),

which is a contradiction. Therefore, the fixed point is unique. O

Definition 5. Let (X, d) be a generalized metric space. A map T : X — X is said to be an
F-weak contraction on (X, d) if there exist F € F and T > 0 such that for all x,y € X

d(Tx,Ty) > 0= 1+ F(d(Tx,Ty)) < F(max{d(x,y),d(x, Tx),d(y, Ty)}). (11)

Remark 2. Every F-contraction is an F-weak contraction on (X, d). But the converse is not
true.
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Example 1. Let X = AU B, where A = {1,2,3,4}, B = [5, 6|. Define the generalized metric d
on X as follows:

d(x,y) =0, x=yandx,y € A,
d(1,2) =d(3,4) =2, d(1,3) = d(2,3) = 1, d(1,4) = d(2,4) =5,
d(x,y) =|x—y|, forx ¢ A,ye Borx € B,yc Aorx,y € B.

It is easy to show that (X, d) is a complete generalized metric space, but (X, d) is not a metric
space because d does not satisfy the triangle inequality for all x,y,z € X. Indeed,

5=4d(1,4) >d(1,3)+d(3,4) =1+2=3.

LetT : X — X be given by

[ 3 if x€A,
Tx_{1 if xeB.

Since T is not continuous, T is not F-contraction by Remark 1. For x € A and y € B, we have
d(Tx,Ty) =d(3,1) =1>0

and max{d(x,vy),d(x, Tx),d(y, Ty)} > 4. Therefore, by choosing Fa = Inwa, « € (0,4o0) and
T = In 3, we see that T is F -weak contraction.

Theorem 4. Let (X, d) be a complete generalized metric space and T : X — X be an F-weak
contraction. If T or F is continuous, then

(1) T has a unique fixed point x* € X;

(2) for all x € X, the sequence {T"x} is convergent to x*.

Proof. Let xp € X be an arbitrary point. By induction, we easily construct a sequence {x,}
such that
Xpi1 = Tx, = T"lxg foralln € N.

If there exists n € IN, x, = x,,41, the proof is complete. So, we assume that x,, # x,,11 for
all n € IN.
Step 1. We will prove that

Jiiglod(xn+1, xy) = 0.

Substituting x = x,,_; and y = x; in (11), we obtain

F(d(xp11,xn)) =
max{d(xn, X—1),d(xn, Txn),d(xp—1, Txp-1)}) — T
max{d(xn, x,-1),d(Xn, Xp41),d(Xp—1,%0)}) — T
), d

max{d(xy, x,_1),d(xn, Xy41)}) — T

(12)

If there exists n € IN such that max{d(x,, x,,_1),d(xn, Xy11)} = d(xn, x,41), from (12) becomes
F(d(ns1, %)) < F(d(x1,%0)) — T < F(d(x1,50)):
It is a contradiction. Therefore,

max{d(x,, x,_1),d(xn, Xp41)} = d(xn, Xy_1) (13)
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for all n € IN. That is from (F1), (12) and (13), we get

d(xn/ xn+1) < d(xn/ xn—l)- (14)
Thus, from (12), we have F(d(x;+1, %)) < F(d(xn,x,-1)) — T for all n € IN. It implies that
F(d(xui1, %)) < F(d(x1,X%0)) — nt (15)

for all n € IN. Taking the limit as n — oo in (15), we get r}gn F(d(xp41,xn)) = —oo that together
with (F2) gives

Tim d(x, 1, %) = 0. (16)
Step 2. We will prove that
nlgn d(xn, Xn42) = 0. 17)

By (11), we have

F(d(xn, xp42)) = F(d(Txy—1, Txp11))
< F(max{d(xnflr xn+1)r d(xnflr Txnfl)r d(xn+1/ Txn+1)}> -7 (18)
- F(max{d(xn_l, xn—i—l)/ d(xn—lz xn); d(xn+1/ anrZ)}) —T.

By (14) and from (F2), we have
max{d(xn_l, xn—i—l)/ d(xn—lz xn); d(xn+1/ anrZ)} = max{d(xn—ll xn+1)/ d(xl’l—ll xn)}
Take a, = d(xy, x,42) and b, = d(xy, x,,41). Thus, from (18)

F(an) = F(d(xu, Xn42)) = F(d(Txy—1, Txp41))
< F(max{d(x,—1, Xur1),d(xn-1, Txp—1),d(Xu11, Txny1)}) — T (19)
= F(max{a,_1,b,_1)}) — T.
Again, by (14) b, < b,_1 < max{a,_1,b,-1}. Therefore max{a,, b,} < max{a,—1,b,-1},
for all n € IN. Then the sequence {max{ay, b, } } is monotone nonincreasing, so it converges to
some t > 0. Assume that t > 0. Now, by (16)

r}gr;o supa, = nlglc}o sup max{a,, b, } = nlgrc}o max{a,, b,} =t.

Taking n — co in (19), since F is continuous,
F(t) = lim sup F(ay) < lim sup(F(max{a,1,by-1}) — 7)

< lim F(max{a,_1,b,_1}) —T=F(t) — 7,

n—oo

which is a contradiction, that is (17) is proved.
Step 3. We will prove that x,, # x;, for all m # n.
We argue by contradiction. Suppose that x, = x,, for some m,n € IN with m # n. Since
d (xp, xp+1) > 0, for each p € IN, without loss of generality, we may assume that m > n + 1.
Consider now
F(d(xp,xp41)) = F(d(xn, Txy)) = F(d(xm, Txm)) = F(d(Txp—1, Txp))
(max{d(xp_1, Xm), d(Xp—1, Txp_1),d(Xm, Txm)) — T
(max{d(xy_1,Xm), d(Xp—1,%Xm), d(Xm, Xms1)}) — T
( d

) (20)
max{d(xXy—1,Xm), d(Xm, Xm11)}) — T.
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If max{d(xp—1, Xm), d(Xm, Xms1)} = d(Xpm—1, Xm), then from (20), we get
F(d(xn/ xn+1)) < F(d(xmflrxm» —17< F(d(xn/ xn+1)) - (m - ”)T-

It is a contradiction. If max{d(x;;—1,%m),d(Xm, Xm+1)} = d(Xm, Xm+1), then from (20), we
(m —n+1)7. Itis a contradiction

get F(d(xy, %11)) < F(d(m 1)) — 7 < F(d(n, n11))
Step 4. We will prove that {x, } is a Cauchy sequence, that is
lim d(xn,xn+p) =0forall p € N.

n—co
From (F3), there exists k € (0,1) such that
Bim (041, %) FF(d (3011, 1)) = 0 @
(22)

By using (15) and from (21), we have
(d(xps1,%n))nT <0

(A, 2n)) (F(d(xns1, ) = F(d(x1,%))) <

for all n € IN. By using (16), (21) and taking the limit as n — oo in (22), we get
lim (n(d(xy41,x4))<) = 0. (23)
(24)

Then there exists n; € IN such that n(d(x,+1,x,))" < 1forall n > ny, that is

S
= —

d(xﬂ+1r xl’l) S

From (16) and (17) the cases p = 1 and p = 2 are proved. Now, take p > 3 arbitrary. It is

sufficient to examine two cases.
Case 1. Suppose that p = 2m + 1 where m > 1. Then, by using step 3 and the quadrilateral

inequality together with (24), we get
d(xl’lr xn+p) = d(xn/ Xnom41) < d(xnr Xp41) + d(xn+1/ xn+2) + e A d(xn+2m/ xn+2m+1)
n+2m io: 1 (25)
ik

< ), d(xig, ) <
i=n
is convergent, taking the limit as n — oo in the above inequality, we

Since the series Z
n= 1nk
obtain lgn d(xn, Xn1p) = 0.
n—oo
Case 2. Suppose that p = 2m where m > 2. Then, by using step 3 and the quadrilateral

inequality together with (24), we get
d(xn, xn+p) = d(xn, Xnyom) < d(Xn, Xpy1) + d(Xng1, Xng2) + -+ d(Xnr2m—1, Xnr2m)
(26)

»\~|

n+2m—1 1)
< Z d x1+1/ xl < Z

i=n
is convergent, taking the limit as n — oo in the above inequality, we

Since the series Z
n= 1nk

obtain Jgrgod(xn,xn+p) =0
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This proves that {x, } is Cauchy sequence in X. Since X is complete, there exists x*, that is
a fixed point of T by two following cases.
Case 3. T is continuous. We have d(x*, Tx*) = limd(x,, Tx,) = limd(x,, x,+1) = 0. This

n—oo n—oo
proves that x* is a fixed point of T.
Case 4. F is continuous. In this case, we consider two following subcases.
Subcase 1. For each n € IN, there exists i, € N such that x; , = Tx" and i, > i,,_1 where
ip = 1. Then we have

x* = limx; = limTx* = Tx".
n—oo n+ n—oo

This proves that x* is a fixed point of T.
Subcase 2. There exists ny € IN such that x,, 11 # Tx* foralln > ny. Thatis d(Tx,, Tx*) > 0
for all n > ny. It follows from (11) that

T+ F(d(xpsq, Tx")) = T+ F(d(Txy,, Tx*)) < F(max{d(x,,x*),d(x,, Tx,),d(x*, Tx*)}) )
= F(max{d(x,, x*),d(xn, xp41),d(x*, Tx*)}).

If d(x*, Tx*) > 0 then by the fact

Hmd(xn, x7) = Hmd(x", x041) =0,

there exists n; € IN such that for all n > nq, we have max{d(x,, x*),d(x,, x,11),d(x*, Tx*)} =
d(x*, Tx*). From (27), we get

T+ F(d(xy4q, Tx")) = F(d(x*, Tx")), (28)
for all n > max{ng, n1 }. Since F is continuous, taking the limit as n — oo in (28), we obtain
T+ F(d(x*, Tx")) = F(d(x*, Tx")).

It is contradiction. Therefore, d(x*, Tx*) = 0, that is, x* is a fixed point of T. By two above
cases, T has a fixed point x*. Now, we prove that the fixed point of T is unique. Let x], x; be
two fixed points of T. Suppose to the contrary that xj # x3. Then Tx] # Tx;. It follows from
(11) that

T+ F(d(x],x3)) = T+ F(d(Tx], Tx;)) < F(max{d(x],x5),d(x], Txy),d(x3, Tx3)})
= F(max{d(x1, x3),d(x1, x7),d(x3, x3) }) = F(d(x1,%3)).
It is a contradiction. Then d(x7, x3) = 0, that is x] = x3. This proves that the fixed point of T is

unique.

It follows from the proof of Theorem 4 that lgn T'x = lgn Xpe1 = X% O
n—00 n—o00

Example 2. Let F be given as in Example 1. Then T is an F-weak contraction. Therefore,
Theorem 4 can be applicable to T and the unique fixed point of T is 3.

Example 3. Let X = {%, %, ?I, %} Define the generalized metric d on X as follows:

d(x,y) =0, x=yand x,y € X,

33 a3 02 (b i) ~0s.a(3 ) ~a32) e
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It is easy to show that (X, d) is a complete generalized metric space, but (X,d) is not a
metric space because d does not satisfy the triangle inequality for all x,y,z € X. Indeed,

0,6 :dG,Z) > d(%%) +d(§,2) —0,240,3=0,5.

Let T : X — X be defined as follows:

= {

Let Fa = Ina, & € (0,+c0) and T = In 3. Then, for x € {},2,3} and y = £, we get
F = ((r(3)7(9) 103

< #(max{d(3:5).4(37(3)) 45 7(5))}) - FO.0)
F0.9 = #(a(1(3).7(2))) +

< #(max{d(5.5).4(5:7(3)) a5 7(5))}) = FO.0)
F9) = ((r(3)7(9) 103

< (max{a(3 G 1)) 1()))) - roe

Therefore, T is a F-weak contraction in generalized metric space. That is, Theorem 4 can be

S

WIN
W

’ %!I}!

X
X

Gl

4

QINHG

applicable to T and the unique fixed point of T is Z
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[TpyHIAI cTHCKYIOUX BiAOOpakeHb € BaXKAMBMM Pe3YABTaTOM, IIIO Ma€ b6araTo 3acTOCYBaHb.
AesIKi aBTOpM I[IKaBUAMCH IIMM MPMHIMIIOM B Pi3HMX MeTpUUYHMX IIpocTopax. bpaxuiapi A. BBiB
IIOHSITTS y3araAbHEHOTO METPUYHOTO IIPOCTOPY, 3aMiHMBIII HEPiBHICTD TPMKYTHMKA GiABII 3aTaAb-
Hoto HepiBHicTiO d(x,y) < d(x,u)+ d(u,v) + d(v,y) AAs BciX OIApHO Pi3HMX TOUOK X, Y, U,V 3
X. Taxmm umHOM, OYAB-SKVIT METPUIHMIL IIPOCTIp € y3aTaAbHEHMM METPUYHMM IIPOCTOPOM, aAe
He Hapnaxyu. Bin A0oBiB Teopemy banaxa npo dpikcoBaHy TOUKY B TakmMx IIpocTopax. AesKi aBToOpu
AOBeAM pisHi TvIM TeopeM Ipo pikcoBaHy TOUKY, PO3LIMpPIOOUM pe3yAbTaT banaxa. Takx Bapaos-
CBhKMI A. TIpeACTaBMB HOBMI BUA CTUCKYIOUMX BiAOOpaXkeHb, SIKMI y3aTaAbHIOE TTOHSTTS CTUCKYIO-
4oro Biaobpaxensst banaxa. Bukopucrosyroun siaobpaxenss F : RT™ — IR, BiH BBiB HOBWIT THII
CTUCKYIOUMX BiaoOpakeHb, sIKi HasuBatoTbcst F-ctuckom. Takox BiH A0BiB TeopeMy Ipo ¢pikcoBaHy
TOUKY AAS F-cTrcky.

Y aaHiit poboTi My po3rasiHy AU F-cTrck Ta cAabkmit F-CTHCK y TOBHMX y3araAbHEHMX MeTPUYHMX
mpocTopax. AOBeA€HO AesiKi pe3yAbTaTy AAS F-cTuckiB i crabxmx F-cTHCKiB i BcTaHOBAEHO icHyBaH-
HSI Ta €EAMHICTD ¢piKCOBaHOI TOUKM AAST F-CTHCKYyIounx i caabkmx F-cTuckyroumx BiaobpaskeHb y IOB-
HIX y3araAbHMX METPUUYHMX pocTopax. HaBeAeHO AesIKi IpuKAaAM AAS iAIOCTpaLlil BUKOPMCTAHHS
OTPMMAaHNX Pe3yAbTaTiB. AaHi pe3yAbTaTy € pO3IMIMpPEHHSIM i y3araAbHEHHSIM 6araTboX OTPMMAaHIX
y AiTepaTypi pe3yAbTaTiB.

Kntouosi cnosa i ¢ppasu: F-cTmck, cAabkmit F-CTHCK, y3araAbHEHMI METPUIHIIA IIPOCTip.



