

Карпатські матем. публ. 2017, Т.9, №2, С.154–162

Mulyava O.¹, Trukhan Yu.²

ON MEROMORPHICALLY STARLIKE FUNCTIONS OF ORDER α AND TYPE β , WHICH SATISFY SHAH'S DIFFERENTIAL EQUATION

According to M.L. Mogra, T.R. Reddy and O.P. Juneja an analytic in $\mathbb{D}_0=\{z:0<|z|<1\}$ function $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty}f_nz^n$ is said to be meromorphically starlike of order $\alpha\in[0,1)$ and type $\beta\in(0,1]$ if $|zf'(z)+f(z)|<\beta|zf'(z)+(2\alpha-1)f(z)|, z\in\mathbb{D}_0$. Here we investigate conditions on complex parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 , under which the differential equation of S. Shah $z^2w''+(\beta_0z^2+\beta_1z)w'+(\gamma_0z^2+\gamma_1z+\gamma_2)w=0$ has meromorphically starlike solutions of order $\alpha\in[0,1)$ and type $\beta\in(0,1]$. Beside the main case $n+\gamma_2\neq 0$, $n\geq 1$, cases $\gamma_2=-1$ and $\gamma_2=-2$ are considered. Also the possibility of the existence of the solutions of the form $f(z)=\frac{1}{z}+\sum_{n=1}^mf_nz^n, \ m\geq 2$, is studied. In addition we call an analytic in \mathbb{D}_0 function $f(z)=\frac{1}{z}+\sum_{n=1}^mf_nz^n$ meromorphically convex of order $\alpha\in[0,1)$ and type $\beta\in(0,1]$ if $|zf''(z)+2f'(z)|<\beta|zf''(z)+2\alpha f'(z)|, z\in\mathbb{D}_0$ and investigate sufficient conditions on parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 under which the differential equation of S. Shah has meromorphically convex solutions of order $\alpha\in[0,1)$ and type $\beta\in(0,1]$. The same cases as for the meromorphically starlike solutions are considered.

Key words and phrases: meromorphically starlike function of order α and type β , meromorphically convex function of order α and type β , Shah's differential equation.

E-mail: info@nuft.edu.ua(MulyavaO.), yurkotrukhan@gmail.com(TrukhanYu.)

INTRODUCTION AND PRELIMINARY LEMMAS

An analytic univalent in $\mathbb{D} = \{z : |z| < 1\}$ function

$$f(z) = \sum_{n=0}^{\infty} f_n z^n \tag{1}$$

is said to be convex if $f(\mathbb{D})$ is a convex domain. It is well known [2, p. 203] that the condition $\operatorname{Re} \left\{ 1 + z f''(z) / f'(z) \right\} > 0 \ (z \in \mathbb{D})$ is necessary and sufficient for the convexity of f. By W. Kaplan [4] a function f is said to be close-to-convex in \mathbb{D} (see also [2, p. 583]) if there exists a convex in \mathbb{D} function f such that $\operatorname{Re} \left(f'(z) / \Phi'(z) \right) > 0 \ (z \in \mathbb{D})$. A close-to-convex function f has the characteristic property that the complement G to the domain $f(\mathbb{D})$ can be filled with rays f which go from f and lie in f. Every close-to-convex in f function f is univalent in f and only if the function

$$g(z) = z + \sum_{n=2}^{\infty} g_n z^n \tag{2}$$

УДК 517.925.44

2010 Mathematics Subject Classification: 30C45, 34M05.

¹ National University of Food Technologies, 68 Volodymyrska str., 01601, Kyiv, Ukraine

 $^{^2}$ Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine

is close-to-convex in \mathbb{D} , where $g_n = f_n/f_1$. We remark also, that a function defined by (2) is said to be starlike in \mathbb{D} , if $g(\mathbb{D})$ is a starlike domain with respect to the origin. It is clear that every starlike function is close-to-convex.

S.M. Shah [8] indicated conditions on real parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 of the differential equation

$$z^{2}w'' + (\beta_{0}z^{2} + \beta_{1}z)w' + (\gamma_{0}z^{2} + \gamma_{1}z + \gamma_{2})w = 0,$$
(3)

under which there exists an entire transcendental solution given by (1) such that f and all its derivatives are close-to-convex in \mathbb{D} . In particular he obtained the following result: if $\beta_1 + \gamma_2 = 0$, $-1 \le \beta_0 < 0$, $\beta_1 > 0$, $\gamma_0 = 0$ and $-\beta_1/2 < \gamma_1 \le 0$, then equation (3) has an entire solution (2) such that all $g^{(n)}$ ($n \ge 0$) are close-to-convex in \mathbb{D} and $\lim_{g \to \infty} M_g(r) = (1 + o(1))|\beta_0|r$ as $r \to +\infty$, where $M_g(r) = \max\{|g(z)|: |z| = r\}$.

The investigations are continued in papers [9–14]. In particular in the case of complex parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 in [13] it is proved that if $\gamma_0=0$, $\beta_1+\gamma_2=0$, $\beta_0\neq 0$, $|\beta_1|<2$ and $\frac{2(|\beta_1|+|\gamma_1|)}{2-|\beta_1|}<1$ ln 2 then equation (3) has an entire solution (2) such that all $g^{(n)}$ ($n\geq 0$) are starlike and, thus, close-to-convex in $\mathbb D$ and $\lim_{g \to \infty} M_g(r)=(1+o(1))|\beta_0|r$ as $r\to +\infty$. An analog of this assertion for convex functions is obtained in [14], where it is proved that if $\gamma_0=0$, $\beta_1+\gamma_2=0$, $\beta_0\neq 0$, $|\beta_1|<2$ and $\frac{2(|\beta_1|+|\gamma_1|)}{2-|\beta_1|}<\frac{\ln 2}{2}$ then equation (3) has an entire solution (2) such that all $g^{(n)}$ ($n\geq 0$) are convex in $\mathbb D$.

Let Σ be the class of functions defined by

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} f_n z^n,$$
 (4)

analytic in $\mathbb{D}_0 = \{z : 0 < |z| < 1\}$. A function $f \in \Sigma$ is said ([3,5]) to be meromorphically star-like of order $\alpha \in [0, 1)$ if Re $\{-zf'(z)/f(z)\} > \alpha$ $(z \in \mathbb{D}_0)$, and is said to be meromorphically convex of order $\alpha \in [0, 1)$ if Re $\{-(1 + zf''(z))/f'(z)\} > \alpha$ $(z \in \mathbb{D}_0)$.

Conditions on complex parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 under which Shah's differential equation has meromorphically starlike and meromorphically convex solutions of order $\alpha \in [0, 1)$ are investigated in [1]. It is known ([1,7]) that if

$$|zf'(z) + f(z)| < |zf'(z) + (2\alpha - 1)f(z)| \tag{5}$$

for all $z \in \mathbb{D}_0$ then the function f is meromorphically starlike of order $\alpha \in [0, 1)$.

By B. Uralegaddi [15] a function $f \in \Sigma$ is meromorphically starlike of order $\beta \in (0, 1]$ if

$$|zf'(z) + f(z)| < \beta |zf'(z) - f(z)|, \quad z \in \mathbb{D}_0.$$
 (6)

Finally, combining (5) and (6), M.L. Mogra, T.R. Reddy and O.P. Juneja [6] called a function $f \in \Sigma$ meromorphically starlike of order $\alpha \in [0, 1]$ and type $\beta \in (0, 1]$ if

$$|zf'(z) + f(z)| < \beta |zf'(z) + (2\alpha - 1)f(z)|, \quad z \in \mathbb{D}_0,$$

and proved the following lemma.

Lemma 1. If

$$\sum_{n=1}^{\infty} ((1+\beta)n + \beta(2\alpha - 1) + 1)|f_n| \le 2\beta(1-\alpha),\tag{7}$$

then the function defined by (4) is meromorphically starlike of order $\alpha \in [0, 1)$ and type $\beta \in (0, 1]$.

Here we investigate conditions on complex parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 such that equation (3) has meromorphically starlike solutions of order $\alpha \in [0, 1]$ and type $\beta \in (0, 1]$.

We need also the following lemma [1].

Lemma 2. A function defined by (4) is a solution of equation (3) if and only if

$$2 - \beta_1 + \gamma_2 = 0$$
, $-\beta_0 + \gamma_1 = 0$, $\gamma_0 + 2(1 + \gamma_2)f_1 = 0$, $3(2 + \gamma_2)f_2 + 2\gamma_1f_1 = 0$ (8)

and for $n \ge 3$

$$(n+1)(n+\gamma_2)f_n + n\gamma_1 f_{n-1} + \gamma_0 f_{n-2} = 0. (9)$$

1 MEROMORPHICALLY STARLIKE SOLUTIONS

We assume that

$$n + \gamma_2 \neq 0, \quad n \geq 1. \tag{10}$$

Then equalities (8) and (9) yields that if $\gamma_0 = 0$ then all $f_n = 0$, that is, the condition (7) is equivalent to the condition $0 \le \beta(1 - \alpha)$. Therefore, the following statement is true ([1]).

Proposition 1. If $\beta_1 = 2 + \gamma_2$, $\beta_0 = \gamma_1$, $\gamma_0 = 0$ and condition (10) holds then differential equation (3) has the solution f(z) = 1/z, which is meromorphically starlike of order α and type β for each $\alpha \in [0, 1)$ and $\beta \in (0, 1]$.

Now we assume that $\gamma_0 \neq 0$. Then $f_1 = -\frac{\gamma_0}{2(1+\gamma_2)}$, $f_2 = -\frac{2\gamma_1}{3(2+\gamma_2)}f_1$ and $f_n = -\frac{n\gamma_1}{(n+1)(n+\gamma_2)}f_{n-1} - \frac{\gamma_0}{(n+1)(n+\gamma_2)}f_{n-2}$. Using these equalities and Lemma 1 we prove the following theorem.

Theorem 1. Let $\alpha \in [0, 1)$ and $\beta \in (0, 1]$. If $\beta_1 = 2 + \gamma_2$, $|\gamma_2| < 1$, $\beta_0 = \gamma_1$ then differential equation (3) has a solution given by (4), which by the condition

$$\frac{(1+\beta\alpha)|\gamma_0|}{1-|\gamma_2|} \le 2\beta(1-\alpha)\left(1 - \frac{(3+(1+2\alpha)\beta)|\gamma_1|}{3(1+\alpha\beta)(2-|\gamma_2|)} - \frac{(2+\beta(1+\alpha))|\gamma_0|}{4(1+\alpha\beta)(3-|\gamma_2|)}\right) \tag{11}$$

is meromorphically starlike of order α and type β .

Proof. Since $|\gamma_2| < 1$ then (10) holds and from the indicated above equalities for f_j we obtain

$$\begin{split} &\sum_{n=1}^{\infty} \left((1+\beta)n + \beta(2\alpha-1) + 1 \right) |f_n| = 2(1+\beta\alpha)|f_1| + (3+\beta(1+2\alpha))|f_2| \\ &+ \sum_{n=3}^{\infty} \left((1+\beta)n + \beta(2\alpha-1) + 1 \right) \left| \frac{n\gamma_1}{(n+1)(n+\gamma_2)} f_{n-1} + \frac{\gamma_0}{(n+1)(n+\gamma_2)} f_{n-2} \right| \\ &\leq 2(1+\beta\alpha)|f_1| + (3+\beta(1+2\alpha))|f_2| \\ &+ \sum_{n=3}^{\infty} \frac{n((1+\beta)n + \beta(2\alpha-1) + 1)|\gamma_1|}{(n+1)(n-|\gamma_2|)} |f_{n-1}| + \sum_{n=3}^{\infty} \frac{((1+\beta)n + \beta(2\alpha-1) + 1)|\gamma_0|}{(n+1)(n-|\gamma_2|)} |f_{n-2}| \\ &= 2(1+\beta\alpha)|f_1| + (3+\beta(1+2\alpha))|f_2| \\ &+ \sum_{n=2}^{\infty} \frac{(n+1)((1+\beta)(n+1) + \beta(2\alpha-1) + 1)|\gamma_1|}{(n+2)(n+1-|\gamma_2|)} |f_n| \\ &+ \sum_{n=1}^{\infty} \frac{((1+\beta)(n+2) + \beta(2\alpha-1) + 1)|\gamma_0|}{(n+3)(n+2-|\gamma_2|)} |f_n| \\ &= 2(1+\beta\alpha)|f_1| + (3+\beta(1+2\alpha))|f_2| - \frac{2(3+\beta(1+2\alpha))|\gamma_1|}{3(2-|\gamma_2|)} |f_1| \\ &+ \sum_{n=1}^{\infty} \frac{(n+1)(n+2+(n+2\alpha)\beta)|\gamma_1|}{(n+2)(n+1-|\gamma_2|)} |f_n| + \sum_{n=1}^{\infty} \frac{(n+3+\beta(n+1+2\alpha))|\gamma_0|}{(n+3)(n+2-|\gamma_2|)} |f_n|, \end{split}$$

whence

$$\sum_{n=1}^{\infty} \left(1 - \frac{(n+1)(n+2+(n+2\alpha)\beta)|\gamma_{1}|}{(n+1+\beta(n-1+2\alpha))(n+2)(n+1-|\gamma_{2}|)} - \frac{(n+3+\beta(n+1+2\alpha))|\gamma_{0}|}{(n+3)(n+1+\beta(n-1+2\alpha))(n+2-|\gamma_{2}|)} \right) ((1+\beta)n+\beta(2\alpha-1)+1)|f_{n}| \\
\leq 2(1+\beta\alpha)|f_{1}| + \frac{2(3+\beta(1+2\alpha))|\gamma_{1}|}{3(2-|\gamma_{2}|)}|f_{1}| - \frac{2(3+\beta(1+2\alpha))|\gamma_{1}|}{3(2-|\gamma_{2}|)}|f_{1}| \\
= 2(1+\beta\alpha)|f_{1}| \leq \frac{(1+\beta\alpha)|\gamma_{0}|}{1-|\gamma_{2}|}.$$
(12)

Since the sequences $\left(\frac{(n+2+(n+2\alpha)\beta)}{n+1+\beta(n-1+2\alpha)}\right)$ and $\left(\frac{n+1}{(n+2)(n+1-|\gamma_2|)}\right)$ are decreasing then

$$\frac{(n+1)(n+2+(n+2\alpha)\beta)|\gamma_1|}{(n+1+\beta(n-1+2\alpha))(n+2)(n+1-|\gamma_2|)} \le \frac{(3+(1+2\alpha)\beta)|\gamma_1|}{3(1+\alpha\beta)(2-|\gamma_2|)},\tag{13}$$

and by analogy

$$\frac{(n+3+\beta(n+1+2\alpha))|\gamma_0|}{(n+3)(n+1+\beta(n-1+2\alpha))(n+2-|\gamma_2|)} \le \frac{(2+\beta(1+\alpha))|\gamma_0|}{4(1+\alpha\beta))(3-|\gamma_2|)}.$$
 (14)

Condition (11) implies the inequality

$$\frac{(3+(1+2\alpha)\beta)|\gamma_1|}{3(1+\alpha\beta)(2-|\gamma_2|)} + \frac{(2+\beta(1+\alpha))|\gamma_0|}{4(1+\alpha\beta))(3-|\gamma_2|)} < 1.$$

Therefore, from (12) in view of (13) and (14) we have

$$\left(1 - \frac{(3 + (1 + 2\alpha)\beta)|\gamma_{1}|}{3(1 + \alpha\beta)(2 - |\gamma_{2}|)} - \frac{(2 + \beta(1 + \alpha))|\gamma_{0}|}{4(1 + \alpha\beta))(3 - |\gamma_{2}|)}\right) \sum_{n=1}^{\infty} ((1 + \beta)n + \beta(2\alpha - 1) + 1)|f_{n}| \\
\leq \frac{(1 + \beta\alpha)|\gamma_{0}|}{1 - |\gamma_{2}|},$$

whence in view of (11) we obtain inequality (7). By Lemma 1 function (4) is meromorphically starlike of order α and type β .

Now we consider the cases where the condition (10) does not hold. At first, we assume that $1 + \gamma_2 = 0$. Then in view of (8) $\gamma_0 = 0$ and we can choose $f_1 \neq 0$, because if $f_1 = 0$ then in view of (8) $f_2 = 0$, and in view of (9) all $f_n = 0$ and we come to the case f(z) = 1/z, which we considered above.

We assume that $f_1 = a^2 \neq 0$ and $\gamma_1 = 0$. Since $2 + \gamma_2 \neq 0$, we have $f_2 = 0$ and in view of the equality $\gamma_0 = 0$, all $f_n = 0$ for $n \geq 2$. Thus, the solution has the form $f(z) = 1/z + a^2z = a(1/(az) + az) = 2aJ(az)$, where J is the function of Joukowsky. Therefore, using Lemma 1, we get the following statement.

Proposition 2. If $\beta_1 = 1$, $\gamma_2 = -1$ and $\beta_0 = \gamma_1 = \gamma_0 = 0$ then differential equation (3) has the solution f(z) = J(az), which by the condition $(1 + \beta \alpha)|a|^2 \le \beta(1 - \alpha)$ is meromorphically starlike of order α and type β .

If $\gamma_1 \neq 0$ then in view of the equality $\gamma_2 = -1$ from (8) we have $f_2 = -2\gamma_1 f_1/3$ and since $\gamma_0 = 0$, we obtain $f_n = -\frac{n\gamma_1}{n^2 - 1} f_{n-1}$ for $n \geq 3$. Using the recurrent formula we prove the following theorem.

Theorem 2. If $\beta_1 = 1$, $\gamma_2 = -1$, $\gamma_0 = 0$, $\beta_0 = \gamma_1 \neq 0$ then there exists a solution given by (4) of differential equation (3), which by the condition

$$\frac{3+\beta+2\alpha\beta}{3(1+\alpha\beta)}|\gamma_1|<1\tag{15}$$

is meromorphically starlike of order α and type β .

Proof. Since, as above,

$$\sum_{n=1}^{\infty} ((1+\beta)n + \beta(2\alpha - 1) + 1)|f_n| = 2(1+\beta\alpha)|f_1|$$

$$+ \sum_{n=1}^{\infty} \frac{((1+\beta)(n+1) + \beta(2\alpha - 1) + 1)}{(1+\beta)n + \beta(2\alpha - 1) + 1} \frac{(n+1)|\gamma_1|}{((n+1)^2 - 1)} ((1+\beta)n + \beta(2\alpha - 1) + 1)|f_n|$$

$$\leq 2(1+\beta\alpha)|f_1| + \sum_{n=1}^{\infty} \frac{3+\beta+2\alpha\beta}{2(1+\alpha\beta)} \frac{2|\gamma_1|}{3} ((1+\beta)n + \beta(2\alpha - 1) + 1)|f_n|,$$

then by the condition (15) we have

$$\left(1 - \frac{3 + \beta + 2\alpha\beta}{3(1 + \alpha\beta)}|\gamma_1|\right) \sum_{n=1}^{\infty} ((1 + \beta)n + \beta(2\alpha - 1) + 1)|f_n| \le 2(1 + \beta\alpha)|f_1|.$$

Therefore, if

$$2(1+\beta\alpha)|f_1| \le 2\beta(1-\alpha)\left(1 - \frac{3+\beta+2\alpha\beta}{3(1+\alpha\beta)}|\gamma_1|\right),\tag{16}$$

then by Lemma 1 the function given by (4) is meromorphically starlike of order α and type β . In view of the arbitrariness of f_1 and the condition (15) we can choose f_1 such that the condition (16) holds.

Now, let $2 + \gamma_2 = 0$. Then $\beta_1 = 0$ and from (8) and (9) we obtain $f_1 = \gamma_0/2$, $\gamma_1 f_1 = 0$ and $f_n = -\frac{n\gamma_1}{(n+1)(n-2)} f_{n-1} - \frac{\gamma_0}{(n+1)(n-2)} f_{n-2}$ for $n \ge 3$. Hence it follows that either $f_1 = 0$ or $\gamma_1 = 0$, and f_2 may be arbitrary number.

At first we suppose that $f_1 = 0$. Then $\gamma_0 = 0$ and for $n \ge 3$

$$|f_n| = \frac{n|\gamma_1|}{(n+1)(n-2)}|f_{n-1}| \le \frac{|\gamma_1|}{n-2}|f_{n-1}| \le \frac{|\gamma_1|^2}{(n-2)(n-3)}|f_{n-2}| \le \cdots \le \frac{|\gamma_1|^{n-2}}{(n-2)!}|f_2|.$$

Hence it follows that

$$\sum_{n=1}^{\infty} ((1+\beta)n + \beta(2\alpha - 1) + 1)|f_n| \le (3+\beta+2\alpha\beta)|f_2|$$

$$+ \sum_{n=3}^{\infty} ((1+\beta)n + \beta(2\alpha - 1) + 1) \frac{|\gamma_1|^{n-2}}{(n-2)!}|f_2| = K_1(\alpha,\beta,|\gamma_1|)|f_2|$$

where $K(\alpha, \beta, |\gamma_1|) = \text{const} > 0$. Since f_2 may be arbitrary the following proposition holds.

Proposition 3. If $\gamma_2 = -2$, $\beta_1 = \gamma_0 = 0$, $\beta_0 = \gamma_1 \neq 0$ then for each $\alpha \in [0, 1)$ and $\beta \in (0, 1]$ there exists a solution given by (4) of differential equation (3), which is meromorphically starlike of order α and type β .

Now, we assume that $\gamma_1=0$. Then $f_1=\gamma_0/2$, f_2 may be arbitrary and

$$|f_n| = \frac{|\gamma_0|}{(n+1)(n-2)} |f_{n-2}|$$
 for $n \ge 3$.

Using these relations, we prove the following theorem.

Theorem 3. Let $\alpha \in [0, 1)$ and $\beta \in (0, 1]$. If $\gamma_2 = -2$, $\beta_1 = \beta_0 = \gamma_1 = 0$ then there exists a solution given by (4) of differential equation (3), which by the condition

$$(1+\beta\alpha)|\gamma_0| \le 2\beta(1-\alpha)\left(1 - \frac{(2+\beta(1+\alpha))|\gamma_0|}{4(1+\beta\alpha)}\right),\tag{17}$$

is meromorphically starlike of order α and type β .

Proof. Since f_2 may be arbitrary, we set $f_2 = 0$. Then

$$\begin{split} \sum_{n=1}^{\infty} ((1+\beta)n + \beta(2\alpha - 1) + 1)|f_n| &= 2(1+\alpha\beta)|f_1| + \sum_{n=3}^{\infty} \frac{((1+\beta)n + \beta(2\alpha - 1) + 1)|\gamma_0|}{(n+1)(n-2)}|f_{n-2}| \\ &= 2(1+\alpha\beta)|f_1| + \sum_{n=1}^{\infty} \frac{((1+\beta)(n+2) + \beta(2\alpha - 1) + 1)|\gamma_0|}{n(n+3)}|f_n| \end{split}$$

and, thus,

$$\sum_{n=1}^{\infty} \left(1 - \frac{((1+\beta)(n+2) + \beta(2\alpha - 1) + 1)|\gamma_0|}{((1+\beta)n + \beta(2\alpha - 1) + 1)n(n+3)} \right) ((1+\beta)n + \beta(2\alpha - 1) + 1)|f_n| \le 2(1+\alpha\beta)|f_1|.$$

But

$$\frac{((1+\beta)(n+2)+\beta(2\alpha-1)+1)|\gamma_0|}{((1+\beta)n+\beta(2\alpha-1)+1)n(n+3)} \le \frac{(2+\beta(1+\alpha))|\gamma_0|}{4(1+\alpha\beta)}.$$

Therefore,

$$\left(1 - \frac{(2 + \beta(1 + \alpha))|\gamma_0|}{4(1 + \alpha\beta)}\right) \sum_{n=1}^{\infty} ((1 + \beta)n + \beta(2\alpha - 1) + 1)|f_n| \le (1 + \alpha\beta)|\gamma_0|,$$

whence in view of (17) we obtain (7), and by Lemma 1 function (4) is meromorphically starlike of order α and type β .

Finally, we consider the case, where equation (3) has a solution of the form

$$f(z) = \frac{1}{z} + \sum_{n=1}^{m} f_n z^n, \quad m \ge 2,$$
(18)

where $f_m \neq 0$. Equality (9) yields that

$$(m+2)(m+1+\gamma_2)f_{m+1}+m\gamma_1f_m+\gamma_0f_{m-1}=0$$
 and $(m+3)(m+2+\gamma_2)f_{m+2}+(m+1)\gamma_1f_{m+1}+\gamma_0f_m=0.$

Since $f_{m+2}=f_{m+1}=0$ and $f_m\neq 0$, the second equality implies the equality $\gamma_0=0$ and consequently the first equality implies the equality $\gamma_1=0$. Therefore, in view of (8) and (9) $(n+1)(n+\gamma_2)f_n=0$ for all $n\geq 1$. Since $f_m\neq 0$, so $m+\gamma_2=0$. Thus $n+\gamma_2\neq 0$ for all $n\neq m$ and, therefore, $f_n=0$, except f_m , which may be arbitrary. Hence it follows that the solution given by (18) is possible only if $m+\gamma_2=0$ and is of the form

$$f(z) = \frac{1}{z} + f_m z^m,\tag{19}$$

where f_m is an arbitrary number. (It is easy to verify directly that the function (19) is a solution of equation (3) if and only if $\beta_0 = \gamma_0 = \gamma_1 = 2 - \beta_1 + \gamma_2 = m + \gamma_2 = 0$.)

For each $\alpha \in [0,1)$ and $\beta \in (0,1]$ we choose f_m such that $((1+\beta)m + \beta(2\alpha - 1) + 1)|f_m| \le 2\beta(1-\alpha)$. Then the function (19) is meromorphically starlike of order α and type β .

2 MEROMORPHICALLY CONVEX SOLUTIONS

We call a function $f \in \Sigma$ meromorphically convex of order $\alpha \in [0,1)$ and type $\beta \in (0,1]$ if

$$|zf''(z) + 2f'(z)| < \beta |zf''(z) + 2\alpha f'(z)|, \quad z \in \mathbb{D}_0.$$

Clearly, f is meromorphically convex of order α and type β if and only if $\varphi(z) = -zf'(z)$ is meromorphically starlike of order α and type β . Since $\varphi(z) = \frac{1}{z} - \sum_{n=1}^{\infty} n f_n z^n$, by Lemma 1 the condition

$$\sum_{n=1}^{\infty} ((1+\beta)n + \beta(2\alpha - 1) + 1)n|f_n| \le 2\beta(1-\alpha), \tag{20}$$

is sufficient in order that f is meromorphically convex of order $\alpha \in [0,1)$ and type $\beta \in (0,1]$. Therefore, using Lemma 2 we can prove analogues of Theorems 1 - 3.

Theorem 4. Let $\alpha \in [0, 1)$ and $\beta \in (0, 1]$. If $\beta_1 = 2 + \gamma_2$, $|\gamma_2| < 1$, $\beta_0 = \gamma_1$ then differential equation (3) has a solution given by (4), which by the condition

$$\frac{(1+\beta\alpha)|\gamma_0|}{1-|\gamma_2|} \le 2\beta(1-\alpha)\left(1-\frac{2(3+(1+2\alpha)\beta)|\gamma_1|}{3(1+\alpha\beta))(2-|\gamma_2|)} - \frac{3(2+\beta(1+\alpha))|\gamma_0|}{4(1+\alpha\beta))(3-|\gamma_2|)}\right) \tag{21}$$

is meromorphically convex of order α and type β .

Proof. As in the proof of Theorem 1 we have

$$\begin{split} &\sum_{n=1}^{\infty} ((1+\beta)n + \beta(2\alpha-1) + 1)n|f_n| = 2(1+\beta\alpha)|f_1| + (3+\beta(1+2\alpha))2|f_2| \\ &+ \sum_{n=3}^{\infty} ((1+\beta)n + \beta(2\alpha-1) + 1) \left| \frac{n^2\gamma_1(n-1)f_{n-1}}{(n-1)(n+1)(n+\gamma_2)} + \frac{n\gamma_0(n-2)f_{n-2}}{(n-2)(n+1)(n+\gamma_2)} \right| \\ &\leq 2(1+\beta\alpha)|f_1| + 2(3+\beta(1+2\alpha))|f_2| \\ &+ \sum_{n=2}^{\infty} \frac{(n+1)^2((1+\beta)(n+1) + \beta(2\alpha-1) + 1)|\gamma_1|}{n(n+2)(n+1-|\gamma_2|)} n|f_n| \\ &+ \sum_{n=1}^{\infty} \frac{(n+2)((1+\beta)(n+2) + \beta(2\alpha-1) + 1)|\gamma_0|}{n(n+3)(n+2-|\gamma_2|)} n|f_n| \\ &= 2(1+\beta\alpha)|f_1| + 2(3+\beta(1+2\alpha))|f_2| - \frac{4(3+\beta(1+2\alpha))|\gamma_1|}{3(2-|\gamma_2|)} |f_1| \\ &+ \sum_{n=1}^{\infty} \frac{(n+1)^2(n+2+(n+2\alpha)\beta)|\gamma_1|}{n(n+2)(n+1-|\gamma_2|)} n|f_n| + \sum_{n=1}^{\infty} \frac{(n+2)(n+3+\beta(n+1+2\alpha))|\gamma_0|}{n(n+3)(n+2-|\gamma_2|)} n|f_n|, \end{split}$$

whence as above

$$\left(1 - \frac{2(3 + (1 + 2\alpha)\beta)|\gamma_{1}|}{3(1 + \alpha\beta)(2 - |\gamma_{2}|)} - \frac{3(2 + \beta(1 + \alpha))|\gamma_{0}|}{4(1 + \alpha\beta)(3 - |\gamma_{2}|)}\right) \sum_{n=1}^{\infty} ((1 + \beta)n + \beta(2\alpha - 1) + 1)n|f_{n}| \\
\leq \frac{(1 + \beta\alpha)|\gamma_{0}|}{1 - |\gamma_{2}|}$$

and in view of (21) we obtain (20). Therefore, the function defined by (4) is meromorphically convex of order α and type β .

The following theorems can be proved by analogy.

Theorem 5. If $\beta_1 = 1$, $\gamma_2 = -1$, $\gamma_0 = 0$, $\beta_0 = \gamma_1 \neq 0$ then there exists a solution given by (4) of differential equation (3), which by the condition

$$\frac{2(3+\beta+2\alpha\beta)}{3(1+\alpha\beta)}|\gamma_1|<1$$

is meromorphically convex of order α and type β .

Theorem 6. Let $\alpha \in [0, 1)$ and $\beta \in (0, 1]$. If $\gamma_2 = -2$ and $\beta_1 = \beta_0 = \gamma_1 = 0$ then there exists a solution given by (4) of differential equation (3), which by the condition

$$(1+\beta\alpha)|\gamma_0| \leq 2\beta(1-\alpha)\left(1 - \frac{3(2+\beta(1+\alpha))|\gamma_0|}{4(1+\beta\alpha)}\right)$$

is meromorphically convex of order α and type β .

REFERENCES

- [1] Dosyn K.I., Sheremeta M.M. On the existence of meromorphically starlike and meromorphically convex solutions of Shah's differential equation. Mat. Stud. 2014, **42** (1), 44–53.
- [2] Golusin G.M. Geometrical theory of functions of complex variables. Nauka, Moscow, 1966. (in Russian)

- [3] Juneja O.P., Reddy T.R. *Meromorphic starlike and univalent functions with positive coefficients*. Ann. Univ. Mariae Curie-Sklodowska 1985, **39**, 65–76.
- [4] Kaplan W. *Close-to-convex schlicht functions*. Michigan Math. J. 1952, **1** (2), 169–185. doi:10.1307/mmj/1028988895
- [5] Mogra M.L. Hadamard product certain meromorphic univalent functions. J. Math. Anal. Appl. 1991, 157, 10–16. doi:10.1016/0022-247X(91)90133-K
- [6] Mogra M.L., Reddy T.R, Juneja O.P. Meromorphic univalent functions with positive coefficients. Bull. Austral. Math. Soc. 1985, 32 (2), 161–176. doi:10.1017/S0004972700009874
- [7] Owa Sh., Pascu N.N. Coefficient inequalities for certain classes of meromorphically starlike and meromorphically convex functions. J. Inequal. Pure and Appl. Math. 2003, 4 (1), 1–6.
- [8] Shah S.M. *Univalence of a function f and its successive derivatives when f satisfies a differential equation, II. J. Math.* Anal. Appl. 1989, **142** (2), 422–430. doi:10.1016/0022-247X(89)90011-5
- [9] Sheremeta Z.M. *Close-to-convexity of entire solutions of a differential equation*. Mat. methods and fiz.-mech. polya 1999, **42** (3), 31–35. (in Ukrainian)
- [10] Sheremeta Z.M. *The properties of entire solutions of one differential equation*. Diff. Equat. 2000, **36** (8), 1155–1161. doi:10.1007/BF02754183
- [11] Sheremeta Z.M. On entire solutions of a differential equation. Mat. stud. 2000, 14 (1), 54–58.
- [12] Sheremeta Z.M. *On the close-to-convexity of entire solutions of a differential equation*. Visnyk of Lviv Univ., ser. mech.-mat. 2000, 57, 88–91. (in Ukrainian)
- [13] Sheremeta Z.M., Sheremeta M.M. Closeness to Convexity for Entire Solutions of a Differential Equation. Diff. Equat. 2002, 38 (4), 496–501. doi:10.1023/A:1016355531151 (translation of Diff. Uravneniya 2002, 38 (4), 477–481. (in Russian))
- [14] Sheremeta Z.M., Sheremeta M.M. *Convexity of entire solutions of a differential equation*. Mat. methods and fiz.mech. polya 2004, **47** (2), 181–185. (in Ukrainian)
- [15] Uralegaddi B.A. *Meromorphic starlike functions with positive and fixed second coefficients*. Kyungpook Math. J. 1989, **29**, 64–68.

Received 16.09.2017

Revised 15.12.2017

Мулява О., Трухан Ю. Про мероморфно зіркові функції порядку α і типу β , що задовольняють диференційне рівняння Шаха // Карпатські матем. публ. — 2017. — Т.9, №2. — С. 154–162.

Згідно з М.Л. Могра, Т.Р. Редді та О.П. Жюнея аналітична в $\mathbb{D}_0=\{z:0<|z|<1\}$ функція $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty}f_nz^n$ називається мероморфно зірковою порядку $\alpha\in[0,1)$ і типу $\beta\in(0,1]$, якщо $|zf'(z)+f(z)|<\beta|zf'(z)+(2\alpha-1)f(z)|, z\in\mathbb{D}_0$. Тут досліджено умови на комплексні параметри $\beta_0,\,\beta_1,\,\gamma_0,\,\gamma_1,\,\gamma_2,\,$ за яких диференційне рівняння С. Шаха $z^2w''+(\beta_0z^2+\beta_1z)w'+(\gamma_0z^2+\gamma_1z+\gamma_2)w=0$ має мероморфно зіркові розв'язки порядку $\alpha\in[0,1)$ і типу $\beta\in(0,1]$. Окрім основного випадку $n+\gamma_2\neq 0,\,n\geq 1$, розглядаються випадки $\gamma_2=-1$ і $\gamma_2=-2$. Також вивчено можливість існування розв'язків вигляду $f(z)=\frac{1}{z}+\sum_{n=1}^m f_nz^n,\,m\geq 2$. Крім того, ми називаємо аналітичну в \mathbb{D}_0 функцію $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty}f_nz^n$ мероморфно опуклою порядку $\alpha\in[0,1)$ і типу $\beta\in(0,1]$, якщо $|zf''(z)+2f'(z)|<\beta|zf''(z)+2\alpha f'(z)|,\,z\in\mathbb{D}_0$, і досліджуємо достатні умови на параметри $\beta_0,\,\beta_1,\,\gamma_0,\,\gamma_1,\,\gamma_2$, за яких диференційне рівняння С. Шаха має мероморфно опуклі розв'язки порядку $\alpha\in[0,1)$ і типу $\beta\in(0,1]$. Розглядаються ті ж випадки, що і для мероморфно зіркових розв'язків.

Ключові слова і фрази: мероморфно зіркова функція порядку α та типу β , мероморфно опукла функція порядку α та типу β , диференційне рівняння Шаха.