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THE NONLOCAL PROBLEM FOR THE DIFFERENTIAL-OPERATOR EQUATION OF
THE EVEN ORDER WITH THE INVOLUTION

In this paper, the problem with boundary non-self-adjoint conditions for differential-operator
equations of the order 2n with involution is studied. Spectral properties of operator of the problem
is investigated.

By analogy of separation of variables the nonlocal problem for the differential-operator equation
of the even order is reduced to a sequence {L};> ; of operators of boundary value problems for
ordinary differential equations of even order. It is established that each element L of this sequence
is an isospectral perturbation of the self-adjoint operator Ly of the boundary value problem for
some linear differential equation of order 2.

We construct a commutative group of transformation operators whose elements reflect the sys-
tem V(Lgy) of the eigenfunctions of the operator L in the system V(L) of the eigenfunctions of
the operators L;. The eigenfunctions of the operator L of the boundary value problem for a differ-
ential equation with involution are obtained as the result of the action of some specially constructed
operator on eigenfunctions of the sequence of operators Ly .

The conditions under which the system of eigenfunctions of the operator L of the studied prob-
lem is a Riesz basis is established.

Key words and phrases: operator of involution, differential-operator equation, eigenfunctions,
Riesz basis.
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INTRODUCTION

The boundary value problems for linear differential-operator equations are used in the
simulation of boundary value problems for differential equations with partial derivatives,
in particular, in the study of nonlocal problems. Significant results concerning the theory
of boundary value problems for differential-operator equations were obtained in the papers
of Vishik M.I.,, Boehner M., Gorbachuk V.I., Gorbachuk M.L., Dezin O.O., Dubinsky Yu.V.,
Kochubei A.N., Lions J.L., Mamedov K.S., Romanko V.K., Shakhmurov Veli B., Triebel Kh.,
Yakubov S., Yurchuk N.Yu.

During recent years, the number of publications with the use of an involution operator
in various sections of the theory of ordinary differential equations (see [4, 10, 12, 15, 16, 19]),
of partial differential equations (see [3,7,9, 14, 16,17, 20, 21]), of linear operators, T-invariant
with respect to some group of homeomorphisms (see [8]), differential equations with operator
coefficients (see [5-7]), PT-symmetric operators (see [1,2]) increased significantly.
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1 STATEMENT OF PROBLEM

Let us make some notations. H is a separable Hilbert space; A : D(A) C H — H is the
closed unbounded linear operator with the discrete spectrum ¢(A) = {z = ak7,a,v > 0,k =
1,2,...} V(A) = {vy € H: k =1,2,...} is the system of the eigenfunctions which forms
the Riesz basis in the space H; H(A®) = {h € H: Ah € H};s > 0, Wy = L,((0,1),H);
Dy : W; — Wj is a strong derivative in the space Wy; W, = {u € Wy : D2"u € Wy, A%'u € Wy };
[H] is the algebra of the bounded linear operators B : H — H; I is the operator of the in-
volution in the space L»(0,1); Iy(x) = y(1 —x); p; = L(E + (—1)/I) are the orthoprojec-
tors of the space L(0,1); Lj(0,1) = {y € L2(0,1) : pjy = y};j = 0,1, W3"(0,1) =
{y €Ly (0,1):y™ eC[0,1],m=0,1,...,2n — 1,y € L, (0,1)}; W*(0,1) is the space of
continuous linear functionals over the space W3" (0, 1); W;‘(O, 1)={leW*(0,1):ly=0,y €
Lr1-j(0,1) N W2"(0,1)};j = 0,1.

We consider the following boundary problem

Lw = (—1)" D¥'w(x) + A¥w(x)

n . .
+Y a4 (D¥ Mw(x) - DY w(1 —x)) = f(x), xe (1), @
j=1
tw= Dyw©0)+ ()" Dyw(l) =¢;, j=12...,n @)
byyjw = Dxm”+fw(0) — (=1)"nti Dxm””w(l) + l]-lw = @uyjy J=12,...,m, 3)
kj
@wz@%%wxmm+mMMwm» (4)

By solution of the problem (1)—(4) we mean a function that satisfies equalities

|Lw— f;Wall =0, |lLw — gy H (AP) || =0,

1 1
Bj=2n—m;— 5 Pn+j = 2n — max(mpj, k) — 5
a]-,b]-,,,S ER, r= O,l,...,k]-, s=01,=12,...,n,

My < Mpy—1 < ...<mq, Myy < Mpy—1 < ... < Myy1.

2 AUXILIARY BOUNDARY VALUE PROBLEM

Consider the partial case of the problem (1)-(4), when aj =0, b]-,,,s =0,r=01,.. .,k]-,
s=01,;=12,...,n,

(—=1)" D?{"u(x) + AZ"u(x) =f(x), x€(0,1), (5)
loju= Dy'u(0)+ (—1)" Dy'u(1) =0, (6)
ot = Dy u(0) — (=)™ Dy"u(1) =0, j=1,2,...,n 7)

Remark 2.1. The boundary conditions (6), (7) are numbered so that the following conditions

are satisfied
lj e W5(0,1), ln+j e Wi (0,1), j=1,2,...,n. (8)
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Let Ly be the operator of the problem (5)~(7), Lou = (—1)" DZ?*u+ A?u, u € D(Ly),
D(Lo) ={u € W : [ju=0,j=1,2,...,2n}. Consider the spectral problem for the operator Lg

(—1)" D¥'u(x) + A*u(x) = Au(x), lu=0,A1eC,j=12,...,2n )

The solution of the spectral problem (9) is defined as the product u(x) = y(x)vg, vy €
V(A), k=1,2,....To determine the unknown function y € W22” (0,1), we obtain the spectral
problem

(= 1)"y®(x) + 2'y(x) = Ay(x), AeC, (10)
oy = y"(0) + (-1)"iy™)(1) =0, j=1,2,...,n, (11)
lousjy = y"Hly(0) — (1) ym)(1) =0, j=1,2,...,n. (12)

Let Loy be the operator of the problem (10)~(12), Loxy = (—1)" y®"(x) + z2'y(x); y €
D(Lox); D(Lox) = {y € W3"(0,1) : lojy = 0,j = 1,2,...,2n}.

Assumption B;. The conditions (11), (12) are self-adjoint.

Assumption B,. The boundary conditions (10), (11) are strongly regular according to Birk-
hoff (see [18]).

In what follows we assume that the assumptions B1-B; are satisfied. The roots p; of the
characteristic equation (—1)"p*" = A — z2", which corresponds to the differential equation

(= 1"y (x) + Z"y(x) = Ay(x), (13)

are determined by the relations pj = wjp, w1 =i, wj; = iexpin%;l), j=23,...,n

The fundamental system of the solutions of the differential equation (13) is defined by the
formulas

1
yj(x,p) = 5 (expwjpx +exp wjp(1 - x)), (14)

1 .
Ynij(x,0) = E(exp wipx —expw;p(l —x)), j=1,2,...,n. (15)

2n
Substituting the general solution of the differential equation (13) y(x,p) = Y. Csys(x,p)
s=
into the boundary conditions (11), (12) we obtain an equation for determining the eigenvalues
of the operator L
A(p) = det(Ly))2i_; = 0. (16)

From the conditions (8) and from the properties of the functions (14), (15), we obtain

ZO,Vy}’H—j = OI lO,I’l—H’yj = 0/ j/r = 1/ 2/ - n, (17)

therefore,
A(p) = Do(p)Ai(p) =0, (18)

where As(p) = det(lsn+rysn+]-)’;,j:1, s=0,1.
The operator Ly is self-adjoint, therefore the roots of the equation (18) lie on the semiaxis
Imz =0, Rez > 0. For any s € 0, 1, we number the roots ps ; of the equation in ascending order

pS,l <ps,2 < ....
Thus, the operator L has the eigenvalues

As ok = (Ps,q)Z” + z%", s€0,1, g=1,2,.... (19)
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LetBo = my+my+---+my, B1 = myr1+myio+-- -+ my,. We define the eigenfunctions
of the operator L, which are normalized in the space. Let B(s, x, p) be a square matrix of the
order 1, the first row of which is determined by the functions v, j(x, 0), and the r-th row is
determined by the numbers lsn+rysn+]-, r=23...,n,s=01,j7=1,2,...,n Let

Vsq(x, Lox) = (psq) 054 det B(s, x, p5,). (20)
Then ||vs4(x, Lok); L2(0,1)|| =1, s =0,1, g =1,2,....
Lemma 2.1. Suppose that the assumptions B;-B, hold. Then for each number k € IN the
operator L has the eigenvalues (19), and it also has the system of the eigenfunctions (20),
which forms the orthogonal basis in the space L,(0,1).
Therefore, the operator Ly has a system

V(Lo) = {vsgx(x, Lo) € Wi : 05 gx(x, Lo) = 0s4(x, Lox)vk, s =0,1, k,g=1,2,...}

of the eigenfunctions in the space Wj. The product of a system V(A) and an orthonormal
system V(L) is the Riesz basis in the space Wj. Thus, the following theorem is true.

Theorem 1. Let the assumptions B1—B, hold. The operator Ly has the discrete spectrum
7(Lo) = {Asgk = (psg)?" +28", s =01, kg =1,2,... }.
It also has the system of the eigenfunctions V(L) which forms the Riesz basis in the space Wj.

We choose an arbitrary eigenvalue Ag, € o(Lok), 9 € N. Let

yn+j(x, Po,q) = —(exp Wjpo,4X — exp wjpolq(l -x)),j=12,...,n,

N

By(x, 00,4) is square matrix of the order #, the p-th row of which is defined by the functions
Yn+i(X, 004), and the r-th row is defined by the numbers (w;)"++1(1 + (—1)"+r+1 exp wjpoq),
r#p, j,r=12,...,n,

You+p(X, 00,49) = det By(x, poq),
M (poq) = det((w;j)™r1(1 + (=1)" 41 exp wjpoq))y =1/ (21)

Yin+p (x, PO,q) = (M (Po,q))_lyO,nﬂﬂ (x, PO,q)-

Substituting the expression (21) into the boundary conditions (11), (12), we see that
ljy1,n+p(x,p0,q) =0, j#n+pj=12,...,2n, (22)

ln-i—pyl,nﬂﬂ(xr PO,q> = (PO,q>m”+p~ (23)
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3 NON SELF-ADJOINT BOUNDARY VALUE PROBLEM

For the differential-operator equation (5) we consider the following boundary value prob-
lem for arbitrary fixed p € {1,2,...,n},b € R,

Gju= Dy'u(0)+ (-1)" Dy'u(l) =0, j=1,2,...,n, (24)
Ot = Dy u(0) — (=)™ Dy u(1) =0, j=1,2,...,n, j#p, (25)
(it = D" Pu(0) — (1) Dy"u(1) + Bu = 0, (26)

2u = p(DY""u(0) + (~1)"™* DY"u(1)) (27)

=0.
Let L1 be the operator of the problem (5), (24)~(27), Liu = (—1)" D?"u(x) + A*'u(x),
u € D(Ly), D(Ly) = {u € Wo : ljju = 0, j = 1,2,...,2n}. The solution of the spectral
problem (9), (24)—(27) is defined as the product u(x) = y(x)vy, v € V(A), k =1,2,....To
determine the unknown function y € W3"(0, 1), we obtain the spectral problem

(= 1)"y*)(x) + 2"y(x) = \y(x), A€C, (28)
Gy = y"0)+ (-1)"y™)(1) =0, j=1,2,...,n, (29)
iy = y(m”+f)(0) — (—1)m"+fy(m”+f)(1) =0, j=L12,...,nj#p, (30)

El,n+p]/ = y(mn+p)(0) _ (_1>mn+p Y (1) 4 b(y(mn+p)(0) + (_1)mn+rf y(mn+p)(1)) =0. (31)

Let Ly ; be the operator of the problem (28)-(31), L1y = (—1)" v (x) + zi"y(x); y €
D(Lyx), D(Lix) = {y € W3"(0,1) : l1,;y = 0,j = 1,2,...,2n}.
Theorem 2. Suppose that the assumptions B1-By hold. Then, for the any arbitrary fixed num-
bersp € {1,2,...,n}, b €R,

1) the eigenvalues of the operators L\ and L,  coincide;

2) the system V' (Ly i) of the eigenfunctions of the operator L, y is the Riesz basis of the space
L,(0,1).

Proof. We show that the eigenvalues of the operators Ly and L, coincide. We substitute
the fundamental system (14), (15) of the solutions of the differential equation (28) into the
boundary conditions (29)—(31).

det(l1,yr(x, 0))j,—1 = det(l1,jyr(x, 0))f =1 det(lntjYn+r (X, 0))7—1-

If I, pyn+j(x,0) = 0, we obtain the same equations for determining the spectrum. Define
the elements of the system V/(L;). Direct substitution shows that the functions vy 4(x, Lo),
g = 1,2,..., satisfy the conditions (29)—(31). Therefore, the eigenfunction of the operator Ly
that corresponds to the eigenvalue Ay ; is defined by

Ul,q('xl Ll,k) = vl,q('xl LO,k)/ q= 1L2,..., (32)

00,0(%, L1c) = 00,4(%, Loje) — 15 (00,4 (%, Loje)) (lnspy1,m4p (X, 00)) ™ Yinrp(x,009), 4 =1,2,....

Taking into account the formulas (31), (21), and the inequalities

|15 (v0,4(x, Loj))| < Ki(pog)™ 7,
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we obtain the estimates

1500, (%, Lo ) (lnpY1,np (% 00,4)) | < Kab].
For the problem (29)—(31), there exists an adjoint problem whose system of the eigenfunc-
tions W(L; x) form the biorthogonal system to the V(L ;). The boundary conditions (29)-(31)

are strongly regular according to Birkhoff. Therefore, according to the Kesselman-Mikhailov’s
Theorem [18], the system V(L ) is the Riesz basis of the space L,(0,1). O

4 TRANSFORMATION OPERATORS

Forany fixedk € N, p € {1,2,...,n}, we consider the operator B, : L»(0,1) — L(0,1), the
eigenvalues of which coincide with the eigenvalues of the operator L, and the eigenfunctions
are defined by

Ul,q(xz Bp) = Ul,q(x/ LO,k)z UO,q(xz Bp) = UO,q(xz L(),k) + Cq(Bp)yl,n—i-p(xf PO,q)z (33)

cg(Bp) €R,g=1,2,....

The operator that maps the system V(L) into the system V(B;) of the eigenfunctions
of the operator B, is denoted by R(By) = E + S(By), S(Bp) : L2o(0,1) — Ly1(0,1), S(Bp) :
L2,1 (0, 1) — 0.

We consider the set G, (L) of the operators R(By) such that the eigenfunctions of the
operator B, are defined by the equalities (33).

Lemma 4.1. Suppose that, the assumptions Bi—B; hold, R(B,) € G,(Loy). Then the system of
the functions V(By,) is complete and minimal in the space L,(0,1).

Taking into account the uniqueness of the operator R(B,)~! = E — S(Bp,), we obtain the
statement of the lemma. Suppose that U is the set of systems of functions (), _; C L»(0,1),
that are complete and minimal in space L(0,1), Q(I) is a set of operators R = E + S, such that
S: LZ,O(Orl> — L2,1(0, 1), S: Lz/l(o,l) — 0, QC(I> = [Lz(o, 1)] N Q(l)

Taking into account equality S*(B,) = 0, R(Bp) € Gy(Lox) C Q(I) on the set Q(I), we can
define the operation of multiplication

RleE(E—I—Sl) (E+52)2E+51—|—52, Rl,RzeQ(l).

In particular, Q(I) = Q(Iy), (E+S)(E—S) = E—S*> = E,E+S = R € Q(I). Therefore, for
each operator R = E + S € Q(I) there exists a unique inverse operator R~! = E — S.
According to the definition of the operator B, and of the set G, (L x) we have the inclusions

Gp(Lox) € Q(I), Gep(Lox) C Qe (1), pe{L,2,...,n}.

Thus, the set Q(I) is an Abelian group which contains the Abelian subgroups Q. (I),
Gp (Lox), Gep (Lok), p € {1,2,...,n}. Therefore, for any operators Ri =E+S5; € Qo (I),
j=1,2...,d,d € N, the following equality is satisfied
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Lemma 4.2. Suppose that the assumptions B1-B; hold, R(B,) € G,(Ly). The system of the
functions V(B,) is the Riesz basis of the space L,(0,1) if and only if the sequence {c;(Bp)} is
bounded.

The proof of the lemma is carried out analogously in [13]. Therefore, the operator L; has
the system

V(L) = {Us,q,k(xr L1) € Wit 05 4x(x, L1) = 05 g(x, Lig)vg, s = 0,1, g,k =1,2,... }

of the eigenfunctions in the space W;. The product of the system V(A) and the system V(L k)
is a Riesz basis in the space Wj. Thus, the following theorem is true.

Theorem 3. Suppose that the assumptions B1—B, hold. Then for arbitrary fixed numbers p &
{1,2,...,n}, b € R, the system of the functions V(L) is the Riesz basis of the space Wj.

5 THE SPECTRAL PROBLEM FOR A DIFFERENTIAL-OPERATOR EQUATION

For the differential-operator equation (5) for arbitrary fixed b,,s € R, p € {1,2,...,n},

r=20,1,... k], s=0,1,7=1,2,...,n, we consider problem, generated by nonlocal conditions

b w= Dy'w(0) + (~1)" Dy/w(1) =0, j=12,...,n, (34)
Ui = Dy"Tw(0) — (=1)™ Dy"w(1) =0,j £ p, j=12,...,n, (35)
loniyw = D} Mptp w(0) — (—1)"+ D;””“’w(l) 4 lllgw =0, j=12,...,n (36)
kj
lyw = Zo(bp,r,oD;w(O) + by, 1 Dyw(1)). (37)
r=

Assumption B3. b0 = (—1)"b,,1,7=0,1,.. Jki,p=12,...,n
Remark 5.1. Assumption B3 implies thatlll7 eWy,p=12,...,n

In what follows we assume that the assumptions B1—Bs are satisfied. Let L, be the operator
of the problem (5), (34)—(37),

Lou = (—=1)" D2"u(x) + A*™u(x), u € D(Ly),
D(L) ={ueW,:Lhju=0,j=1,2,...,2n}

The solution of the spectral problem (5), (34)-(37) is defined as the product u(x) = y(x)vy,
v € V(A), k=1,2,.... To determine the unknown function y € WZZ”(O, 1), we obtain the
spectral problem

(— ) 2 (x) + 22 y( ) =Ay(x), A€C, (38)
by = y"(0)+ (-1)"y"™)(1) =0, j=12,...,n (39)
PTE y<’”"+f><0>—(—1)’”"+fy<’""+f><1>=o, i=12...,n j#p (40)
bonrpy = Y (0) — (=1)™ ™ (1) + Ly =0, (41)

kj
0y =Y (by,roDyy(0) + by 1 Dyy(1)). (42)

r=0

Let L, x be the operator of the problem (38)-(42), Loyy = (—1)" ¥ (x) + Z%”y(x), y €
D(Lyx), D(Lyx) = {y € W3"(0,1) : h;y = 0,j = 1,2,...,2n}.
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Theorem 4. Suppose that the assumptions B1-B3 hold. Then for arbitrary fixed numbers
bprs €R,xs€(0,1),s=0,1,r=0,1,...,kp, p € {1,2,...,n},

1) the eigenvalues of the operators L\ and L,y coincide;

2) the system V(L) of the eigenfunctions of the operator Lj  is complete and minimal in
the space L,(0,1);

3) ifky, < m, then the system V(L) is the Riesz basis of the space L,(0,1).
Proof. The proof of part 1 of the theorem is carried out analogously in Theorem 2. Define the
elements of the system V(L,). Direct substitution shows that the functions v 4(x, Lox),q =
1,2,..., satisfy the conditions (34)—(37).

Therefore, the eigenfunction of the operator Ly, that corresponds to the eigenvalue A is
defined by

01,4(% Log) = v1,4(x, Lox), g=12,..., (43)
Y0,q (x, Lz,k) = 00,4 (x, LO,k) - l;la (UO,q (x, LO,k)) (12,n+py1,n+p (x, PO,q))_lyl,n+p(x/ PO,q)-

Consequently L, , € Q(I). Taking into account Lemma 4.1, we obtain the second statement
of the theorem. Taking into account the formulas (31), (21), and the inequalities |l;1700,q| <
Ki(po,q4)""*?, we obtain the estimates

‘l;la(UO,q(xr LO,k))(ZZ,n+py1,n+p(xr PO,q))_1’ < Ka|b|. (44)

Taking into account Lemma 4.2, we obtain the third statement of the theorem. O

6 THE SPECTRAL BOUNDARY VALUE PROBLEM FOR A DIFFERENTIAL-OPERATOR EQUATION
WITH INVOLUTION

Consider the spectral problem

n .
Lu=(—-1)" D,%”u( )+ AZ” Z < p¥ Yy Di]flu(l — x)) =Au(x), AE€C,
: (45)
liu= Dy'u(0)+ (~1)" Dy'u(1) =0, (46)
Cojit = Dy"u(0) — (—1)" D" u(1) + Hu=0, j=12...,n (47)
The solution of the spectral problem (45)—(47) is defined as the product u(x) = y(x)vy,
v € V(A), k =1,2,.... To determine the unknown function y € WZZ” (0,1) we obtain the
spectral problem
n .
(=" y2(0) + 2"y (x Z (V@ y(0) —yF V(- %)) = ay(x), reC, @9
by = y"(0) + (=1)"y™)(1) =0, (49)
by = y i) (0) — (_1)(mn+j) y i) (1) + l]-ly =0, j=1,2,...,n (50)

Let L3 be the operator of the problem (48)—(50);
Lagy = (=1)" y®y(x) + 22"y(x) + Z (V@) +y @A -x), e D(Lay);

D(Lsx) ={y € W, 2 "0,1):iy=0,j=1,2,...,2n};
V(L3 ) is the system of the eigenfunctions of the operator L .
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Theorem 5. Suppose that k, < m, and the assumptions Bi—B3 hold. Then the system of the
functions V(L x) is the Riesz basis of the space L,(0, 1).

Proof. Define the elements of the system V(L3 ). The functions vy 4(x, L) satisfy the condi-
tions (49)—(50), g = 1,2, ... . Therefore, the eigenfunction of the operator L3, that corresponds
to the eigenvalue Ay , x is defined by

Ul,q(xr L3,k> = Ul,q(xr LO,k)r q= 1,2,.... (51)

For convenience we consider the representation of an eigenfunction of the operator L
according to the formula

00,9 (x,Lox) = 60, Z A(l)'r(PO,q)yr(xl PO,q)f 9=12,.... (52)
r=1

Let

1 .
y;ﬂ-(x,polq) = (x— E)(exp Wjpo,4X + exp w]-polq(l -x)), j=12,...,n, g=1,2,..., (53)

x porq Zhi’ qyl’l—H’ X, PO,q) € Hll q - 1/2/- c (54)

be the linear combination of the functions (53) with the indeterminate coefficients hik /7, and

n
yl'z(x; PO,q) = Z h},’gyl,n—o—r(x/ P(),q) € Hl/ q = 1/ 2/ sy (55)

r=1
be the linear combination of the functions y1 ,4,(x, po,4) With the indeterminate coefficients
12
hyg.
The eigenfunction vg 4(x, L3 ) of the operator L3 is given by

v0,4(%, La ) = v0q(x, Lox) + ¥y (x, 004) + ¥ (x,004), 9=1,2,..., (56)
where
1 n . .
h},'; = —%90,,7 Z%aj(po,q)zf 21 (¢, )2 ZAé’r(po,q), g=12,..., (57)
]:
2 = —(pog) " (Bo(pog)) ' AY (o) lutry™ (X,00q), G=1,2,.... (58)

Let Aé’r = qll_{rolo A(l)" (pox)  k=1,2,...; Vi be the system, whose elements are the functions

vl,q (X) = vl,q (X, LO,k) ’ UO,q (X) = vO,q (X, LO,k) + A(l),ryl,n—i-l (.X', pO,q) ;4= 1,2,....

Using inequality \Aé’r\ < K3 < 00, and Lemma 4.2, we obtain the statement: V} is Riesz basis of
the space L; (0, 1) . Taking into account the quadratic proximity of the system V; and complete
the system V (L, ) in the space L, (0,1) and according to N.K.Bari’s Theorem [11], we prove
the Theorem. O
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Therefore, the operator L has a system of the eigenfunctions

V(L) = {vsx(x, L) € Wy : 05 gx(x, L) = 054(x, L3 x)vg,s = 0,1,k,g=1,2,... },

Asgk = (ps,q)zn + zi” are the eigenvalues of the operator L,s = 0,1, =1,2,....

Taking into account the formulas (56)—(58), we obtain the following statement: the sequence

of the operators {R (L3 ),k = 1,2, ... } is uniformly bounded by the norm [L; (0, 1)] . Thus, the
following theorem is true.

Theorem 6. Suppose that k, < m, and the assumptions Bi—B3 hold. Then the system of the
functions V(L) is the Riesz basis of the space W1.
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Y poboTi AOCAIAXKYETCS 3apa4a 3 KPalfoBMMI HeCaMOCIIPSKEHVIMI YMOBaMM AidpepeHITiaAbHO-
orepaTOPHMX PiBHSIHb HOPSIAKY 271 3 iHBOAIOLi€r0. AOCAIAXEHO CIleKTpaAbHiI BAACTUBOCTI OrlepaTo-
pa 3apavi.

AHaAOTIUHO METOAY BiAOKpeMAEHHS 3MiHHMX, KpaifoBa 3apada AAS AMdpepeHIiaAbHO-OIepa-
TOPHOTO DPiBHSIHHS IapHOTO MOPSIAKY, 3BeA€Ha AO MOCAIAOBHOCTI omepaTopis {Lj}f , Kpamosmx
3aAaY AAS 3BUUAVHVIX AMdpepeHITiaAbHNX PiBHSHD TapPHOTO MOPSIAKY. BcTaHOBAEHO, IO KOXEH ene-
MeHT Ly 11iei mocAiAOBHOCTI € i30cmexTparbHMM 36ypeHHsIM onepaTopa L caMocIIpsikeHol Kpario-
BOI 3aAaui AAST A€SIKOTO AHIMHOTO 3BMYAlHOTO AMdpepeHIiaAbHOTO PiBHSHHS IIOPSIAKY 211.

[TobyA0BaHO KOMYTaTMBHY IPYILy OIIepaTOPiB IepeTBOPEHHSI, eAeMEHTH SIKOI BiA0OpaXKaloThb Ci-
cremy V(L ) BAacHUX pyHKIIiM oniepaTopa Ly x y cucteMy V(L) BAacHMX (OYHKIIIN omepaTopiB Ly.
Baachi dyskitii onepaTropa KpaiioBoi 3apaui AAsl AMdpepeHITiaAbHO - OIlepaTOPHOrO PiBHSIHHS 3 iH-
BOAIOIIIEIO OTPMMAHO, SIK Pe3yABTaT Ail AeSIKOro CIelliaAbHO IIO6YyAOBAHOTO OIepaTopa Ha BAACHI
dyHKii mocaiaoBHOCTI omepaTopis { L }72 ;.

BcraHOBAEHO AOCTaTHI yMOBM, IIPM SIKMX CMCTeMa BAACHMX (DYHKIIiN omlepaTopa 3aaadi € 6asu-
com Picca.

Kntouosi cnosa i ¢ppasu: omepaTop iHBOAIOLII, AMdpepeHIiaAbHO-OIIepaTOpHe PiBHSIHHS, BAACHI
dyukiii, 6asuc Picca.



