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A NOTE ON THE NECESSITY OF FILTERING MECHANISM FOR POLYNOMIAL
OBSERVABILITY OF TIME-DISCRETE WAVE EQUATION

The problem of uniform polynomial observability was recently analyzed. It is shown that, when
the continuous model is uniformly polynomially observable, it is sufficient to filter initial data to de-
rive uniform polynomial observability inequalities for suitable time-discretization schemes. In this
note, we prove that a filtering mechanism of high frequency modes is necessary to obtain uniform
polynomial observability.

More precisely, we give a counterexample which proves that this latter fails without filtering the
initial data for time semi-discrete approximations of the wave equation.
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1 INTRODUCTION

We consider the following wave equation on interval of length 1

up(x,t) — uxe(x,t) =0, 0<x<1,0<t<T,
u(0,t) =u(1,t) =0, 0<t<T, (1)
u(x,0) = u®(x), us(x,0) =ul(x), 0<x<1,

where (19, u') € H}(0,1) x L2(0,1). It is easy to check (see [1]) that this system is well posed
in the energy space H}(0,1) x L?(0,1). More precisely, for any (u®,ul) € H}(0,1) x L?(0,1)
there exists a unique solution u € C((0, T), H}) N C1((0,T), L2(0,1)) of (1).

The energy of solutions of (1) is conserved in time, i.e.,

1
E(t) = %/0 <\ut(x,t)\2 + \ux(x,t)\2> dx=E(0) forall 0<t<T.

Define the output function
y(t) = u(Gt), & (01) (2)

It was proved in [1] that system (1) is polynomially observable when ¢ € S, where S is the set
of all numbers p € (0,1) such that p ¢ Q (the set of rational numbers) and if [ag, a1, ..., ap, .. .|
is the expansion of p as a continued fraction, then (a,) is bounded. More precisely, we have
the following assertion.
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Proposition 1. Let T > 0 be fixed. Then for all { € S the solution u of (1) satisties

Ce | (600t 2 10 By + 11 2 0 @
where (1%, u) € H}(0,1) x L?(0,1), C; is a constant depending only on ¢.

In the remainder of this paper, ¢ is fixed and belongs to S. In this paper, we are interested
in time discretization of system (1). The analysis of observability properties of numerical ap-
proximation schemes for the wave equation has been the object of intensive studies. However
most analytical results concern the case of exact observability for discrete systems ([2, 7]). Re-
cently in [3, 4], time semi-discretization of polynomial observability was analyzed. The author
shows that a filtering technique allows to restore a uniform (with respect to the parameter of
discretization) polynomial observability for the discrete model. But there is no result provided
the necessity of this method. Consequently the main goal of our note is to give a counterexam-
ple which proves that uniform polynomial observability fails without filtering the initial data
for time semi-discrete approximations of the wave equation.

2 NON UNIFORM POLYNOMIAL OBSERVABILITY

We set the time step At by At = T/(N + 1), where N > 0 is a given integer. Denote by uy
the approximation of the solution u of system (1) at time t, = kAt, forany k = 0,...,N + 1.
We then introduce the following trapezoidal time semi-discretization of system (1)

Ujy1+HUg_1—2U - 02 UppptUp—1\ __ —
M1 g =20 _<f) =0, k=1,...,N,0<x<1,

(At)? 9x2
ue(0) = ug(1) =0, k=0,...,N+1, (4)
ug = u% u; = u® + (At)ul, 0<x<l
Here (u°,u') € H}(0,1) x L2(0,1) are the initial data given in system (1). As in the contin-

uous case, we w111 check an observability inequality for system (4) which can be formulated as
follows:
we must find positive constant C such that we have

N _ 2
CAt ). ukH@At wle) | (0, 1) 1 T2(0,1) < E-10,1) (5)
=0

for all (ug, u1) € H}(0,1) x L?(0,1). But there is not the case. Indeed, as in [6], we will choose
a particular initial data which don’t satisty (5) uniformly with respect to the discretization
parameter. The following theorem provides a quantitative statement of this negative result.

Theorem 1. For all T > 0, there exist a positive constant C(T,At) and initial data
(uo,u1) € HY(0,1) x L?(0,1), such that the solution uy of (4) satisfies

N u —Uu 2
C(T,At)At ) kH(C)At 20 < [ (uo, 1) | T2(0.1) x H-1(0.) -
=0

Proof. We denote by (y]z) j>1 the eigenvalues of the Dirichlet Laplacian and (¢;);>1 the corre-
sponding eigenvectors. Assume that

[ee]

up = Y_ajp;, u1 =Y (aj+bjAt)g;.
=1 =1
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Then, by proceeding as in Lemma 2.2 of [6], we easily show that the solution of system (4) is
given by

=Y 1/9j, (6)
j=1
where . |
iw; iw;
g (€ = D)aj — Aty (1= €)a; + Aty
/ 2isin(w;) 2i sin(w;) ’
and

1
w] = arccos (W) .

If a; and b; are chosen so that (eiwi —1)a; = Atbj forj =1,2,..., then
ug =Y, a]-eiwfkq)]-.
j=1

Now, by using continuous fractions (see [5] and references therein for details) we construct a
sequence (g;) C IN such that g,, — oo and

| sin(gytg)| < ql forall m >1. (7)
m
Since g, — 400 as m — +o00, one can choose a my = my(At) such that
1
—— < Gmy, (8)
ani -
which leads to
GmoAt — +o0o, as At — 0. )

We choose uy = ag,,, ¢q,,, U1 = aqmoelw"’"o P, then uy = ﬂqmoezmq’”o Pgnyr k= 0. A simple
calculations give HMOH%Z(OJ) = a%mo /2 and |juq |‘%I*1(0,1) =a / Zyémo. On the other hand, one

Gmygy
has
2 a2

e 1(8) — (@) _ (Ai")lg 92, (&)(1 = cos(wy, ),

At
and then, since (N + 1) = T/At,

2 2 2
At ﬁ urs1(8) — uk(9) ‘2 _ 2005, Hang P (&)

k=0 At 2 + (VQmOAt)Z
Using (7), we get
N _ 2
C(T,At)ALY uk“(g)m (6 ‘ < (o, u1) 20,0y 1i-1(0.1)
k=0
where C(T, At) = (2 + (pg,,,At)?) /4T 7" O

The above inequality and (9) claim that (5) fails uniformly with respect to the discretization
parameter. Indeed, it is clear that C(T, At) — +oc0 as At — 0, and then

2
”(”01”1)”L2(0,1)xH71(0,1) s 4o as Af - 0.

2
Atki uk+1(§)At— ug(g)

Consequently, filtering the initial data is needed to obtain (5) uniformly with respect to the
discretization parameter.
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3 FILTERING MECHANISM

We first transform system (4) into a first order time-discrete scheme as in [2]. For simplicity,
we denote Ay = —02%/9x2. We have

At
(I 4 —=A0) (i1 + 1) — 2ux =0,

then
2

At
(I+ TAO)(ukJrl + g — 2ug) = —AP Aguy,
which gives

At?
(I+ ——Ao) (1 + ug—1 — 2uy) = — At Ag(

Upr1 + Up—1 + 2uk)
1 .

4

Consequently (4) can be rewritten as

U1 + Ug—1 — 2y
(At)?

U1 + U1 + 21y

+ Aq( 4

), (10)

with Ay = Ao(I + ATtZAO)_l. Now using the following change of variables

1 _ U1~ U - 2 1/2 Upypr U
Vir1 = A +1A1/ (=55,
U 1—U cA1/2  upqtu
Voo = e A} (g,
we obtain )
yk%t Ye A(yk+12 yk),
" an
0= (i)
with
1
Z'A%/Z 0 kil Yi1
1 2
Y1

Note that the spectrum of A is explicitly given by the spectrum of Ag. More precisely, the
eigenvalues of A are iA; with corresponding eigenvectors

~(2) #im () sen
@j <0 s P 9; s ] ’
where Aj = p;/ 1/1—1—At2]/t]2‘/4. Moreover we define

Cs = span{¢; such that p; <s}.

We are ready to prove the following uniform boundary polynomial observability of the time
discrete wave equation.
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Theorem 2. For any § > 0, there exists T; > 0 such that for any T > Ty, there exists a positive
constant C = Cr 5, independent of At, such that for At small enough, the solution uj of (4)
satisfies

N 1, _ 2
k=0
Proof. We have, for all k # I, |Ay — A = |f(ux) — f(uy)|, where f is defined by

f(t) = t/(/1+ (?At?)/4). Applying the mean value theorem to the function f, there ex-
ists a point ¢ between py and y; such that

A=Al = 1 ()l = pul-

Simple calculations give that f'(c) = 1/ (1+AtT202)3/ 2, It is easy to check that

If'(c)] > 1/(1+ ‘Z—Z)e‘/z, and |px — | > 7 forall k # 1. Consequently there exists v > 0
such that, for all k # I |[Ax — A;| > 7. Besides, we have (see [1]) | sin(j7c¢)| > %, forall j > 1, for

some v > 0, and then |sin(jng)| > %, forall j > 1, with = vm/4/1+ %. Hence, applying
Proposition 2.5 of [3], we obtain the desired result. O

Remark 1. In the last proof, we used Proposition 2.5 of [3] in which we assumed that the
damping operator is bounded, but this assumption is not needed in the proof of Proposition
2.5, and the result still correct even if the dissipation is unbounded.

4 OPEN PROBLEMS

1. In this paper we dealt with the polynomial observability of time discrete wave equa-
tion. The question of space semi-discrete polynomial observability for wave equation
still open. Another interesting open problem is whether the fully discrete schemes have
these properties of observability uniformly with respect to the discretization parameters.

2. At the continuous case, it is well-known that polynomial observability implies polyno-
mial stability for associated dissipative system (see [1]). At the discreet level, the only
result excitant, in this context, is [3] which deals with bounded dissipation. However the
situation is complicated when the dissipation is unbounded, as for example the case of
wave equation with punctual dissipation (which correspond to the associated dissipative
system of (1)—(2)), and this issue requires further work.

3. Other question arise when discretizing in time and/or in space semilinear dissipative
wave equations. It would be interesting to analyze the uniform (with respect to the
steps) decay properties of solutions when the conservative system satisfies a polynomial
observability inequality. Actually, this question is also open at the continuous level.
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Y crarTi mpoaHaAi30BaHO MMTAHHS ITOAIHOMiaABHOTO AocAiakeHHs . [TokasaHo, IO SIKIIIO Helle-
PpeBHi MOAeAi € piBHOMIPHO MOATHOMiaABHO AOCAIAXKYBaHi, TO AOCTATHBO BiA(PiABTpPYBaTH IOYATKO-
Bi AaHi AAST BUOKPEMAEHHSI TOAIHOMIaABHO AOCAIAXYBaAbHMX HEPiBHOCTEN y BiAIIOBIAHMX UacOBO
AVICKPETM30BaHIX cXeMax. Y 3B’SI3Ky 3 MM MM AOBOAMMO, IIIO MeXaHi3M (piAbTpyBaHHS YaCTOTHMX
MOAYAIB € HEOOXiAHMM AAST iCHYBaHHSI PiBHOMiPHOTO ITOAIHOMiaABHOTO AOCAIAKEHHSI.

A came, mobyA0BaHO KOHTPIPUKAAA, KWL ITOKA3ye, 10 IPOLeAypa AOCAIAXKEHHS Mi3Hillle He
peanaisyeTbest 6e3 TOUaTKOBOTO PiABTPYBaHHSI AAHMX Y HaIliBAVCKPETHIl alipOKCHMMATllil XBUABOBOTO
PiBHSIHHSL.

Kntouosi cnosa i hpasu: HepiBHICTD CIIOCTepeXXeHHs, YacoBa AMCKpeTH3allisl, TeXHiky dpiabTpaliii.



