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A NOTE ON THE NECESSITY OF FILTERING MECHANISM FOR POLYNOMIAL

OBSERVABILITY OF TIME-DISCRETE WAVE EQUATION

The problem of uniform polynomial observability was recently analyzed. It is shown that, when

the continuous model is uniformly polynomially observable, it is sufficient to filter initial data to de-

rive uniform polynomial observability inequalities for suitable time-discretization schemes. In this

note, we prove that a filtering mechanism of high frequency modes is necessary to obtain uniform

polynomial observability.

More precisely, we give a counterexample which proves that this latter fails without filtering the

initial data for time semi-discrete approximations of the wave equation.
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1 INTRODUCTION

We consider the following wave equation on interval of length 1







utt(x, t)− uxx(x, t) = 0, 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0, 0 < t < T,

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1,

(1)

where (u0, u1) ∈ H1
0(0, 1)× L2(0, 1). It is easy to check (see [1]) that this system is well posed

in the energy space H1
0(0, 1)× L2(0, 1). More precisely, for any (u0, u1) ∈ H1

0(0, 1) × L2(0, 1)

there exists a unique solution u ∈ C((0, T), H1
0 ) ∩ C1((0, T), L2(0, 1)) of (1).

The energy of solutions of (1) is conserved in time, i.e.,

E(t) =
1

2

∫ 1

0

(

|ut(x, t)|2 + |ux(x, t)|2
)

dx = E(0) for all 0 ≤ t ≤ T.

Define the output function

y(t) = ut(ξ, t), ξ ∈ (0, 1). (2)

It was proved in [1] that system (1) is polynomially observable when ξ ∈ S , where S is the set

of all numbers ρ ∈ (0, 1) such that ρ /∈ Q (the set of rational numbers) and if [a0, a1, . . . , an, . . . ]

is the expansion of ρ as a continued fraction, then (an) is bounded. More precisely, we have

the following assertion.
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Proposition 1. Let T > 0 be fixed. Then for all ξ ∈ S the solution u of (1) satisfies

Cξ

∫ T

0
(ut(ξ, t))2dt ≥ ‖u0‖2

L2(0,1) + ‖u1‖2
H−1(0,1), (3)

where (u0, u1) ∈ H1
0(0, 1)× L2(0, 1), Cξ is a constant depending only on ξ.

In the remainder of this paper, ξ is fixed and belongs to S . In this paper, we are interested

in time discretization of system (1). The analysis of observability properties of numerical ap-

proximation schemes for the wave equation has been the object of intensive studies. However

most analytical results concern the case of exact observability for discrete systems ([2, 7]). Re-

cently in [3, 4], time semi-discretization of polynomial observability was analyzed. The author

shows that a filtering technique allows to restore a uniform (with respect to the parameter of

discretization) polynomial observability for the discrete model. But there is no result provided

the necessity of this method. Consequently the main goal of our note is to give a counterexam-

ple which proves that uniform polynomial observability fails without filtering the initial data

for time semi-discrete approximations of the wave equation.

2 NON UNIFORM POLYNOMIAL OBSERVABILITY

We set the time step ∆t by ∆t = T/(N + 1), where N > 0 is a given integer. Denote by uk

the approximation of the solution u of system (1) at time tk = k∆t, for any k = 0, . . . , N + 1.

We then introduce the following trapezoidal time semi-discretization of system (1)










uk+1+uk−1−2uk

(∆t)2 − ∂2

∂x2

(

uk+1+uk−1
2

)

= 0, k = 1, . . . , N, 0 < x < 1,

uk(0) = uk(1) = 0, k = 0, . . . , N + 1,

u0 = u0, u1 = u0 + (∆t)u1, 0 < x < 1.

(4)

Here (u0, u1) ∈ H1
0(0, 1)× L2(0, 1) are the initial data given in system (1). As in the contin-

uous case, we will check an observability inequality for system (4) which can be formulated as

follows:

we must find positive constant C such that we have

C∆t
N

∑
k=0

∣

∣

∣

∣

uk+1(ξ)− uk(ξ)

∆t

∣

∣

∣

∣

2

≥ ‖(u0, u1)‖
2
L2(0,1)×H−1(0,1) (5)

for all (u0, u1) ∈ H1
0(0, 1)× L2(0, 1). But there is not the case. Indeed, as in [6], we will choose

a particular initial data which don’t satisfy (5) uniformly with respect to the discretization

parameter. The following theorem provides a quantitative statement of this negative result.

Theorem 1. For all T > 0, there exist a positive constant C(T, ∆t) and initial data

(u0, u1) ∈ H1
0(0, 1)× L2(0, 1), such that the solution uk of (4) satisfies

C(T, ∆t)∆t
N

∑
k=0

∣

∣

∣

∣

uk+1(ξ)− uk(ξ)

∆t

∣

∣

∣

∣

2

≤ ‖(u0, u1)‖
2
L2(0,1)×H−1(0,1) .

Proof. We denote by (µ2
j )j≥1 the eigenvalues of the Dirichlet Laplacian and (ϕj)j≥1 the corre-

sponding eigenvectors. Assume that

u0 =
∞

∑
j=1

aj ϕj, u1 =
∞

∑
j=1

(aj + bj∆t)ϕj.
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Then, by proceeding as in Lemma 2.2 of [6], we easily show that the solution of system (4) is

given by

uk =
∞

∑
j=1

rk
j ϕj, (6)

where

rk
j = e−iwjk

(eiwj − 1)aj − ∆tbj

2i sin(wj)
+ eiwjk

(1 − eiwj)aj + ∆tbj

2i sin(wj)
,

and

wj = arccos

(

1

1 + ∆t2µ2
j /2

)

.

If aj and bj are chosen so that (eiwj − 1)aj = ∆tbj for j = 1, 2, . . . , then

uk =
∞

∑
j=1

aje
iwjk ϕj.

Now, by using continuous fractions (see [5] and references therein for details) we construct a

sequence (qm) ⊂ N such that qm → ∞ and

| sin(qmπξ)| ≤
π

qm
for all m ≥ 1. (7)

Since qm → +∞ as m → +∞, one can choose a m0 = m0(∆t) such that

1

(∆t)
3
2

≤ qm0 , (8)

which leads to

qm0 ∆t → +∞, as ∆t → 0. (9)

We choose u0 = aqm0
ϕqm0

, u1 = aqm0
e

iwqm0 ϕqm0
, then uk = aqm0

e
ikwqm0 ϕqm0

, k ≥ 0. A simple

calculations give ‖u0‖
2
L2(0,1)

= a2
qm0

/2 and ‖u1‖
2
H−1(0,1)

= a2
qm0

/2µ2
qm0

. On the other hand, one

has
∣

∣

∣

∣

uk+1(ξ)− uk(ξ)

∆t

∣

∣

∣

∣

2

=
2a2

qm0

(∆t)2
ϕ2

qm0
(ξ)(1 − cos(wqm0

)),

and then, since (N + 1) = T/∆t,

∆t
N

∑
k=0

∣

∣

∣

∣

uk+1(ξ)− uk(ξ)

∆t

∣

∣

∣

∣

2

=
2Ta2

qm0
µ2

qm0
ϕ2

qm0
(ξ)

2 + (µqm0
∆t)2

.

Using (7), we get

C(T, ∆t)∆t
N

∑
k=0

∣

∣

∣

∣

uk+1(ξ)− uk(ξ)

∆t

∣

∣

∣

∣

2

≤ ‖(u0, u1)‖
2
L2(0,1)×H−1(0,1) ,

where C(T, ∆t) = (2 + (µqm0
∆t)2)/4Tπ4.

The above inequality and (9) claim that (5) fails uniformly with respect to the discretization

parameter. Indeed, it is clear that C(T, ∆t) → +∞ as ∆t → 0, and then

‖(u0, u1)‖
2
L2(0,1)×H−1(0,1)

∆t
N

∑
k=0

∣

∣

∣

∣

uk+1(ξ)− uk(ξ)

∆t

∣

∣

∣

∣

2
→ +∞ as ∆t → 0.

Consequently, filtering the initial data is needed to obtain (5) uniformly with respect to the

discretization parameter.
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3 FILTERING MECHANISM

We first transform system (4) into a first order time-discrete scheme as in [2]. For simplicity,

we denote A0 = −∂2/∂x2. We have

(I +
∆t2

2
A0)(uk+1 + uk−1)− 2uk = 0,

then

(I +
∆t2

2
A0)(uk+1 + uk−1 − 2uk) = −∆t2 A0uk,

which gives

(I +
∆t2

4
A0)(uk+1 + uk−1 − 2uk) = −∆t2A0(

uk+1 + uk−1 + 2uk

4
).

Consequently (4) can be rewritten as

uk+1 + uk−1 − 2uk

(∆t)2
+ A1(

uk+1 + uk−1 + 2uk

4
), (10)

with A1 = A0(I + ∆t2

4 A0)
−1. Now using the following change of variables











y1
k+1 =

uk+1−uk
∆t + iA1/2

1 (
uk+1+uk

2 ),

y2
k+1 =

uk+1−uk
∆t − iA1/2

1 (
uk+1+uk

2 ),

we obtain


















yk+1−yk
∆t = A(

yk+1+yk
2 ),

y0 =

(

u0

u1

) (11)

with

A =

(

iA1/2
1 0

0 −iA1/2
1

)

, yk+1 =







y1
k+1

y2
k+1






. (12)

Note that the spectrum of A is explicitly given by the spectrum of A0. More precisely, the

eigenvalues of A are iλj with corresponding eigenvectors

ϕj =

(

ϕj

0

)

, ϕ−j =

(

0

ϕj

)

, j ∈ N∗,

where λj = µj/
√

1 + ∆t2µ2
j /4. Moreover we define

Cs = span{ϕj such that µj ≤ s}.

We are ready to prove the following uniform boundary polynomial observability of the time

discrete wave equation.
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Theorem 2. For any δ > 0, there exists Tδ > 0 such that for any T > Tδ, there exists a positive

constant C = CT,δ, independent of ∆t, such that for ∆t small enough, the solution uk of (4)

satisfies

C∆t
N

∑
k=0

∣

∣

∣

∣

uk+1(ξ)− uk(ξ)

∆t

∣

∣

∣

∣

2

≥ ‖(u0, u1)‖
2
L2(0,1)×H−1(0,1) for all (u0, u1) ∈ C2

δ/∆t. (13)

Proof. We have, for all k 6= l, |λk − λl | = | f (µk) − f (µl)|, where f is defined by

f (t) = t/(
√

1 + (t2∆t2)/4). Applying the mean value theorem to the function f , there ex-

ists a point c between µk and µl such that

|λk − λl | = | f ′(c)||µk − µl |.

Simple calculations give that f ′(c) = 1/(1 + ∆t2c2

4 )3/2. It is easy to check that

| f ′(c)| ≥ 1/(1 + δ2

4 )
3/2, and |µk − µl | ≥ π for all k 6= l. Consequently there exists γ > 0

such that, for all k 6= l |λk − λl | ≥ γ. Besides, we have (see [1]) | sin(jπξ)| ≥ ν
j , for all j ≥ 1, for

some ν > 0, and then | sin(jπξ)| ≥ θ
λj

, for all j ≥ 1, with θ = νπ/
√

1 + δ2

4 . Hence, applying

Proposition 2.5 of [3], we obtain the desired result.

Remark 1. In the last proof, we used Proposition 2.5 of [3] in which we assumed that the

damping operator is bounded, but this assumption is not needed in the proof of Proposition

2.5, and the result still correct even if the dissipation is unbounded.

4 OPEN PROBLEMS

1. In this paper we dealt with the polynomial observability of time discrete wave equa-

tion. The question of space semi-discrete polynomial observability for wave equation

still open. Another interesting open problem is whether the fully discrete schemes have

these properties of observability uniformly with respect to the discretization parameters.

2. At the continuous case, it is well-known that polynomial observability implies polyno-

mial stability for associated dissipative system (see [1]). At the discreet level, the only

result excitant, in this context, is [3] which deals with bounded dissipation. However the

situation is complicated when the dissipation is unbounded, as for example the case of

wave equation with punctual dissipation (which correspond to the associated dissipative

system of (1)–(2)), and this issue requires further work.

3. Other question arise when discretizing in time and/or in space semilinear dissipative

wave equations. It would be interesting to analyze the uniform (with respect to the

steps) decay properties of solutions when the conservative system satisfies a polynomial

observability inequality. Actually, this question is also open at the continuous level.
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Хаджеж З. Про необхiднiсть механiзму фiльтрацiї для полiномiального дослiдження часово дискре-

тних хвильових рiвнянь // Карпатськi матем. публ. — 2017. — Т.9, №1. — C. 98–103.

У статтi проаналiзовано питання полiномiального дослiдження. Показано, що якщо непе-

ревнi моделi є рiвномiрно полiномiально дослiджуванi, то достатньо вiдфiльтрувати початко-

вi данi для виокремлення полiномiально дослiджувальних нерiвностей у вiдповiдних часово

дискретизованих схемах. У зв’язку з цим ми доводимо, що механiзм фiльтрування частотних

модулiв є необхiдним для iснування рiвномiрного полiномiального дослiдження.

А саме, побудовано контрприклад, який показує, що процедура дослiдження пiзнiше не

реалiзується без початкового фiльтрування даних у напiвдискретнiй апроксимацiї хвильового

рiвняння.

Ключовi слова i фрази: нерiвнiсть спостереження, часова дискретизацiя, технiки фiльтрацiї.


