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MAKHNEI O.V.

BOUNDARY PROBLEM FOR THE SINGULAR HEAT EQUATION

The scheme for solving of a mixed problem with general boundary conditions is proposed for a

heat equation

a(x)
∂T

∂τ
=

∂

∂x

(

λ(x)
∂T

∂x

)

with coefficient a(x) that is the generalized derivative of a function of bounded variation, λ(x) > 0,

λ−1(x) is a bounded and measurable function. The boundary conditions have the form

{

p11T(0, τ) + p12T
[1]
x (0, τ) + q11T(l, τ) + q12T

[1]
x (l, τ) = ψ1(τ),

p21T(0, τ) + p22T
[1]
x (0, τ) + q21T(l, τ) + q22T

[1]
x (l, τ) = ψ2(τ),

where by T
[1]
x (x, τ) we denote the quasiderivative λ(x) ∂T

∂x . A solution of this problem seek by the

reduction method in the form of sum of two functions T(x, τ) = u(x, τ) + v(x, τ). This method

allows to reduce solving of proposed problem to solving of two problems: a quasistationary bound-

ary problem with initial and boundary conditions for the search of the function u(x, τ) and a mixed

problem with zero boundary conditions for some inhomogeneous equation with an unknown func-

tion v(x, τ). The first of these problems is solved through the introduction of the quasiderivative.

Fourier method and expansions in eigenfunctions of some boundary value problem for the second-

order quasidifferential equation (λ(x)X′(x))′ + ωa(x)X(x) = 0 are used for solving of the second

problem. The function v(x, τ) is represented as a series in eigenfunctions of this boundary value

problem. The results can be used in the investigation process of heat transfer in a multilayer plate.
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INTRODUCTION

Boundary problems for differential equations of heat conduction with smooth coefficients

were studied quite comprehensively in the literature (e.g., see [5]). However, during the mod-

eling of heat transfer processes, the boundary problems with piecewise continuous coefficients

or coefficients that have generalized derivatives of discontinuous functions are often appeared.

Such problems have already begun to be studied in the works [3, 4].

The present paper deals with solving of a boundary problem for a heat equation with a

coefficient that is the generalized derivative of a function of bounded variation. A reduction

method [5] is used for solving of this problem. This method allows to reduce solving of this

problem to solving of two problems: a quasistationary boundary problem with initial and

boundary conditions and a mixed problem with zero boundary conditions for some inhomo-

geneous equation. Fourier method and expansions in eigenfunctions of some boundary value
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problem for the second-order quasidifferential equation are used for solving of the second of

these problems.

Quasidifferential equations are equations that contain terms of the form (p(x)y(m))(n).

These equations cannot be reduced to conventional differential equations by n-fold differenti-

ation if the coefficient p(x) is not sufficiently smooth. The introduction of quasiderivatives is

used for their research [2].

1 FORMULATION OF THE PROBLEM

Consider the next boundary value problem for a differential heat equation. It is necessary

to find a solution T(x, τ) of the equation

a(x)
∂T

∂τ
=

∂

∂x

(

λ(x)
∂T

∂x

)

(1)

with boundary conditions

{

p11T(0, τ) + p12T
[1]
x (0, τ) + q11T(l, τ) + q12T

[1]
x (l, τ) = ψ1(τ),

p21T(0, τ) + p22T
[1]
x (0, τ) + q21T(l, τ) + q22T

[1]
x (l, τ) = ψ2(τ)

(2)

and initial condition

T(x, 0) = ϕ(x), (3)

where a(x) = b′(x), b(x) is a right continuous nondecreasing real function of bounded vari-

ation on the interval [0, l], λ(x) > 0, λ−1(x) is a bounded and measurable function on the

interval [0, l], ϕ(x) is a continuous function on the interval [0, l], ψ1(τ) and ψ2(τ) are continu-

ously differentiable functions for τ > 0, pij, qij (i, j = 1, 2) are real numbers. By T
[1]
x (x, τ) we

denote the quasiderivative λ(x) ∂T
∂x . The prime in the formula a(x) = b′(x) stands for the gen-

eralized differentiation, and hence the function a(x) is a measure, i.e., a zero-order distribution

on the space of continuous compactly supported functions [1].

A solution of problem (1)–(3) seek by the reduction method in the form of sum of two

functions

T(x, τ) = u(x, τ) + v(x, τ). (4)

Any of functions u or v can be chosen by a special way, then another one will be determined

uniquely.

2 QUASISTATIONARY BOUNDARY PROBLEM FOR u(x, τ)

We define u(x, τ) as the solution of the boundary problem

∂

∂x

(

λ(x)
∂u

∂x

)

= 0, (5)

{

p11u(0, τ) + p12u
[1]
x (0, τ) + q11u(l, τ) + q12u

[1]
x (l, τ) = ψ1(τ),

p21u(0, τ) + p22u
[1]
x (0, τ) + q21u(l, τ) + q22u

[1]
x (l, τ) = ψ2(τ),

(6)
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which is derived from problem (1)–(3) if τ is a parameter. Here the quasiderivative u
[1]
x (x, τ)

d f
=

λ(x) ∂u
∂x , then ∂u

∂x = u[1]

λ(x)
. With the help of the vector ū = (u, u[1])T equation (5) is reduced to the

system
(

u

u[1]

)′

=

(

0 1
λ(x)

0 0

)(

u

u[1]

)

. (7)

Boundary conditions (6) are also represented in the vector form

P · ū(0, τ) + Q · ū(l, τ) = Γ̄(τ), (8)

where

P =

(

p11 p12

p21 p22

)

, Q =

(

q11 q12

q21 q22

)

, Γ̄(τ) =

(

ψ1(τ)

ψ2(τ)

)

.

By direct verification one can make sure such that the Cauchy matrix B(x, s) of system (7)

has the form

B(x, s) =

(

1 σ(x, s)

0 1

)

, σ(x, s) =
∫ x

s

dt

λ(t)
.

Then ū(x, τ) = B(x, 0)ū0, where ū0 = ū(0, τ). We shall determine ū0. From boundary condi-

tions (8) we obtain P · ū0 + Q · B(l, 0) · ū0 = Γ̄ whence ū0 = (P + Q · B(l, 0))−1 · Γ̄. Therefore,

ū(x, τ) = B(x, 0) · (P + Q · B(l, 0))−1 · Γ̄(τ). (9)

3 MIXED PROBLEM FOR v(x, τ)

We substitute u(x, τ) and v(x, τ) into equation (1)

a(x)

(

∂u

∂τ
+

∂v

∂τ

)

=
∂

∂x

(

λ(x)

(

∂u

∂x
+

∂v

∂x

))

.

In consequence of (5) we have the equation

a(x)
∂v

∂τ
=

∂

∂x

(

λ(x)
∂v

∂x

)

− a(x)
∂u

∂τ
. (10)

According to formula (9) the derivative ∂u
∂τ is a continuous function of the variable x on [0, l]

and so the last term in equation (10) is correct.

By taking into account formula (4), we define the boundary conditions for v from condi-

tions (2)

p11u(0, τ) + p12u
[1]
x (0, τ) + q11u(l, τ) + q12u

[1]
x (l, τ)

+ p11v(0, τ) + p12v
[1]
x (0, τ) + q11v(l, τ) + q12v

[1]
x (l, τ) = ψ1(τ),

p21u(0, τ) + p22u
[1]
x (0, τ) + q21u(l, τ) + q22u

[1]
x (l, τ)

+ p21v(0, τ) + p22v
[1]
x (0, τ) + q21v(l, τ) + q22v

[1]
x (l, τ) = ψ2(τ).

By virtue of (6), we obtain
{

p11v(0, τ) + p12v
[1]
x (0, τ) + q11v(l, τ) + q12v

[1]
x (l, τ) = 0,

p21v(0, τ) + p22v
[1]
x (0, τ) + q21v(l, τ) + q22v

[1]
x (l, τ) = 0.

(11)

The initial condition is determined similarly

v(x, 0) = ϕ(x)− u(x, 0)
d f
= ϕ̃(x). (12)
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4 FOURIER METHOD AND EIGENVALUE PROBLEM

We search for non-trivial solutions of the homogeneous differential equation

a(x)
∂v

∂τ
=

∂

∂x

(

λ(x)
∂v

∂x

)

with boundary conditions (11) in the form

v(x, τ) = e−ωτX(x), (13)

where ω is a parameter, and X(x) is a function. Then

−ωa(x)e−ωτX(x) = (λ(x)X′(x))′e−ωτ

whence we get the quasidifferential equation

(λ(x)X′(x))′ + ωa(x)X(x) = 0. (14)

Substituting formula (13) in boundary conditions (11), we obtain

{

p11X(0) + p12X[1](0) + q11X(l) + q12X[1](l) = 0,

p21X(0) + p22X[1](0) + q21X(l) + q22X[1](l) = 0.
(15)

We denote by ωk the eigenvalues of boundary problem (14), (15). Let Xk(ωk, x) be the

corresponding eigenfunctions, k = 1, 2, . . . , ∞.

By [6], all eigenvalues ωk of boundary problem (14), (15) are real, there are a countable

number of them, and their set has not a finite limit point. The eigenfunctions Xk(ωk, x) that

are corresponded to the different eigenvalues are orthogonal in the sense

∫ l

0
Xm(ωm, x)Xn(ωn, x)db(x) = 0, ωm 6= ωn.

5 METHOD OF THE EIGENFUNCTIONS

We seek v(x, τ) in the form of the series

v(x, τ) =
∞

∑
k=1

tk(τ)Xk(ωk, x), (16)

where Xk(ωk, x) are the eigenfunctions of boundary problem (14), (15). We substitute formula

(16) into equation (10)

a(x)
∂

∂τ

(

∞

∑
k=1

tk(τ)Xk

)

=
∂

∂x

(

λ(x)
∂

∂x

(

∞

∑
k=1

tk(τ)Xk

))

− a(x)
∂u

∂τ

where, under the assumption of uniform convergence of series (16) and series derived from it

by differentiation by x or τ, we have

a(x)
∞

∑
k=1

t′k(τ)Xk =
∞

∑
k=1

tk(τ)
(

λ(x)X′
k

)′
− a(x)

∂u

∂τ
.



90 MAKHNEI O.V.

As a result of equation (14) there is equality
(

λ(x)X′
k

)′
= −ωka(x)Xk , then

a(x)
∞

∑
k=1

t′k(τ)Xk = −
∞

∑
k=1

tk(τ)ωka(x)Xk − a(x)
∂u

∂τ
.

Therefore,
∞

∑
k=1

(

t′k(τ) + ωktk(τ)
)

Xk = −
∂u

∂τ
. (17)

We expand the known function ∂u
∂τ in a series in the eigenfunctions of boundary problem

(14), (15):
∂u

∂τ
=

∞

∑
k=1

dk(τ)Xk(ωk, x), (18)

where

dk(τ) =
1

‖Xk‖

∫ l

0

∂u

∂τ
Xk(ωk, x)db(x), ‖Xk‖ =

∫ l

0
X2

k (ωk, x)db(x).

By substituting formula (18) into (17), we obtain

t′k(τ) + ωktk(τ) = −dk(τ), k = 1, 2, . . . , ∞. (19)

Since formulas (12) and (16), we have

v(x, 0) =
∞

∑
k=1

tk(0)Xk(ωk, x) ≡ ϕ̃(x).

We expand the function ϕ̃(x) in a series in the eigenfunctions

ϕ̃(x) =
∞

∑
k=1

ϕkXk(ωk, x), ϕk =
1

‖Xk‖

∫ l

0
ϕ̃(x)Xk(ωk, x)db(x).

Consequently,

tk(0) = ϕk, k = 1, 2, . . . , ∞. (20)

Then for all positive integer k we have Cauchy problems (19), (20) for ordinary differential

equations.

General solutions of linear inhomogeneous equations (19) acquire the formulas

tk(τ) =

(

Ck −
∫ τ

0
dk(s)e

ωksds

)

e−ωkτ,

where Ck are arbitrary constants. Therefore, by using initial conditions (20), we find for each

positive integer k the solution of the corresponding Cauchy problem

tk(τ) = ϕke−ωkτ −
∫ τ

0
dk(s)e

ωk(s−τ)ds.

Then, by virtue of formula (16), we obtain

v(x, τ) =
∞

∑
k=1

(

ϕke−ωkτ −
∫ τ

0
dk(s)e

ωk(s−τ)ds

)

Xk(ωk, x).

Thus, by using the reduction method, Fourier method and the expansion in a series in

eigenfunctions, we built the solution of the boundary problem for the heat equation with a

distribution. The results can be used in the investigation of the process of heat transfer in a

multilayer plate.
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Запропоновано схему розв’язування мiшаної задачi за загальних крайових умов для рiвня-

ння теплопровiдностi

a(x)
∂T

∂τ
=

∂

∂x

(

λ(x)
∂T

∂x

)

з коефiцiєнтом a(x), який є узагальненою похiдною функцiї обмеженої варiацiї, λ(x) > 0,

λ−1(x) – обмежена i вимiрна функцiя. Крайовi умови мають вигляд

{

p11T(0, τ) + p12T
[1]
x (0, τ) + q11T(l, τ) + q12T

[1]
x (l, τ) = ψ1(τ),

p21T(0, τ) + p22T
[1]
x (0, τ) + q21T(l, τ) + q22T

[1]
x (l, τ) = ψ2(τ),

де через T
[1]
x (x, τ) позначено квазiпохiдну λ(x) ∂T

∂x . Розв’язок цiєї задачi шукається методом ре-

дукцiї у виглядi суми двох функцiй T(x, τ) = u(x, τ) + v(x, τ). Цей метод дає змогу звести роз-

в’язування поставленої задачi до розв’язування двох задач: крайової квазiстацiонарної задачi

з початковими i крайовими умовами для вiдшукання функцiї u(x, τ) i мiшаної задачi з нульо-

вими крайовими умовами для деякого неоднорiдного рiвняння з невiдомою функцiєю v(x, τ).

Перша з цих задач розв’язується з допомогою введення квазiпохiдної. Для розв’язування дру-

гої задачi застосовується метод Фур’є i розвинення за власними функцiями деякої крайової

задачi для квазiдиференцiального рiвняння другого порядку (λ(x)X′(x))′ + ωa(x)X(x) = 0.

Функцiя v(x, τ) подається у виглядi ряду за власними функцiями цiєї крайової задачi. Отри-

манi результати можна використовувати для дослiдження процесу теплопередачi в багатоша-

ровiй плитi.

Ключовi слова i фрази: крайова задача, квазiпохiдна, власнi функцiї, метод Фур’є.


