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KULYAVETC’ L.V.1, MULYAVA O.M.2

ON THE GROWTH OF A KLASSS OF DIRICHLET SERIES ABSOLUTELY
CONVERGENT IN HALF-PLANE

In terms of generalized orders it is investigated a relation between the growth of a Dirichlet series

F(s) = Z a, exp{sA, } with the abscissa of asolute convergence A € (—co, +0) and the growth of

n=1

Dirichlet series F(s) = Zl a,,jexp{sAn}, 1 < j <2, with the same abscissa of absolute convergence
n=
if the coefficients a, are connected with the coefficients a,, ; by correlation

A m A “
ﬁ(ln (|an|eA)\,,)> Hﬁ (ln |an]|eA/\n)> , N — 00,

j=

m
wherew]- >0,1<j<m, ), wj=1
j=1
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INTRODUCTION

For an entire function f(z) = Z a,z" let o[f] be its order and o[f] be its type. Using

Hadamard’s formulas for the flndmg of these characteristics, E.G. Calys [1] proved the follow-
ing theorems.

Theorem A. Suppose that entire functions f1(z) = 2 a,12" and fr(z) = Z an2z" have finite
=0

orders and regular growth (in sence of the equality of order o[f] and Iower order A[f]) and the
sequences ( ) and ( ) are nondecreasing for n > ng. If

n (1/]an]) = (1 +0(1))\/ln(l/!ﬂn,l\)1n(1/!ﬂn,z\)

asn — oo, then the function f has regular growth and o[f] = +\/o[f1]o[f2]-

Theorem B. Suppose that functions fi and f, from Theorem A have the same order o[f1] =
o[f2] = 0 € (0,+00) and the types o[f1] = o1, o[f2] = 02. Also suppose that a,; # 0 and
> |an1|/1(1/]ay1]) for alln > ny, wherel is slowly varying function. If

|an] = (14 0(1))/ lanalan2]

asn — oo, then the function f has the order o[f] = ¢ and the type o|[f] < \/o107.
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In [2] Theorems A and B are generalized on the case of entire Dirichlet series of finite
generalized orders by Sheremeta, moreover instead two functions f; and f, were considered
n > 2 entire Dirichlet series.

Here we will obtain analogues results for Dirichlet series absolutely convergent in a half-
plane.

Let A = (A,) be an increasing to +oco sequence of nonnegative numbers and S(A, A) be a
class of Dirichlet series

Z apexp{sl,}, s=oc+it (1)

with a given sequence (A,) of exponents and an abscissa of absolutely convergence
0 = A € (—oo, +00) and M(c, F) = sup{|F(c +it)| : t € R} foro € (—oc0, A).

By L we denote a class of positive continuous functions a on (—oo, +00) such that
a(x) = a(xg) for x < xpand 0 < a(x) T +ooas xp < x T +oo. We say that a € L if
« € Land a((1+4+0(1))x) = (1 +o0(1))a(x) as x — +oco. Finally, « € Ly, if « € L and
a(cx) = (1+0(1))a(x) as x — +oo for each ¢ € (0, +0), i. e. a is slowly increasing function.
Clearly, Ly; C L.

Fora € L and B € L the values

—«a(In M(o, F))

B a(In M((T F))
Qul?,ﬁ[ ] = ‘lflg‘lm )\D‘gﬁ[F] lim

ota P(1/(A —0))
are called [3] generalized order and lower order correspondly of Dirichlet series (1) from the

class S(A, A).

1 ANALOGUES OF THEOREM A.

We need the following lemmas from [3].
Lemma 1.1. Leta € Ly, B € Lg; and

X

B T(ca() | T " (ﬁ‘l(cw(x»

as xg < x — +oo foreach c € (0,4).
Ifa(Ay) =0 (B (Ay/Inn)) asn — oo, then

) = (- ol)atx) @

B B a(Ay)
0splFl = ki glF] = 1115130;3()\ /1n (|a,|eArn))’

In |a,11] —In
Apt1 — An

An
A ﬁ[ ] = %22,5[1:] h_ri}olg()x /ln((|tl)n|€A)‘"))

and if, moreover, (A, 1) = (14 0(1))a(A,) and 2]  Aasng < n — oo, then

Remark 1.1 ([3]). In order that A% 5[ ] > %01313 [F], it is sufficient that « (A, 11) = (14 0(1))a(An)
asn — oo,
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Lemma 1.2. Leta € Ly;, B € Lg; and

g 1 A () — 08 ®
as xg < x — +oo foreachc € (0, +00).
Ifa(ln n) = o(B(An)) asn — oo, then
— o« (In (|ay]ed))

A _ 1A% I
le,ﬁ[F] - k[x,ﬁ[F] — JE)I(}O ‘B()\n> ’

In | 41| = In [an| S Aasng < n — o
An+1_)\n - ’

e alin ()
NoplF) = seplF] =: lim ===

Remark 1.2 ([3]). In order thatAfﬁ[P] > %32*[13], it is sufficient that B(A,41) = (14 0(1))B(Ay)
asn — oo,

and if, moreover, f(A,+1) = (1+0(1))B(Ay) and
then

Suppose that F; € S(A, A), 1 < j < m,and

Fi(s) = ) ayjexp{sA,}. 4)
n=1

Using Lemma 1.1, at first we prove the following analog of Theorem A.

Theorem 1. Let functions « € Lg; and B € Lg; satisfy conditions (2), a(Ay) = o (B (An/In n))

and a(Ayy1) = (14 0(1))a(Ay) as n — oo. Suppose that all functions (4) have regular

In |a,41i| —In |a,;
aB-growth (i.e. Aul?,ﬁ [F;] = Qp‘gﬁ[Fj] < 4o0) and n eyl —1n Ja,|

S Aasng < n— oo,

A1 — An
m
Ifw]->0,1§j§m, ijzland
=1
ﬁ<L>—(1+0(1))ﬁIB A K n— oo 5)
In (|ay,|eAr) i1 \In (layjleAr) ’ ’
then function (1) has regular af-growth and Qf, P [F] = I@[ ( 0’?’ P [Fi])*“1.

1

~

Proof. Since Af,/a [F;] = Qrf,/% [Fj] = 0j < +00, by Lemma 1.1 we have

lim *(An) = Q
n=eo B (Ay/In (|ayjleArn)) —

Therefore, from (5) we obtain

N
.1 An . YR An :
1 =1 [[8| —————

5 e <1n<|an|e%>> L ) 1P <ln<|an,]-|eAM>>

om0 An Y 1 An Y
N nlglt}og (oc()\n)ﬁ (ln (|an,]-|eA)‘n)>> _]llnlglt}o (oc()\n)'g (ln (|an,]-|eA)‘n)>>
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that is, N .
«
LAYPN /ln((|a) ) EQ;}]
Using Lemma 1.1 and the Remark 1.1, hence we get H Q] <A ﬁ[ | < Qf, P [F] = jf:n[l Q;"f, that
is the function F has regular af-growth and ¢;’ ﬁ[ | = ]_Ir;”[l(ga, 5[ ])“i. Theorem 1 is proved. O

From (2) it follows that the function « increases less rapidly than the function . Itis easy to
verify that the functions a(x) = In In x and B(x) = In x for x > x satisfy (2) and the condition
a(Ay) = 0(B(Ay/Inn)) holds as n — oo, provided Eo(ln Inn)/In A, < 1. Therefore,

Theorem 1 implies the following statement.
Corollary 1.1. Let @ (Inlnn)/InA, <1, Inln A,y = (1+0(1))Inln Ay asn — oo. Sup-
n—oo

I InlnIn M(c, F)) In [a,, 1] —In |a,;]
pose A e m(/(A—0)) 4 A1 — A
1<j<m.lIf

S Aasny < n — oo forall

An

In(—2> ) =(1 v [— 2 ), =1,
“(muanremn)) +ell H“ <ln ([ ]|e/w>> 5

Inlnln M(c,F)) m o
hen lim = /
astt = oo then I /(A —0)) ALY

For the proof of the following theorem we will use Lemma 1.2.

Theorem 2. Let the functions « € Lg; and B € Ly; satisfy the condition (3), a(In n) = o(B(An))
and B(Ay11) = (1 +0(1))B(An) as n — oo. Suppose that all functions (4) have regular ap-

In |a |1 —=1In |a,;
growth and | nH’]‘ il S Aasng < n— oo,
)\n—i—l_)\n
m
Ifw]->0,1§j§m, ijzland
j=1

bt <ln (\an\eA)‘”)) =(1 +0(1))ﬁrx“’f <ln (\an,]-\eA)‘”» , N — 00, (6)

then function (1) has regular «f-growth and o7 IS[ | = H (02 IS[ )i,
=

Proof. Since Aﬁﬁ [F;] = Qul?,ﬁ [Fj] = 0j < +00, by Lemma 1.2 we have
a (1 |eArn
i SO0 (™)
n—00 ,B()\n>
Therefore, from (6), as in the proof of Theorem 1,

a (In (|an|edt))

‘ ln <|‘1n |eAAn)) ‘Uj_ m w;
A R ) HJE’&( 5(Ai) ) =I1e"

j=1

whence, as above, we obtain the regular a-growth of the function f and the equality Qf, 8 [F] =

m
I1(ez g[F])*/. Theorem 2 is proved. 0
=
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From (3) it follows that the function 8 increases less rapidly than the function B. It is easy
to verify that the functions a(x) = In x and B(x) = In In x for x > xq satisfy (3). Therefore,
Theorem 2 implies the following statement.

Corollary 1.2. LetInlnn = o(lnln Ay)) andInln Ay = (14+0(1))Inln A, asn — oo.
Suppose that lim In In M{c, F;)) = ¢;j an In 1] = In Jan,

PP cAlnIn(1/(A—0)) 9 At — An
1<j<m.If

S Aasnyg < n — oo forall

M
£
I
=

m
In In <|an|eA)‘"> — (140(1)) []1n In <|an,]-|eA)‘">,
j=1

~
I
—_

. Inln M(co,F)) M o
asn%mtbeﬂgﬁlnln(l/(A—U)) —Jl;[le .

2 ANALOGUES OF THEOREM B.

Suppose, as above, that x € Ly; and B € Lg;. In order to get the analogues of Theorem B,
except the generalized order Q{f’ 8 [F] € (0,+00), it is needed to enter a (generalized) type. A
definition of the type depends on what from the functions a or g grows slower.

Suppose at first that the function § increases less rapidly than the function « and define a
type by the formula

Ar(pl — T In M(c, F)
Al = O TR (A — o)

Since ng [F| = quﬁl [F], where aq(x) = x ¢ Lg; and Bq(x) = a‘l(gﬁﬁ[F]ﬁ(x)) for x > xg, we
can apply none from the lemmas indicated above. However the following statement is true [3].

Lemma 2.1. Letaq(x) = x forx > xo, f1 € Ls; and

1400, P <m> =(1+40(1))B1(x), xp <x— +oo.

X
pr(x)
Ifln n = 0(B1(Ay)) as n — oo then prﬁl [F] = lim

Since B1(x) = a~! (Qf, 8 [F]B(x)) for x > xp then Lemma 2.1 implies the following statement.

Lemma 2.2. Leta € Lg; and B € Ly; be such that a~!(cB(x)) € L; for eachc € (0, +00) and

X X

i e & (cﬁ (W)) — (1+0(1))a (cB(x)) %

as xg < x — +oo for eachc € (0, +o0). IfInn = o(a'(cf(A,)) asn — oo for each c €

(0, +0), then
_ 1 ANy,
TA(E] = T 0 (™)

B n—co a—l(Qo‘gﬁ[F]ﬁ()\H)).

The following theorem generalizes Theorem B.




68 KULYAVETC’ L.V., MULYAVA O.M.

Theorem 3. Let B € Ly, a(e®) € LY a='(cB(x)) € Ls, conditions (7) hold and In n =

o(a=1(cB(An))) asn — oo for each ¢ € (0, +o0). Suppose that all Dirichlet series (4) have
the same generalised order o, 5[ ] = 0 € (0,+00) and the types TAE[ ] € (0,4+00). Suppose
also thata, # 0 for alln > ng and forall2 <j<m

In In (\an,j\eA)‘”> >(140(1))InIn (\anll\em‘”> , 1 — oo, (8)

m
Ifwj>0,1§j§m,2w]-:1and
j=1

m

W
n (|agle™) = (1+0(1 H In (|ayle?)) ", n— oo )
() = 1 o T n o))
then Dirichlet series (1) has the generalized order Q{f’ 8 [F] = o and the type
m
< [T T8 1R)
j=1

Proof. Since a(e*) € LY, then for each ¢ € (0, +o0) we have
a(cx) = a(em N e) = g(eMToMInxy — (1 4 o(1))a(e™ *) = (1+0(1))a(x)

as x — +oo, that is & € Lg;. Hence it follows that a=1((1 — 77)x) = o(a"!(x)) as x — oo
for each 7 € (0, 1), because if a1 ((1 — 17)x;) > ha~!(x;)) for some number & > 0 and an
increasing to +oco sequence (xy) then (1 —77)x; > a(ha=1(x;)) = (1 +0(1))x; as k — oo, that
is impossible.

Therefore, conditions (7) imply the conditions (3). Indeed, if for some ¢ € (0, +0),
7 € (0, 1) and an increasing to oo sequence (xx) the inequality

B (x/a 7 (eBlx0))) < (1—1)Blxe)

is true then a1 (¢B (xx /a1 (cB(xr))) < a™t(c(1—n)B(xx)) = o(a™t (cB(xx)) as k — oo, that
is impossible in view of (7).

Finally, from the condition In n = o(a~!(cB(A,)) as n — o for each ¢ € (0, +o0) we have
Inn < a~1(cB(An)) for n > np and each ¢ € (0, +c0), that is a(In 1) < cB(A,) and in view of
the arbitrariness of ¢ we obtain a(In n) = 0(B(A,)) as n — oo.

Thus, from the conditions on the functions « and § and the sequence (A, ) in Theorem 3 the
conditions of Lemma 1.2 follows.

Since all Dirichlet series (4) have the same generalized order Qul?, 8 [F;] = ¢ € (0, +00), then

by Lemma 1.2 for every ¢; > ¢ and all n > ng(01) we have In (|a,j[e?*) < a™(018(An)).
Therefore, from (9) we obtain

m

olyle] = Jim 1 g&'jm)) = Jim, ﬁ(L)“ (H (tn ('”"'f'eAM»wj)

j=1
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that is in view of the arbitrariness of ¢; we obtain the inequality Q;?, 8 [F] <o.
On the other hand, in view of the conditions (8) and a(e*) € L we have

Qf,/a[F] = }}g{}o ,3(1 )oc (exp {i“’] In In (\an,jyeﬂn) })

- mﬁ ' (e"p {“’1 intn (Jaale®"”) + Lyintn 1, \)D

2 lim, /3 (eXP {wl inin (|aylet) +]§w (1 +o(1)InIn (Jay]et) })
m

:nlgf}oﬁ )\n (exp{ 1+0 ];w]-ln In <|an,1|eA)‘">})

ZYHOO( 28} ()))(x (exp{Zw]ln In <]an1\eA)‘”)}>

X (In (|an,1]e™)) .

n—00 ,B()\n)

Thus, Qa‘?, 8 [F] = o0 and for T;}E [F] by Lemma 2.2 from (9) we obtain

— In (Jag|et) — il

= lim = lim 1 n(|a -eA’\” “i
TEHIF) = J oo (A — o g gty L1 (7 (1))

1 Aly Yiomo 1 | pAMn “iom
= lim H n (Ja,le™) <JT lim ? (La”']‘e ) =[112F 1~
el I\ a (ol FIB()) ) T i \a (o FIBA)) ) i
The proof of Theorem 3 is complete. O

It is easy to verify that the functions a(x) = In x and B(x) = In In x for x > x; satisfy the
conditions of Theorem 3. Therefore, the following statement is true.

Corollary 2.1. Let Diriclet series (4) be such that forall1 < j <m

In In M(c, F;) In M(c, F;))

b e n(/(A—0) % Mieaja-o) U

andIn n = O(In In A,) asn — oo. Then the conditions (8) and (9) imply

In In M(c, F) lim In M(c, F)

e I (/(A—0) % M/ A —o) 1}

T In exp{a(ln M(c, F)}
ot In exp{B(1/(A - o)}’

" _ Tm exp{a(In M(c,F)}
TaplF) = 00 ool [FIB(L/ (A — )}

and for the finding by the coefficients we use Lemma 1.1. We obtain the following statement.

Since Qul?, glF] = we define the type also by the formula
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Lemma 2.3. Suppose that the function ¢**) and eP(*) belongs to Ly; and

e | P (e )| 0@

as x — +oo foreach c € (0, +00). Ifexp{a(An)} =0 (exp{B (An/Inn)}) asn — co then
th}ﬁ[F] — Tim exp{a(An)}

e {aty 78 (e ) |

Theorem 4. Let the function e*¥) and eP(%) belongs to L;, the conditions (2) and (10) hold
and a(Ay,) = o(B(An/Inn)) asn — co. Suppose that all Dirichlet series (4) have the same

generalized order ¢}, ﬁ[ ] = 0 € (0,+00) and the types Té‘}ﬁ[Fj] € (0,4o0). Suppose also that
a,1 # 0 foralln > ny andfora]]Z <j<m
An An
— | < (1 1 — |, . 11
ﬁ(mu%mﬂﬂ>—(+“>m<mwmwmo> "o ()

m
Ifwj>0,1§j§m,2w]-:1and
j=1

exp {[3 (W) } (1+ o Hexp { (W) } (12)

as n — oo then Dirichlet series (1) has the generahzed order ¢ a,ﬁ[ | = 0 and type

Proof. From (12) we have

An i Ay
P <W> =)L wip (W) +o(1) (13)

j=1
An 1
In (\an,j\eA)‘n) 0

Lt < lim i J B ( A > _1
Qo’?,ﬁ[F] T e i a(An)" \Un (a,q|eAr) o

that is Qul?, 5 [F] = 0. From (12) and Lemma 2.3 also it follows that

as n — oo. Therefore, by Lemma 1.1

=

1 . 1 An ) UL . w]
——— = lim > lim
@ﬁ];%wwwﬁme>—§ﬂwww

On the other hand, in view of (11) from (13) we obtain

— im;ex )\—
IWHﬁ%mWWHP&NMWWW»
him ot TTexpdowB [ M
_;L—ooexP{a }H p{Q ]ﬁ< (la J‘eAM)>}

1 tm eXp{Qﬁ (m <\_a27‘1e%>>} W] ﬁ( o ]>

1 n—eo exp{a(An)} i
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Theorem 4 is proved. 0

It is easy to verify that the functions #(x) = In In x and B(x) = In In x for x > x satisfy
the conditions (2) and (10). The condition #(A,) = o (B (Ax/In n)) as n — oo holds, provided
@ (InIn n)/In A, < 1. Therefore, Theorem 4 implies the following statement.

n—oo

Corollary 2.2. Let m (ln Inn)/In A, <landforalll <j<m

1_ln InlnIn M(c, F)) 1__ln In In M(c, F;)) Tl
/A=) % MmMyea/a_oey U< O+
Suppose thata,1 # 0 for alln > ng and forall2 < j <m

An

An
— < (1 H)nln ———, .
In (g ler) = oI o Ay e

In In

Ifwj>0,1<j<m, Zw = 1and
j=1

An

i)
11’1 —_— 1+0 —
In (|‘1n|eAA"> i= (‘an]‘eAA")

asn — oo then

—InInInIn M(c, F) —lnlnlnMUF LSS

lim = li T .

A Inln(1/(A—-0) ¥ Faml(1/(A E j
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Y TepMiHax y3araAbHEHMX MOPSIAKIB AOCAIAKEHO 3B 130K MiX 3pocTaHHsIM psiay Aipixae F(s) =
y y

(e8]
Y. ayexp{sA,} 3 abcumcoro abcoaroTHOL 361KHOCTI A € (—00,4+00) i 3pocTaHHsIM psiaiB Aipixae
n=1

Fi(s) = Z ayjexp{siy}, 1 < j < 2,3 Takoro X abCmicoro abCOAIOTHOI 361KHOCTI, SIKII0, Harpu-

KAaA, KOGClDlHlGHTI/I ay TIOBsI3aHi 3 KOGClDH.IlGHTaMI/I lZn] CHlBBlAHOI_HeHSIM

A m A “
n
’B<ln (|an|eA)\n)) (1+o0(1 H.B (ln |an]|eA/\,1)> , n— 0o,

=

m
Aewi>0,1§j§m,2w]-:1.
j=1

Kntouosi crosa i ppasu: psia Aipixae, y3ararbHeHUI MOPSIAOK.



