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DZHALIUK N.S., PETRYCHKOVYCH V.M.

THE STRUCTURE OF SOLUTIONS OF THE MATRIX LINEAR UNILATERAL
POLYNOMIAL EQUATION WITH TWO VARIABLES

We investigate the structure of solutions of the matrix linear polynomial equation
A(A)X(A) + B(A)Y(A) = C(A), in particular, possible degrees of the solutions. The solving of
this equation is reduced to the solving of the equivalent matrix polynomial equation with matrix
coefficients in triangular forms with invariant factors on the main diagonals, to which the matri-
ces A(A), B(A) and C(A) are reduced by means of semiscalar equivalent transformations. On the
basis of it, we have pointed out the bounds of the degrees of the matrix polynomial equation solu-
tions. Necessary and sufficient conditions for the uniqueness of a solution with a minimal degree
are established. An effective method for constructing minimal degree solutions of the equations is
suggested. In this article, unlike well-known results about the estimations of the degrees of the solu-
tions of the matrix polynomial equations in which both matrix coefficients are regular or at least one
of them is regular, we have considered the case when the matrix polynomial equation has arbitrary
matrix coefficients A(A) and B(A).

Key words and phrases: matrix polynomial equation, solution of equation, semiscalar equivalence
of polynomial matrices.
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INTRODUCTION

Let F be a field and F[A] be a polynomial ring over F. The matrix linear polynomial
equations
AM)X(A) + BA)Y(A) = C(A), (1)

AA)X(A) +Y(A)B(A) = C(A), 2)

where A(A), B(A) and C(A) are known, X(A) and Y(A) are unknown m x m matrices over
ring F[A], find application in the dynamical systems theory, the optimal control theory and in
other areas [6,7,12-14].

It is clear, that if equations (1) and (2) are solvable, then they have solutions of unlimited
on top degrees. Therefore, when we describe the solutions of such equations, it is important
to establish their minimal degrees. Some estimations of the degrees of the solutions of the
matrix polynomial equation (2) are known in [1,5,9]. In [1], it has been established that if in
the matrix polynomial equation (2) both matrices A(A), B(A) are regular, then there exists a
solution X(A), Y(A), such that

degX(A) < degB(A), degY(A) < degA(A) 3)
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and it is unique if and only if
degC(A) < degA(A) +degB(A) —1 and (detA(A),detB(A)) =1.

In [5], this result has been extended for the matrix equation (2) if at least one of the matrices
A(A) or B(A) is regular. We don’t know similar estimates of the degrees of the solutions of the
matrix polynomial equation (1).

In [2, 8], the matrix linear unilateral and bilateral equations in the form (1) and (2) over
other domains have been studied.

In [3], we have obtained some bounds of the degrees of the solutions of the matrix polyno-
mial equation (1) with singular matrix coefficients. In this paper, we have continued studing
the structure of solutions of this matrix polynomial equation. The triple of matrices A(A), B(A)
and C(A) can be simultaneously reduced to triangular forms T4(A), TB(A) and T¢ (1) with in-
variant factors on main diagonals by means of semiscalar equivalence transformations [10,11].
Following this, the bounds of the degrees of the solutions of the matrix polynomial equation
(1) have been pointed out. Necessary and sufficient conditions for the uniqueness of a solution
with a minimal degree have been established. There is also suggested an effective method for
constructing minimal degree solutions of such matrix polynomial equations.

1 PRELIMINARY RESULTS

We denote the ring of m x m matrices over F[A] by M(m, F[A]), groups of invertible
matrices over F and F[A] by GL(m,F) and GL(m, F[A]), respectively.

It is well known, that every matrix A(A) € M(m, F[A]), rankA = r, is equivalent to the
Smith normal form S4 (A), that is,

SAA) = UM AW V(A) = diag(u(A), ..., 1l (A),0, ...,0),

where U(A), V(A) € GL(m, F[A]), u*(A) | uft1(A), i=1,...,r — 1. The polynomials pi{*(7)
are called the invariant factors of matrix A(A).

Definition 1 ( [10,11]). Collection of polynomial matrices

where A;(A), Bi(A) € M(m,F[A]), if there exist matrices Q € GL(m,F) and R;(A) €
GL(m, F[A]) such that Bi(A) = QA:(MRi(A), i=1, ..., k.

Theorem 1 ( [10,11]). Collection of nonsingular polynomial matrices
A1(A), ..., Ar(A), Ai(A) € M(m, F[A]),
i=1,..., k, issemiscalar equivalent to the collection of triangular matrices

T4 (M), ..., T4(A),
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that is, there exist an upper unitriangular matrix Q € GL(m, F) and invertible matrices R4i(A) €
GL(m, F[A]) such that

uii(A) 0 0
() 1) A,
TA(A) = QA; (AR (M) = tor (Muy" (A) Hy'(A) 0 ’ @)
ED ) D) - u )

where deg tl(fq) (A) < deg y?i(}\) — deg yf;" (A), if deg y;‘" (A) > deg yf?i()\) and tgq) (A) =0, if
y?i()\) = yf;"(}\), forallp,q=1,.... m,p>q;i=1,...,k

Triangular form T#i(A) is called standard form of polynomial matrix A;(A) with respect
to semiscalar equivalence. Note that the matrix T4/(A) may be written in the form T4i(A) =
T;(A)S4i(A), where T;(A) is a lower unitriangular matrix, S% (1) is the Smith normal form of
matrix A;(A).

) It should be noted that this theorem holds if the field F is infinite or if it is finite but
Y. s; < |F|, where |F| is the number of elements of finite field F,s; = degdetA;(A), i =

i=1
1, ..., k.

2 SOLUTIONS OF MINIMAL DEGREE OF MATRIX POLYNOMIAL EQUATIONS

By Theorem 1, the triple of nonsingular polynomial matrices A(A), B(A),
C(A) € M(m, F[A]) from equation (1) is semiscalar equivalent to the triple of triangular poly-
nomial matrices TA(A), TB(A), TC(A) in standard form, that is,

T4(A) = QA(MRA(A), TP(A) = QB(MRP(A), TE(A) = QC(A)R(A),

where Q € GL(m, F), RA(A), RB(A), RE€(A) € GL(m, F[A)).
Matrices T4(A), TB(A) and TC(A) have the form (4), that is,

ui(A) 0 0

Ay — || OO Oy 0
Tyt (M)t (A) T (Mgt (A) - (M)

ui(A) 0 e 0

TB(A) = by (M)uf (M) U5 () 0
byt (M) pB(A) b (A)uB (M) b (A)

s (A) 0 0

o = | IR () 0
Cml (A)Pﬁ (A) 5m2(/\)ﬂz (A) Vr% (A)
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Then from equation (1) we obtain the matrix polynomial equation
TAMX(A) + TE(A)Y(A) = TE(A), (5)

where X(A) = (R4(A))"'X(A)RE(A), Y(A) = (RB(A))"1Y(A)RE(A).
We will call the equation (5) associate to the equation (1).

Lemma 1. The equation (1) is solvable if and only if the equation (5) is solvable. Each solution
X(A), Y(A) of the equation (1) corresponds to a solution X(A), Y(A) of the equation (5) and the
converse each solution X(A), Y(A) of the equation (5) corresponds to a solution X(A), Y(A) of
the equation (1).

Proof. It is well known [6, 13], that the matrix equation (1) is solvable if and only if the left
greatest common divisor D(A) of matrices A(A) and B(A) is the left divisor of the matrix C(A).
Then the greatest common divisor of triangular forms T4 (1) and T2(A) is D1(A) = QD(A).
Is it easy to see that if the matrix D(A) is the left divisor of the matrix C(A), then D1 (A) is the
divisor of the matrix T¢(\) and | conversely.

Furthermore, each solution X(A), Y(A) of the equation (5) corresponds to the solution

X(A) = RAOX(A)(R(A) ™, Y(A) = REY(A)(RE(A) ™
of the equation (1) and conversely. O

Thus, the description of solutions of the matrix equation (1) is reduced to the description
of solutions of the associated equation (5).

Solutions X(A), Y(A) and X(A), Y(A) of the matrix equations (1) and (5) are associate.

We denote the i-th row of matrix A by row;(A).

Theorem 2. Let the matrix equation (5) be solvable. Then, it has the solution

Xi(A) = |7 W, ) =117 e

such that
row;(X1(A)) =0 if deguP(A)=0 (uP(A)=1),i=1,...k (6)

deg row;(X1(A)) < deguP(A) if deguP(A) >1,i=k+1,...,m, 7)

and the solution X, (A) = Hfl(jz)()\)ﬂ’f“, Yo (A) = Hyzj (A)||]* such that
row;(Y2(A)) =0 if degui(A) =0 (uf(A)=1),i=1,...,] ®)
deg row;(Y2(A)) < degut(A) if deguf(A) >1,i=1+1,...,m. )

Proof. From the matrix equation (5), we obtain the system of linear polynomial equations

i( (T (A) + BN (N)) = s AT (), (10

i, j=1,...,m, where El-l-()\) =b;i(A) =ci(A) = 1.
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The description of solutions of this system is reduced to the description of solutions of
linear polynomial equations in the following form

ui MTA) + pf (Mg (A) =E(A), 0, j=1,...,m. (11)

If the equation (11) is solvable, then it has the solution X;j(A) = ( ), Yij(A) = A{..l) (A)
such that degfl(jl)()\) < degu? (1) and the solution Xjj(A) = xz( )( ) yij(A) = f/f])( ) such
that degysz) (A) < deguft(A) [4,7]. If deguP(A) > 1,i = k+1,...,m, then for each element

in the row row;(X;(A)) the condition (7) of the theorem is true. Similarly, if degu?'(A) > 1,
i=1+1,...,m,the condition (9) is true.
Among equations of the system (10) there are such polynomial equations

uit (DTi(A) + i (MFi(A) = p (A). (12)

If u4(A) = 1 and pB(A) = 1, then this equation has solutions ¥;;(A) = 0, 7;;(A) = u$(A) and
%i(A) = uE(A), 7iu(A) = 0. If only one of (1) = 1 or u#(A) = 1, then this equation has

solutions ¥;;(A) = 0, (1) = & t ) and Xi(A) = H 1) yii(A) =0, respectively.

ni (A) un)’
The system (10) also has polynomlal equations in the following form
TH ()\)xi]-()\) + ub (Myi;i(A) =0, i<ji=1....m—-1j=2,...,m (13)
These equations always have a zero solution, that is, X;;(A) = 0, y;;(A) = 0. Thus, the condi-
tions (6) and (8) of the theorem are true. This completes the proof. O

From the proof of this theorem, we get a method for constructing solutions of the matrix
equation (5). Since, the following inequalities degu!(A) < deguZi(A), i = 1,...,m —1, are
true for the invariant factors of matrix A(A), then degS#(A) = degus(A). Therefore, from
Theorem 2 we get the following corollary.

Corollary 1. Let the matrix equation (5) be solvable. Then it has the solution
XA, K@)
such that
Xi(A) =0 if degSB(A) =0 (B(A) is an invertible matrix),
degX;(A) < deg SB(A) if degSB(A) >1,
and the solution
X2(A), Ya(A)
such that
Y2(A) =0 if degS?(A) =0 (A(A) is an invertible matrix),
degY>(A) < deg SA(A) if degSA(A) > 1.
Theorem 3. Let

SA(A) =diag(l,..., Luf j(A), ..., um (1), k>0, (14)
k
and
SE(A) =diag(1,..., L uf 4 (A), ..., ub(A)), 1 >0, (15)

l
be the Smith normal forms of the matrices A(A) and B(\), respectively, and let the matrix
equation (5) be solvable. Without loss of generality, letk > .
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(i) If degu®(A) > degut(A) +degub(A), u(A) # 1, uB(A) #1, i=1,...,m, then the
matrix equation (5) has the solution

X(A) = |Z;MIE, Y(A) = [[7;(MD)]|F
such that

deg row;(X(1)) < degu? (1), deg row;(Y(A)) = degut (1) —deguf(A),  (16)

(ii) if deguf(A) = degpf'(A) +deguf(A), pf'(A) = LoruP(A) =1, i=1,...,k, then the

i

matrix equation (5) has solutions X(A), Y(A) such that
row;(X(A)) = 0, deg row;(Y(A)) < degu’(A) — degu?(A), (17)

and

deg row; (X(1)) < degu (1) — deguf (1), row;(Y(A)) = 0, (18)

(iii) if degu$(A) < deguf*(A) +deguB(A), i=k+1,...,m, then the matrix equation (5) has

the solution X(A), Y(A) such that

deg row;(X(1)) < degul(7), deg row;(Y(A)) < deguf(A). (19)

Proof. Case (i). In the proof of Theorem 2, it has been shown that the solving of the matrix
equation (5) is reduced to the solving of the system of linear polynomial equations (10). This
system has equations (12). Then, there exists a solution with the condition deg X;;(A) <
degu? (1) of the i-th equation (12) [4,7]. So, deg ¥ij(A) = degu{(A) — degu?(A) for a fixed
value of i and all values of j = 1,...,m. Thus, the matrix equation (5) has the solution
X(A), Y(A) with the condition (16).

Case (ii). In this case the condition has the form degu&(A) = degu (1) or degut(A) =
deguB(A) if uB(A) =1or uf(1) =1forafixed value of i. If u8(A) =1and uf(A) =1fora
fixed value of i, then the condition has the form degyic(}\) = 0. In the proof of Theorem 2, it
has been shown that the system of linear polynomial equations (11) has equations (12) and (13).
In this case, these equations have zero solutions. Thus, the matrix equation (5) has solutions

X(A), Y(A) with the conditions (17) and (18).

Case (iii). There exists a solution of the equation (11) with the condition deg 371-]-()\) <
degy}3 (A), degyij(A) < deguf (M) if the condition degpu{(A) < deguf*(A) + degul (A) is true
for a fixed value of i and all values of j = 1, ..., m [4,7]. This completes the proof. O

Remark 1. We should note that in cases (ii) and (iii), opposite propositions hold, that is, their
conditions are necessary for the existence of solutions with the conditions (17)—(19).

Theorem 4. Let the equation (5) be solvable. Then it has solutions
X(A) = [1ZMIT YA) = 75T

of lower triangular forms such that

(i) degx;i(A) < degub(A), degyii(A) < degu(A)

if degyf(}\) < degyiA(A) + degy? A), i=1,...,m;
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(i) degX;i(A) < deguP (M), degyii(A) = degul(A) — degu?(A)

if deguS(A) > degu(A) +deguf(A), i=1,...,m.

Proof. We prove this theorem in a similar way to Theorem 2 and Theorem 3. ]
We get solutions of the matrix equation (1) from solutions of the matrix equation (5):
X(A) = RYA)X(A)(RE(M) 7, Y(A) = RE()Y(A)(RE(A) !
3 THE UNIQUENESS OF SOLUTIONS OF MINIMAL DEGREES OF MATRIX POLYNOMIAL

EQUATIONS

We will establish the conditions for the uniqueness of solutions of minimal degrees of the
matrix equation (5).

Theorem 5. The matrix equation (5) has a unique solution

W) = 17D, @) = 17 )y

and
2
X0 = IEZ W 20 = 172 Wl
such that
rowi()?él)(}\)) =0 if deguP(A)=0,i=1,...,k (20)
deg rowi(}?él)(}\)) < degub(A) if deguP(A)>1,i=k+1,...,m, (21)
and
rowi(fféz) (A) =0 if degu?(A)=0,i=1,...,k (22)
deg rowi(l?éz) (A) < deguft(A) if deguf(A)>1,i=k+1,...,m, (23)
if and only if

(U (A, 1 (A)) = 1.

Proof. It is clear that the matrix equation (5) has a unique solution Xél)(}\), 1751)()\) with
%1)( A)

the condition (21) if and only if each equation (11) has a unique solution x(l)( A), Y j

such that degfl(]-l) < deguP(A). This solution of the equation (11) is unique if and only

if (;tiA(A),yf(A)) =1 forall i,j =1,...,m[4,7]. The last condition holds if and only if
(AN, (V) = 1.

As it has been shown in the proof of Theorem 2, the system (10) has equations (12) and (13).
By the condition of the theorem, these equations have a zero solution, which is unique. Thus,

the solution }N(él) (A), 1751) (A) with the condition (20) is unique.
Similarly we prove the existence of a unique solution X(()z) (A), 1752) (A) with the conditions
(22) and (23). This completes the proof. O
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Theorem 6. Let the matrix equation (5) be solvable and let S4(A), and SB(A) be the Smith
normal forms (14) and (15) of the matrices A(A) and B(A), respectively. Then, there exists a
unique solution

X(A) = % M)IT, YA) = 7M1
of the matrix equation (5) with the conditions (17) and (18) if and only if
deguf (1) = degpf (A) +degul (1), i=1,....k and (up(A),up(A) =1,
and with the condition (19) if and only if
degus (M) < deguft(A) +deguP(A), i=k+1,...,m, and (ui(A),ul(7)) =1.

Proof. It is clear that a unique solution of the matrix equation (5) exists if and only if a unique
solution of the system of linear polynomial equations (10) exists, that is, a unique solution of
each linear polynomial equation (11) exists. This system has equations (12). If p#(A) = 1
and #P(A) = 1, then by the conditions of the theorem, this equation has solutions ¥;;(A) =
0, 7ii(A) = uS(A) and ;5(A) = p$(A), ¥ii(A) = 0. If only one of u (1) = 1 or uP(A) =1, then
this equation has solutions

Xii(A) =0, yii(A) = 1 ()

- c(A)
],{F(A) and xii()\) = ‘Z:TEA;, yll()\) = O,
respectively. The equations (13) always have a zero solution, that is, X;;(A) = 0, y;;(A) = 0.
This solution is unique. So, there exists a unique solution with the conditions (17) and (18) of
the matrix equation (5).

If uA(A) # 1and pB(A) # 1, then by the results [4,7] the solution with the condition
(19) of the matrix equation (5) is unique if and only if the solution Xx;;(A), y;j(A) such that
deg¥;j(A) < deguP(A) and degyij(A) < degpus'(A) of the equation (11) is unique. There exist
such solutions and they are unique if and only if degu®(A) < degu?!(A) + degu?(A) and

A, (A) =14,j=1,...,m.

The last conditions are true if and only if (u7(A), #5 (1)) = 1. This completes the proof. [
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AOCAIAXYETBCSI CTPYKTypa PO3B'SI3KiB MaTPUUYHOTO AiHIHOTO MOAIHOMIaABHOTO pPiBHSIHHSI
A(A)X(A) 4+ B(A)Y(A) = C(A), 30xkpeMa MOXAMBI cTeleHi IMX po3B’si3KiB. P03B’s13yBaHHS LIbO-
TrO MaTpUYHOTO IIOAIHOMIaABHOTO PiBHSIHHSI 3BOAMTECSI AO PO3B’SI3yBaHHSI €KBiBaA€THOTO MaTpu-
YHOT'O TIOAIHOMIaABHOTO PiBHSIHHS 3 MaTpULISIMM-KoedpillieHTaMM y TPUMKYTHMX popMax 3 iHBapiaH-
THMMM MHOXHMKAMM Ha TOAOBHMX AlarOHAASIX, AO SIKMX 3BOASITHCS IIOAIHOMIiaAbHI MaTpPWIIi A(A),
B(A) i C(A) HamiBcKaASIPHMMM €KBiBaA€HTHUMIU ITepeTBopeHHs M. Ha OCHOBI 1IbOTO BKa3aHO MeXXi
AASL CTETIEHIB pO3B’sI3KiB MaTPUYHIX HOAIHOMiaABHIMX PiBHSIHB. BcTaHOBAEHO HeobXiaHi i AocTaTHI
YMOBU €AMHOCTI PO3B’sI3Ky MiHIMAABHOTO CTEIeHsI. 3allpOIIOHOBAHO e(PeKTUBHII METOA IOOYAOBI
PO3B’sI3KiB MiHIMaABHMX CTeIleHiB ImX piBHsHb. Ha BiaAMiHy Bia BiAOMIX pe3yAbTaTiB PO OLIHKM
CTEIeHiB PO3B’SI3KiB MaTPMUIHNX TOATHOMIaABHMX PiBHSIHB, B SIKMX 06MABa ab60 MpMHAVMHI OAVH i3
KoedpiIlieHTiB € PeryAsIpHOIO MaTPHIIEO, Y Lilf CTaTTi PO3TASHYTO BUMITAAOK MaTPIIHOTO TIOATHOMI-
AABHOTO PIBHSIHHS 3 AOBiAbHVMY KoedpitieHTamm A(A) i B(A).

Kntouosi cnosa i ¢ppasu: MaTpudHe OAIHOMiaAbHe piBHSIHHS, PO3B’SI30K PiBHSIHHS, HaIliBCKaASIP-
Ha €KBiBaA€HTHICTh TOAIHOMiaABHMX MaTpUILIb.



