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SUPEREXTENSIONS OF THREE-ELEMENT SEMIGROUPS

A family A of non-empty subsets of a set X is called an upfamily if for each set A € A any set
B O Abelongs to A. An upfamily £ of subsets of X is said to be linked if ANB # @ forall A,B € L.
A linked upfamily M of subsets of X is maximal linked if M coincides with each linked upfamily
L on X that contains M. The superextension A(X) consists of all maximal linked upfamilies on X.
Any associative binary operation * : X x X — X can be extended to an associative binary operation

o: A(X) x A(X) = A(X) by the formula Lo M = <Ua,5La>c<M,z L e L, {M}aer C M> for
maximal linked upfamilies £, M € A(X). In the paper we describe superextensions of all three-

element semigroups up to isomorphism.

Key words and phrases: semigroup, maximal linked upfamily, superextension, projective retrac-
tion, commutative.
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INTRODUCTION

In this paper we investigate the algebraic structure of the superextension A(S) of a three-
element semigroup S. The thorough study of various extensions of semigroups was started
in [11] and continued in [1-7,12-16]. The largest among these extensions is the semigroup
v(S) of all upfamilies on S. A family A of non-empty subsets of a set X is called an upfamily
if for each set A € A any subset B O A belongs to .A. Each family B of non-empty subsets of
X generates the upfamily (B C X : B € B) = {A C X : 3B € B(B C A)}. An upfamily F
that is closed under taking finite intersections is called a filter. A filter U is called an ultrafilter if
U = F for any filter F containing U . The family B(X) of all ultrafilters on a set X is called the
Stone-Cech compactification of X, see [17], [20]. An ultrafilter {x}, generated by a singleton
{x}, x € X, is called principal. Each point x € X is identified with the principal ultrafilter
({x}) generated by the singleton {x}, and hence we consider X C B(X) C v(X). It was shown
in [11] that any associative binary operation * : S X S — S can be extended to an associative
binary operation o : v(S) x v(S) — v(S) by the formula

EoM:<Ua*Ma:L€/J, {Ma}aeLcM>

aeL

for upfamilies £, M € v(S). In this case the Stone-Cech compactification B(S) is a subsemi-
group of the semigroup v(S).

The semigroup v(S) contains many other important extensions of S. In particular, it con-
tains the semigroup A(S) of maximal linked upfamilies. The space A(S) is well-known in
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General and Categorial Topology as the superextension of S, see [19]- [21]. An upfamily £ of
subsets of S is linked if ANB # & for all A,B € L. The family of all linked upfamilies on
S is denoted by N,(S). It is a subsemigroup of v(S). The superextension A(S) consists of all
maximal elements of N, (S), see [10], [11].

Each map f : X — Y induces the map

Af i AMX) =5 AY), Af M= (f(M)CY:Me M) (see [10]).

A non-empty subset I of a semigroup S is called an ideal if ISU SI C I. A semigroup S is
called simple if S is the unique ideal of S. An element z of a semigroup S is called a zero (resp.
a left zero, a right zero) in S if az = za = z (resp. za = z,az = z) for any a € S. A semigroup S
is said to be a left (right) zeros semigroup if ab = a (ab = b) for any a,b € S. A semigroup S is
called a null semigroup if there exists an element ¢ € S such that xy = c for any x,y € S. By Oy,
LO; and RO, we denote a null semigroup, a left zero semigroups and a right zero semigroup
of order n respectively. Following the algebraic tradition, we denote by C,, the cyclic group of
order n.

Let S be a semigroup and e ¢ S. The binary operation defined on S can be extended to
SU {e} putting es = se = s for all s € SU {e}. The notation S*! denotes a monoid S U {e}
obtained from S by adjoining an extra identity e (regardless of whether S is or is not a monoid).
Analogous to the above construction, for every semigroup S one can define S*9, a semigroup
with attached an extra zero to S.

Let us recall that a semilattice is a commutative idempotent semigroup. Idempotent semi-
groups are called bands. So, in a band each element x is an idempotent, which means that
xx = x. By L, we denote the linear semilattice {0,1,...,n} of order n, endowed with the
operation of minimum. A semigroup S is called Clifford if it is a union of groups.

A semigroup (a) = {a"},,en generated by a single element a is called monogenic or cyclic. If
a monogenic semigroup is infinite, then it is isomorphic to the additive semigroup IN. A finite
monogenic semigroup S = (a) also has very simple structure (see [8], [18]). There are positive
integer numbers r and m called the index and the period of S such that

e S={aa?. .., a"" Nandm+r—1=|S|;
e foranyi,j € w the equality a”* = a’*/ holds if and only if i = j mod m;

o Cp = {d’, atl ., am“*l} is a cyclic and maximal subgroup of S with the neutral ele-
ment e = a" € Cy;, where m divides n.

We denote by C,; ; a finite monogenic semigroup of index r and period m.

An isomorphism between S and S’ is one-to-one function ¢ : S — S’ such that ¢(xy) =
¢(x)p(y) forall x,y € S. If there exist an isomorphism between S and S/, then S and S’ are said
to be isomorphic, denoted S = S’. An antiisomorphism between S and S’ is one-to-one function
¢ : S — S such that ¢(xy) = ¢(y)@(x) for all x,y € S. If there exist an antiisomorphism
between S and S, then S and S’ are said to be antiisomorphic, denoted S =, S'. If (S, *) is a
semigroup, then (S, o), where x oy = y * x, is a semigroup as well. The semigroups (S, *) and
(S, 0) are called dual. It is easy to see that dual semigroups are antiisomorphic.

There are exactly five pairwise non-isomorphic semigroups having two elements: C,, Lo,
Oy, LO3, RO,. The superextension A(S) of two-element semigroups S consists of two principal
ultrafilters and therefore A(S) = S.
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In this paper we concentrate on describing the structure of the superextensions A(S) of
three-element semigroups S. Among 19683 different operations on a three-element set S =
{a,b,c} there are exactly 113 operations which are associative, see [9]. In other words, there
exist exactly 113 three-element semigroups, and many of these are isomorphic so that there
are essentially only 24 pairwise non-isomorphic semigroups of order 3.

1 PROJECTIVE RETRACTIONS AND SUPEREXTENSIONS

In this section we will apply some properties of proretract semigroups to study the struc-
ture of the superextensions of semigroups.

A subset R of a set X is called a retract if there exists a retraction of X onto R, that is a map
of X onto R which leaves each element of R fixed. A retractionr : S — T of a semigroup
S onto a subsemigroup T of S is called a projective retraction if xy = r(x)r(y) for any x,y €
S. A semigroup S is said to be a proretract-semigroup provided that there exists a projective
retractionr : S — T of S onto some proper subsemigroup T of S. In this case T will be called a
projective retract of S under a projective retraction r, and S will be called a proretract extension of
T under a projective retraction r. If r : S — T is a projective retraction of a semigroup S onto a
subsemigroup T of S, then r is a homomorphism and T is an ideal of S.

If a semigroup S is simple, then it is not a proretract-semigroup. In particular, groups, left
zero and right zero semigroups are not proretract-semigroups.

Proposition 1. A finite monogenic semigroup C,,, of index r and period m is a proretract-
semigroup if and only ifr = 2.

Proof. Let Cppy = {a,a?,...,a",...,a "1 | g"t™" = g™} If r = 1, then C,, is simple and thus
it is not a proretract-semigroup.

Let r = 2. Consider the map ¢ : Co,y — Cpy = {a?,...,a" 1}, ¢(s) = es, where e is the
identity of the maximal subgroup C,, of Cy,,. Then st € Cy, and st = eset = ¢(s)¢(t) for any
s, t € Cy,y. Consequently, ¢ is a projective retraction.

Let r > 2. Suppose that ¢ : C;,, — I is a projective retraction onto some proper ideal I of
S. Then aa = ¢(a)@(a). In monogenic semigroups of index r > 2 the equality a®> = ¢(a)? is
possible only in the case ¢(a) = a. Since ¢ is a homomorphism, then ¢ leaves each element of
C;,m fixed. Therefore, I = C; ;;, a contradiction. O

Let us note that for a subsemigroup T of a semigroup S the homomorphism i : A(T) —
A(S),i: A — (A)s is injective, and thus we can identify the semigroup A(T) with the sub-
semigroup i(A(T)) C A(S). Therefore, for each family B of non-empty subsets of T we identify
the upfamilies

(Byy={Ae€T|3BeBBCA)}eA(T) and (B)s={Ae€S|IBB(BC A)} € A(S).

In the following proposition we show that proretract-semigroup property is preserved by
superextensions.

Proposition 2. Ifr : S — T is a projective retraction of a semigroup S onto a subsemigroup T
of S, then Ar : A(S) — A(T) is a projective retraction of the superextension A(S) onto A(T).
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Proof. Let L, M € A(S). Then

Ar(L) 0 Ar(M) :< U axr(M)a:r(L) € Ar(L), {r(M)a}ser) C Ar(/\/l)>

acr(L)

= (Ur@+r(M):Le L, {r(M)a}aer C Ar(M))
ael

:<UQ*MHZL€£, {Ma}aeLCM>:£o/\/l_
ael

Corollary 1. If S is a proretract-semigroup, then A(S) is a proretract-semigroup as well.

In the next section we show that there exists a semigroup S that is not a proretract-semi-
group, but the superextension A(S) is a proretract-semigroup.

Theorem 1. If S is a null semigroup, then A(S) is a null semigroup as well.

Proof. Let S be a null semigroup. So there exists c € S such that xy = cforall x,yy € S. Then the
map r: S — {c}, r(s) = cforany s € S, is a projective retraction. According to Proposition 2
the map Ar: A(S) — A{c} = {({c})} is a projective retraction as well. Therefore,

LoM=Ar(L) oAr(M) = ({c}) o ({c}) = ({c})
for any £, M € A(S). Consequently A(S) is a null semigroup. O

A semigroup S is said to be an almost null semigroup if there exist the distinct elements
a,c € Ssuch thataa = aand xy = ¢ forany (x,y) € S x S\ {(a,a)}.

Theorem 2. If S is an almost null semigroup, then A(S) is an almost null semigroup as well.

Proof. Let S be an almost null semigroup, so there exist the elements a,c € S, ¢ # a, such that
aa = a and xy = c for any (x,y) € Sx S\ {(a,a)}. Thenthemapr :S — {a,c}, r(a) =a
and r(s) = c for any s # a, is a projective retraction. According to Proposition 2 the map
Ar : A(S) — Aa,c} is a projective retraction as well. It is easy to see that the semigroup
Ma,c} = {({a}), ({c})} = {a,c} is isomorphic to the semilattice L, = {0,1} with operation
of minimum.

It is obvious that ({a}) o ({a}) = ({a}). If A # ({a}), then there exists A € A such that
a ¢ A and therefore r(A) = c. This implies that Ar(A) = {({c})}. If (L, M) € A(S) x
AS)\{({{a}), ({a}))}, then Ar(L) = ({c}) or Ar(M) = ({c}). Therefore, Lo M = Ar(L) o
Ar(M) = ({c}). Consequently, A(S) is an almost null semigroup. O

Theorem 3. If S is a left (right) zero semigroup, then A(S) is a left (right) zero semigroup as
well.

Proof. Let S be a left zero semigroup. Then
LoM={JasMi:LEL, (Mo M) =(Ula}:LeL) =2
acL acL

for any £, M € A(S). Thus A(S) is a left zero semigroup as well.
For a right zero semigroup the proof is similar. O
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2 SUPEREXTENSIONS OF COMMUTATIVE SEMIGROUPS OF ORDER 3

In this section we describe the structure of superextensions of commutative three-element
semigroups. Among 24 pairwise non-isomorphic semigroups of order 3 there are 12 commu-
tative semigroups.

For a semigroup S = {a,b,c} the semigroup A(S) contains the three principal ultrafilters
({a}), ({b}), ({c}) and the maximal linked upfamily A = ({a,b},{a,c},{b,c}). Since semi-
groups S and {({a}), ({b}), ({c})} are isomorphic, then we can assume that A(S) = SU{A}.

In the sequel we will describe the structure of superextensions of three-element semigroups
S = {a,b,c} defined by Cayley tables using the formula

EoM:<Ua*Ma:L€/J, {Ma}geLCM>

a€l

of product of maximal linked upfamilies £, M € A(S).

The superextension A(C3) (described by the following Cayley table) of the cyclic group Cj is
isomorphic to (C3)*? and therefore A(C3) is a commutative Clifford semigroup. The thorough
study of superextensions of groups was started in [7] and continued in [1-3].

L Jalbfc[A]
allal|b|c|A
bllb|lcla|A
cleclalb|A
VAN VAN VAR VAN VAN

The superextensions of monogenic semigroups were studied in [13]. The cyclic semigroup
Cy, is a proretract extension of cyclic subgroup {b,c} = C, under retraction ¢ : {a,b,c} —
{b,c} with ¢(a) = c. The superextension A(C,,) is also a proretract extension of A{b,c} =
{b, ¢} according to Proposition 2. The monogenic semigroup Cs 1 is not a proretract-semigroup
by Proposition 1, but its superextension A(Cs 1) is a proretract extension of C3 1 under retraction
r:A(Cs1) — C3q with r(A) = ¢, and, therefore, A(C31) is a proretract-semigroup. Here are
the Cayley tables of A(Cy7) and A(Cj3 1) respectively:

- Jlalb[c]A] [ Jla[b]c[A]
al|lblclb|b al|blclc]| c
blc|blc|c blclclc]|c
cllblc|b|b clclclclc
AN|blc|b|b ANlclclc] ¢

The following Cayley tables for the semigroups A((C;)™) and A((Cp)*1), where C; =
{a, b}, imply that
AM(C2)*0) 2 {a, b, A} = ((G) ")+

and
AM(C)*Y) = {a, b, A} = ((C)* )™
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L Jlalb[c[A] L Jlalb] c [A]
allal|blc|lA alalblala
bl|lblalclA blbla|lb|b
cllclclclc cllalb|c|A
AN|AIAlc| A Allalb|A|A

The superextensions of a null semigroup and an almost null semigroup are a null semi-
group and an almost null semigroup as well according to Theorems 1 and 2:

- Jalbfe]A] - Jafbfe]A]

a
b
c

c|c|c|c ajc|c| ¢
c|c|c| c c|c|c| c
c|c|c|c cic|c| c
c|c|c| c c|c|c| c

Dlals s

A

The following Cayley tables for the semigroups A((02)*?) and A((O)*!) imply that
M(02)™) = {a,b,A}° = (03)™  and  A((02)™!) = {a,b, A} = (05)T

The semigroups (O,2)*% and A((O) ") are proretract extensions of the subsemigroup {b, c} =
Ly.

- Jlalbc[A] - Jlalb] c [A]
al|blblc| b al|blblalb
b|lb|blc|b b|lb|lb|b|b
clclc|c| c cllalb|c|A
AN|blblc| b AN|blb|A|Db

The superextensions of semilattices were studied in [4]. The following Cayley tables imply
that A(L3) = Ly is a linear semilattice, but the superextension of the non-linear semilattice is
its proretract extension and it is not even a Clifford semigroup:

L Jlafefc][A] L Jlafbfc]A]
alalblc|A al|lalclc| c
b|b|blc|b blc|blc|c
clclclelc clclclc|c
AN|NA|b|c| A Nl|clc|c]| c

The structure of the superextension of the last commutative semigroup is shown in the fol-

lowing table. This semigroup and its superextension are proretract extensions of the subgroup
{a,c} = C,.

| Jlalblc]A]
a|clalal|a
blalc|lc|c
cllalc|c]|c
Alflalclc|c
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3 SUPEREXTENSIONS OF NON-COMMUTATIVE SEMIGROUPS OF ORDER 3

There are 12 pairwise non-isomorphic non-commutative three-element semigroups. Non-
commutative semigroups are divided into the pairs of dual semigroups that are antiisomor-
phic.

The superextension of a left (right) zero semigroup is a left (right) zero semigroup as well
according to Theorem 3. Therefore A(LO3) = LO4 and A(RO3) = ROj.

L Jalb]c[A] [ Jlab]c[A]
alla|lalala alalblc|A
b|b|b|b|b bla|blc|A
cllecleclclc clalblc| A
ANIATA|TA A Alalblc| A

The following Cayley tables for the semigroups A((LO,)*?) and A((ROz)*?) imply that
AM(LO2) ) 22 {a,b, A} ™0 = (LO3) ™0

and
A((RO2)™0) = {a,b, A} = (RO5)* :

L Jlalbfc]A] - Jlalbc[A]
allalalc|a alalblc| A
bl b|blc|b blalblc|A
cllc|cleclec clclclc| c
A|NA|Ac| A ANlal|lblc| A

The following Cayley tables for the semigroups A(( LOZ)H) and A(( ROZ)“) imply that
A(LO) ™) 2 {a,b, A} =2 ({a, b} T 22 ((LO,) TH !

and

A((RO2)™) = {a,b, A}1 = ({a,b} 7)™ = ((RO2)TH)* -

L Jlalb]c[A] L Jlalb]c[A]
allalalala allalblala
bbbl b|b blalb|b|b
cllalb|c|A clalblc|A
Allalb|A|A Allalb|A|A

The following three-element semigroups and its superextensions are proretract extensions
of its subsemigroups, which are isomorphic to LO; and RO; respectively:

| Jlalblc]A] [ Jafb[c][A]
alclclc|c alc|blc]|c
b|b|b|lb|b blcliblc|c
clclclc]|c clclblc|c
Alclclc| ¢ Allc|blc]| c
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Other two pairs of non-Clifford non-commutative dual superextensions of three-element

semigroups are given by the following Cayley tables:

[ Jalb[c][A] L Jlafb]c[A]
alclclc|c alclalc|c
bllalblc|A blc|blc|c
cllclclc|c cllc|lclc|ec
Alclc|c]c Alc|Alc]| ¢
L Jaf[b]c[A] L Jlafb[c]A]
alalalal|a a||albla|a
bbbl b|Db bla|bla|a
cllalalc|a cllalblc|A
ANlala|AN|a Ala|blal|a

The last two three-element semigroups are the examples of non-commutative bands whose

superextensions are not Clifford semigroups.

(1]

(2]
(3]

(4]
(5]

(6]

(7]

(8]

[9]

[10]
(1]
[12]

[13]

[14]
[15]

REFERENCES
Banakh T., Gavrylkiv V. Algebra in superextension of groups, 1I: cancelativity and centers. Algebra Discrete Math.
2008, 4, 1-14.
Banakh T., Gavrylkiv V. Algebra in superextension of groups: minimal left ideals. Mat. Stud. 2009, 31 (2), 142-148.

Banakh T., Gavrylkiv V. Algebra in the superextensions of twinic groups. Dissertationes Math. 2010, 473, 1-74.
doi:10.4064/dm473-0-1

Banakh T., Gavrylkiv V. Algebra in superextensions of semilattices. Algebra Discrete Math. 2012, 13 (1), 2642.

Banakh T., Gavrylkiv V. Algebra in superextensions of inverse semigroups. Algebra Discrete Math. 2012, 13 (2),
147-168.

Banakh T., Gavrylkiv V. On structure of the semigroups of k-linked upfamilies on groups. Asian-European J. Math.
2017, 10 (4). doi:10.1142/51793557117500838

Banakh T., Gavrylkiv V., Nykyforchyn O. Algebra in superextensions of groups, I: zeros and commutativity. Alge-
bra Discrete Math. 2008, 3, 1-29.

Clifford A.H., Preston G.B. The algebraic theory of semigroups. In: Math. Surveys and Monographs 7, 1.
AMS, Providence, RI, 1961.

Diego F., Jonsdottir K.H. Associative Operations on a Three-Element Set. The Math. Enthusiast 2008, 5 (2-3),
257-268.

Gavrylkiv V. The spaces of inclusion hyperspaces over noncompact spaces. Mat. Stud. 2007, 28 (1), 92-110.
Gavrylkiv V. Right-topological semigroup operations on inclusion hyperspaces. Mat. Stud. 2008, 29 (1), 18-34.

Gavrylkiv V. Monotone families on cyclic semigroups. Precarpathian Bull. Shevchenko Sci. Soc. 2012, 17 (1),
35-45.

Gavrylkiv V. Superextensions of cyclic semigroups. Carpathian Math. Publ. 2013, 5 (1), 36-43. doi:
10.15330/cmp.5.1.36-43

Gavrylkiv V. Semigroups of linked upfamilies. Precarpathian Bull. Shevchenko Sci. Soc. 2015, 29 (1), 104-112.

Gavrylkiv V. Semigroups of centered upfamilies on finite monogenic semigroups. J. Algebra, Number Theory: Adv.
App. 2016, 16 (2), 71-84. d0i:10.18642 /jantaa 7100121719



36

(16]

(17]
(18]

[19]

[20]

[21]

GAVRYLKIV V.M.
Gavrylkiv V. Semigroups of centered upfamilies on groups. Lobachevskii ]J. Math. 2017, 38 (3), 420-428.
d0i:10.1134 /51995080217030106
Hindman N., Strauss D. Algebra in the Stone-Cech compactification. de Gruyter, Berlin, New York, 1998.

Howie ].M. Fundamentals of semigroup theory. The Clarendon Press, Oxford University Press, New York,
1995.

van Mill J. Supercompactness and Wallman spaces. In: Math. Centrum tracts, 85. Math. Centrum, Amster-
dam, 1977.

Teleiko A., Zarichnyi M. Categorical Topology of Compact Hausdofff Spaces. In: Math. stud., 5. VNTL
Publishers, Lviv, 1999.

Verbeek A. Superextensions of topological spaces. In: Math. Centrum tracts, 41. Math. Centrum, Amster-
dam, 1972.

Received 04.04.2017
Revised 09.05.2017

I'aBpmaxkis B.M. Cynepposuiupennq mpvoxenemenmuux Hanisepyn // KapraTcbki MaTem. myba. — 2017,
—T.9,Nel. —C. 28-36.

Cim’st A HeOPOXXHIX MAMHOXMH MHOXMHM X HasUBA€TbCSI MOHOMIOHHOI0, SIKIIIO AAST KOXKHOI
mHOXVHU A € A poBinbHa MHOXmMHa B O A Hanrexuts A. MoHOTOHHaA ciM’s £ miAMHOXVH
MHOXWHM X HA3MBAEThCST 3uenieHot, sikio A N B # @ aas Bcix A, B € L. 3uernneHa MOHOTOH-
Ha ciM’ss M miAMHOXVH MHOXMHM X € MAKCUMANOHOW 3UenieHow, sIKIo M 36iraerbcst 3 KOXHOIO
3YEILACHOK MOHOTOHHOIO ciM’eto £ Ha X, sika micturs M. Cynepposuiupenns A(X) cKaapaeTsest 3
yciX MaKCMMaABHIMX 3UelIA€HNX MOHOTOHHMX ciMelt Ha X. Koxkna acomiaTmsHa 6iHapHa omepariist
% : X X X — X mpoAOBXYEThCST A0 acouiaTuBHOI 6iHapHOI omeparii o : A(X) x A(X) — A(X) 3a
dopmyaoro Lo M = < Usera* My :L € L, {Mg}aer C /\/l> AASI MAKCYIMaABHIMX 3UeTIAeHMX MOHO-
ToHHMX ciMent £, M € A(X). VY il cTaTTi OIMCYIOTHCSI CYIIepPO3LUIMPEHHST BCIX TPhOXEA€MEHTHIIX
HaIIiBIPYII 3 TOUHICTIO AO i30MOpdisMy.

Kntouosi cnoea i ¢ppasu: HamiBrpyIia, MaKkCMMaAbHa 39eTIAeHa CHCTeMa, CYTIeppO3IIVPeHHs], TPo-
©KTUBHA PeTPaKllisl, KOMyTaTUBHICTb.



