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SUPEREXTENSIONS OF THREE-ELEMENT SEMIGROUPS

A family A of non-empty subsets of a set X is called an upfamily if for each set A ∈ A any set

B ⊃ A belongs to A. An upfamily L of subsets of X is said to be linked if A ∩ B 6= ∅ for all A, B ∈ L.

A linked upfamily M of subsets of X is maximal linked if M coincides with each linked upfamily

L on X that contains M. The superextension λ(X) consists of all maximal linked upfamilies on X.

Any associative binary operation ∗ : X × X → X can be extended to an associative binary operation

◦ : λ(X)× λ(X) → λ(X) by the formula L ◦M =
〈

⋃

a∈L a ∗ Ma : L ∈ L, {Ma}a∈L ⊂ M
〉

for

maximal linked upfamilies L,M ∈ λ(X). In the paper we describe superextensions of all three-

element semigroups up to isomorphism.
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INTRODUCTION

In this paper we investigate the algebraic structure of the superextension λ(S) of a three-

element semigroup S. The thorough study of various extensions of semigroups was started

in [11] and continued in [1–7, 12–16]. The largest among these extensions is the semigroup

υ(S) of all upfamilies on S. A family A of non-empty subsets of a set X is called an upfamily

if for each set A ∈ A any subset B ⊃ A belongs to A. Each family B of non-empty subsets of

X generates the upfamily 〈B ⊂ X : B ∈ B〉 = {A ⊂ X : ∃B ∈ B(B ⊂ A)}. An upfamily F

that is closed under taking finite intersections is called a filter. A filter U is called an ultrafilter if

U = F for any filter F containing U . The family β(X) of all ultrafilters on a set X is called the

Stone-Čech compactification of X, see [17], [20]. An ultrafilter {x}, generated by a singleton

{x}, x ∈ X, is called principal. Each point x ∈ X is identified with the principal ultrafilter

〈{x}〉 generated by the singleton {x}, and hence we consider X ⊂ β(X) ⊂ υ(X). It was shown

in [11] that any associative binary operation ∗ : S × S → S can be extended to an associative

binary operation ◦ : υ(S)× υ(S) → υ(S) by the formula

L ◦M =
〈

⋃

a∈L

a ∗ Ma : L ∈ L, {Ma}a∈L ⊂ M
〉

for upfamilies L,M ∈ υ(S). In this case the Stone-Čech compactification β(S) is a subsemi-

group of the semigroup υ(S).

The semigroup υ(S) contains many other important extensions of S. In particular, it con-

tains the semigroup λ(S) of maximal linked upfamilies. The space λ(S) is well-known in
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General and Categorial Topology as the superextension of S, see [19]- [21]. An upfamily L of

subsets of S is linked if A ∩ B 6= ∅ for all A, B ∈ L. The family of all linked upfamilies on

S is denoted by N2(S). It is a subsemigroup of υ(S). The superextension λ(S) consists of all

maximal elements of N2(S), see [10], [11].

Each map f : X → Y induces the map

λ f : λ(X) → λ(Y), λ f : M 7→
〈

f (M) ⊂ Y : M ∈ M
〉

(see [10]).

A non-empty subset I of a semigroup S is called an ideal if IS ∪ SI ⊂ I. A semigroup S is

called simple if S is the unique ideal of S. An element z of a semigroup S is called a zero (resp.

a left zero, a right zero) in S if az = za = z (resp. za = z, az = z) for any a ∈ S. A semigroup S

is said to be a left (right) zeros semigroup if ab = a (ab = b) for any a, b ∈ S. A semigroup S is

called a null semigroup if there exists an element c ∈ S such that xy = c for any x, y ∈ S. By On,

LOn and ROn we denote a null semigroup, a left zero semigroups and a right zero semigroup

of order n respectively. Following the algebraic tradition, we denote by Cn the cyclic group of

order n.

Let S be a semigroup and e /∈ S. The binary operation defined on S can be extended to

S ∪ {e} putting es = se = s for all s ∈ S ∪ {e}. The notation S+1 denotes a monoid S ∪ {e}

obtained from S by adjoining an extra identity e (regardless of whether S is or is not a monoid).

Analogous to the above construction, for every semigroup S one can define S+0, a semigroup

with attached an extra zero to S.

Let us recall that a semilattice is a commutative idempotent semigroup. Idempotent semi-

groups are called bands. So, in a band each element x is an idempotent, which means that

xx = x. By Ln we denote the linear semilattice {0, 1, . . . , n} of order n, endowed with the

operation of minimum. A semigroup S is called Clifford if it is a union of groups.

A semigroup 〈a〉 = {an}n∈N generated by a single element a is called monogenic or cyclic. If

a monogenic semigroup is infinite, then it is isomorphic to the additive semigroup N. A finite

monogenic semigroup S = 〈a〉 also has very simple structure (see [8], [18]). There are positive

integer numbers r and m called the index and the period of S such that

• S = {a, a2, . . . , am+r−1} and m + r − 1 = |S|;

• for any i, j ∈ ω the equality ar+i = ar+j holds if and only if i ≡ j mod m;

• Cm = {ar , ar+1, . . . , am+r−1} is a cyclic and maximal subgroup of S with the neutral ele-

ment e = an ∈ Cm, where m divides n.

We denote by Cr,m a finite monogenic semigroup of index r and period m.

An isomorphism between S and S′ is one-to-one function ϕ : S → S′ such that ϕ(xy) =

ϕ(x)ϕ(y) for all x, y ∈ S. If there exist an isomorphism between S and S′, then S and S′ are said

to be isomorphic, denoted S ∼= S′. An antiisomorphism between S and S′ is one-to-one function

ϕ : S → S′ such that ϕ(xy) = ϕ(y)ϕ(x) for all x, y ∈ S. If there exist an antiisomorphism

between S and S′, then S and S′ are said to be antiisomorphic, denoted S ∼=a S′. If (S, ∗) is a

semigroup, then (S, ◦), where x ◦ y = y ∗ x, is a semigroup as well. The semigroups (S, ∗) and

(S, ◦) are called dual. It is easy to see that dual semigroups are antiisomorphic.

There are exactly five pairwise non-isomorphic semigroups having two elements: C2, L2,

O2, LO2, RO2. The superextension λ(S) of two-element semigroups S consists of two principal

ultrafilters and therefore λ(S) ∼= S.
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In this paper we concentrate on describing the structure of the superextensions λ(S) of

three-element semigroups S. Among 19683 different operations on a three-element set S =

{a, b, c} there are exactly 113 operations which are associative, see [9]. In other words, there

exist exactly 113 three-element semigroups, and many of these are isomorphic so that there

are essentially only 24 pairwise non-isomorphic semigroups of order 3.

1 PROJECTIVE RETRACTIONS AND SUPEREXTENSIONS

In this section we will apply some properties of proretract semigroups to study the struc-

ture of the superextensions of semigroups.

A subset R of a set X is called a retract if there exists a retraction of X onto R, that is a map

of X onto R which leaves each element of R fixed. A retraction r : S → T of a semigroup

S onto a subsemigroup T of S is called a projective retraction if xy = r(x)r(y) for any x, y ∈

S. A semigroup S is said to be a proretract-semigroup provided that there exists a projective

retraction r : S → T of S onto some proper subsemigroup T of S. In this case T will be called a

projective retract of S under a projective retraction r, and S will be called a proretract extension of

T under a projective retraction r. If r : S → T is a projective retraction of a semigroup S onto a

subsemigroup T of S, then r is a homomorphism and T is an ideal of S.

If a semigroup S is simple, then it is not a proretract-semigroup. In particular, groups, left

zero and right zero semigroups are not proretract-semigroups.

Proposition 1. A finite monogenic semigroup Cr,m of index r and period m is a proretract-

semigroup if and only if r = 2.

Proof. Let Cr,m = {a, a2, . . . , ar, . . . , ar+m−1 | ar+m = am}. If r = 1, then Cr,m is simple and thus

it is not a proretract-semigroup.

Let r = 2. Consider the map ϕ : C2,m → Cm = {a2, . . . , am+1}, ϕ(s) = es, where e is the

identity of the maximal subgroup Cm of C2,m. Then st ∈ Cm and st = eset = ϕ(s)ϕ(t) for any

s, t ∈ C2,m. Consequently, ϕ is a projective retraction.

Let r > 2. Suppose that ϕ : Cr,m → I is a projective retraction onto some proper ideal I of

S. Then aa = ϕ(a)ϕ(a). In monogenic semigroups of index r > 2 the equality a2 = ϕ(a)2 is

possible only in the case ϕ(a) = a. Since ϕ is a homomorphism, then ϕ leaves each element of

Cr,m fixed. Therefore, I = Cr,m, a contradiction.

Let us note that for a subsemigroup T of a semigroup S the homomorphism i : λ(T) →

λ(S), i : A → 〈A〉S is injective, and thus we can identify the semigroup λ(T) with the sub-

semigroup i(λ(T)) ⊂ λ(S). Therefore, for each family B of non-empty subsets of T we identify

the upfamilies

〈B〉T = {A ∈ T | ∃B ∈ B(B ⊂ A)} ∈ λ(T) and 〈B〉S = {A ∈ S | ∃B ∈ B(B ⊂ A)} ∈ λ(S).

In the following proposition we show that proretract-semigroup property is preserved by

superextensions.

Proposition 2. If r : S → T is a projective retraction of a semigroup S onto a subsemigroup T

of S, then λr : λ(S) → λ(T) is a projective retraction of the superextension λ(S) onto λ(T).
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Proof. Let L,M ∈ λ(S). Then

λr(L) ◦ λr(M) =
〈

⋃

a∈r(L)

a ∗ r(M)a : r(L) ∈ λr(L), {r(M)a}a∈r(L) ⊂ λr(M)
〉

=
〈

⋃

a∈L

r(a) ∗ r(M)a : L ∈ L, {r(M)a}a∈L ⊂ λr(M)
〉

=
〈

⋃

a∈L

a ∗ Ma : L ∈ L, {Ma}a∈L ⊂ M
〉

= L ◦M.

Corollary 1. If S is a proretract-semigroup, then λ(S) is a proretract-semigroup as well.

In the next section we show that there exists a semigroup S that is not a proretract-semi-

group, but the superextension λ(S) is a proretract-semigroup.

Theorem 1. If S is a null semigroup, then λ(S) is a null semigroup as well.

Proof. Let S be a null semigroup. So there exists c ∈ S such that xy = c for all x, y ∈ S. Then the

map r : S → {c}, r(s) = c for any s ∈ S, is a projective retraction. According to Proposition 2

the map λr : λ(S) → λ{c} = {〈{c}〉} is a projective retraction as well. Therefore,

L ◦M = λr(L) ◦ λr(M) = 〈{c}〉 ◦ 〈{c}〉 = 〈{c}〉

for any L,M ∈ λ(S). Consequently λ(S) is a null semigroup.

A semigroup S is said to be an almost null semigroup if there exist the distinct elements

a, c ∈ S such that aa = a and xy = c for any (x, y) ∈ S × S \ {(a, a)}.

Theorem 2. If S is an almost null semigroup, then λ(S) is an almost null semigroup as well.

Proof. Let S be an almost null semigroup, so there exist the elements a, c ∈ S, c 6= a, such that

aa = a and xy = c for any (x, y) ∈ S × S \ {(a, a)}. Then the map r : S → {a, c}, r(a) = a

and r(s) = c for any s 6= a, is a projective retraction. According to Proposition 2 the map

λr : λ(S) → λ{a, c} is a projective retraction as well. It is easy to see that the semigroup

λ{a, c} = {〈{a}〉, 〈{c}〉} ∼= {a, c} is isomorphic to the semilattice L2 = {0, 1} with operation

of minimum.

It is obvious that 〈{a}〉 ◦ 〈{a}〉 = 〈{a}〉. If A 6= 〈{a}〉, then there exists A ∈ A such that

a /∈ A and therefore r(A) = c. This implies that λr(A) = {〈{c}〉}. If (L,M) ∈ λ(S) ×

λ(S) \ {(〈{a}〉, 〈{a}〉)}, then λr(L) = 〈{c}〉 or λr(M) = 〈{c}〉. Therefore, L ◦M = λr(L) ◦

λr(M) = 〈{c}〉. Consequently, λ(S) is an almost null semigroup.

Theorem 3. If S is a left (right) zero semigroup, then λ(S) is a left (right) zero semigroup as

well.

Proof. Let S be a left zero semigroup. Then

L ◦M =
〈

⋃

a∈L

a ∗ Ma : L ∈ L, {Ma}a∈L ⊂ M
〉

=
〈

⋃

a∈L

{a} : L ∈ L
〉

= L

for any L,M ∈ λ(S). Thus λ(S) is a left zero semigroup as well.

For a right zero semigroup the proof is similar.
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2 SUPEREXTENSIONS OF COMMUTATIVE SEMIGROUPS OF ORDER 3

In this section we describe the structure of superextensions of commutative three-element

semigroups. Among 24 pairwise non-isomorphic semigroups of order 3 there are 12 commu-

tative semigroups.

For a semigroup S = {a, b, c} the semigroup λ(S) contains the three principal ultrafilters

〈{a}〉, 〈{b}〉, 〈{c}〉 and the maximal linked upfamily △ = 〈{a, b}, {a, c}, {b, c}〉. Since semi-

groups S and {〈{a}〉, 〈{b}〉, 〈{c}〉} are isomorphic, then we can assume that λ(S) = S ∪ {△}.

In the sequel we will describe the structure of superextensions of three-element semigroups

S = {a, b, c} defined by Cayley tables using the formula

L ◦M =
〈

⋃

a∈L

a ∗ Ma : L ∈ L, {Ma}a∈L ⊂ M
〉

of product of maximal linked upfamilies L,M ∈ λ(S).

The superextension λ(C3) (described by the following Cayley table) of the cyclic group C3 is

isomorphic to (C3)
+0 and therefore λ(C3) is a commutative Clifford semigroup. The thorough

study of superextensions of groups was started in [7] and continued in [1–3].

· a b c △

a a b c △

b b c a △

c c a b △

△ △ △ △ △

The superextensions of monogenic semigroups were studied in [13]. The cyclic semigroup

C2,2 is a proretract extension of cyclic subgroup {b, c} ∼= C2 under retraction ϕ : {a, b, c} →

{b, c} with ϕ(a) = c. The superextension λ(C2,2) is also a proretract extension of λ{b, c} ∼=
{b, c} according to Proposition 2. The monogenic semigroup C3,1 is not a proretract-semigroup

by Proposition 1, but its superextension λ(C3,1) is a proretract extension of C3,1 under retraction

r : λ(C3,1) → C3,1 with r(△) = c, and, therefore, λ(C3,1) is a proretract-semigroup. Here are

the Cayley tables of λ(C2,2) and λ(C3,1) respectively:

· a b c △

a b c b b

b c b c c

c b c b b

△ b c b b

· a b c △

a b c c c

b c c c c

c c c c c

△ c c c c

The following Cayley tables for the semigroups λ((C2)
+0) and λ((C2)

+1), where C2
∼=

{a, b}, imply that

λ((C2)
+0) ∼= {a, b,△}+0 ∼= ((C2)

+0)+0

and

λ((C2)
+1) ∼= {a, b,△}+1 ∼= ((C2)

+1)+1 :
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· a b c △

a a b c △

b b a c △

c c c c c

△ △ △ c △

· a b c △

a a b a a

b b a b b

c a b c △

△ a b △ △

The superextensions of a null semigroup and an almost null semigroup are a null semi-

group and an almost null semigroup as well according to Theorems 1 and 2:

· a b c △

a c c c c

b c c c c

c c c c c

△ c c c c

· a b c △

a a c c c

b c c c c

c c c c c

△ c c c c

The following Cayley tables for the semigroups λ((O2)
+0) and λ((O2)

+1) imply that

λ((O2)
+0) ∼= {a, b,△}+0 ∼= (O3)

+0 and λ((O2)
+1) ∼= {a, b,△}+1 ∼= (O3)

+1.

The semigroups (O2)
+0 and λ((O2)

+0) are proretract extensions of the subsemigroup {b, c} ∼=
L2.

· a b c △

a b b c b

b b b c b

c c c c c

△ b b c b

· a b c △

a b b a b

b b b b b

c a b c △

△ b b △ b

The superextensions of semilattices were studied in [4]. The following Cayley tables imply

that λ(L3) ∼= L4 is a linear semilattice, but the superextension of the non-linear semilattice is

its proretract extension and it is not even a Clifford semigroup:

· a b c △

a a b c △

b b b c b

c c c c c

△ △ b c △

· a b c △

a a c c c

b c b c c

c c c c c

△ c c c c

The structure of the superextension of the last commutative semigroup is shown in the fol-

lowing table. This semigroup and its superextension are proretract extensions of the subgroup

{a, c} ∼= C2.

· a b c △

a c a a a

b a c c c

c a c c c

△ a c c c
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3 SUPEREXTENSIONS OF NON-COMMUTATIVE SEMIGROUPS OF ORDER 3

There are 12 pairwise non-isomorphic non-commutative three-element semigroups. Non-

commutative semigroups are divided into the pairs of dual semigroups that are antiisomor-

phic.

The superextension of a left (right) zero semigroup is a left (right) zero semigroup as well

according to Theorem 3. Therefore λ(LO3) ∼= LO4 and λ(RO3) ∼= RO4.

· a b c △

a a a a a

b b b b b

c c c c c

△ △ △ △ △

· a b c △

a a b c △

b a b c △

c a b c △

△ a b c △

The following Cayley tables for the semigroups λ((LO2)
+0) and λ((RO2)

+0) imply that

λ((LO2)
+0) ∼= {a, b,△}+0 ∼= (LO3)

+0

and

λ((RO2)
+0) ∼= {a, b,△}+0 ∼= (RO3)

+0 :

· a b c △

a a a c a

b b b c b

c c c c c

△ △ △ c △

· a b c △

a a b c △

b a b c △

c c c c c

△ a b c △

The following Cayley tables for the semigroups λ((LO2)
+1) and λ((RO2)

+1) imply that

λ((LO2)
+1) ∼= {a, b,△}+1 ∼= ({a, b}+1)+1 ∼= ((LO2)

+1)+1

and

λ((RO2)
+1) ∼= {a, b,△}+1 ∼= ({a, b}+1)+1 ∼= ((RO2)

+1)+1 :

· a b c △

a a a a a

b b b b b

c a b c △

△ a b △ △

· a b c △

a a b a a

b a b b b

c a b c △

△ a b △ △

The following three-element semigroups and its superextensions are proretract extensions

of its subsemigroups, which are isomorphic to LO2 and RO2 respectively:

· a b c △

a c c c c

b b b b b

c c c c c

△ c c c c

· a b c △

a c b c c

b c b c c

c c b c c

△ c b c c
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Other two pairs of non-Clifford non-commutative dual superextensions of three-element

semigroups are given by the following Cayley tables:

· a b c △

a c c c c

b a b c △

c c c c c

△ c c c c

· a b c △

a c a c c

b c b c c

c c c c c

△ c △ c c

· a b c △

a a a a a

b b b b b

c a a c a

△ a a △ a

· a b c △

a a b a a

b a b a a

c a b c △

△ a b a a

The last two three-element semigroups are the examples of non-commutative bands whose

superextensions are not Clifford semigroups.
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Сiм’я A непорожнiх пiдмножин множини X називається монотонною, якщо для кожної

множини A ∈ A довiльна множина B ⊃ A належить A. Монотонна сiм’я L пiдмножин

множини X називається зчепленою, якщо A ∩ B 6= ∅ для всiх A, B ∈ L. Зчеплена монотон-

на сiм’я M пiдмножин множини X є максимальною зчепленою, якщо M збiгається з кожною

зчепленою монотонною сiм’єю L на X, яка мiстить M. Суперрозширення λ(X) складається з

усiх максимальних зчеплених монотонних сiмей на X. Кожна асоцiативна бiнарна операцiя

∗ : X × X → X продовжується до асоцiативної бiнарної операцiї ◦ : λ(X)× λ(X) → λ(X) за

формулою L◦M =
〈

⋃

a∈L a ∗ Ma : L ∈ L, {Ma}a∈L ⊂ M
〉

для максимальних зчеплених моно-

тонних сiмей L,M ∈ λ(X). У цiй статтi описуються суперрозширення всiх трьохелементних

напiвгруп з точнiстю до iзоморфiзму.
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