ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp
Carpathian Math. Publ. 2017, 9 (1), 13-21 KapmnaTcpki MmaTem. my6a. 2017, T.9, Nel1, C.13-21
doi:10.15330/cmp.9.1.13-21

(L)

BODNAR D.I.1, BILANYK I.B.2

CONVERGENCE CRITERION FOR BRANCHED CONTINUED FRACTIONS OF THE
SPECIAL FORM WITH POSITIVE ELEMENTS

In this paper the problem of convergence of the important type of a multidimensional gener-
alization of continued fractions, the branched continued fractions with independent variables, is
considered. This fractions are an efficient apparatus for the approximation of multivariable func-
tions, which are represented by multiple power series. When variables are fixed these fractions
are called the branched continued fractions of the special form. Their structure is much simpler
then the structure of general branched continued fractions. It has given a possibility to establish
the necessary and sufficient conditions of convergence of branched continued fractions of the spe-
cial form with the positive elements. The received result is the multidimensional analog of Seidel’s
criterion for the continued fractions. The condition of convergence of investigated fractions is the di-
vergence of series, whose elements are continued fractions. Therefore, the sufficient condition of the
convergence of this fraction which has been formulated by the divergence of series composed of par-
tial denominators of this fraction, is established. Using the established criterion and Stieltjes-Vitali
Theorem the parabolic theorems of branched continued fractions of the special form with complex
elements convergence, is investigated. The sufficient conditions gave a possibility to make the con-
dition of convergence of the branched continued fractions of the special form, whose elements lie in
parabolic domains.
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INTRODUCTION

The convergence problem for continued fractions with positive elements is solved by Sei-
del’s criterion.

< 1
Theorem 1 ([9, 12]). A continued fraction by + [) — with positive elements converges if and
n=1Yn

only if the series OZo: b, diverges.
n=1
Convergence criteria for the continued fractions which elements lie in angular [8], parabolic
[1, 4, 6] domains was obtained by Seidel’s criterion and Stieltjes-Vitaly Theorem.
Necessary, sufficient, necessary and sufficient conditions for convergence of the branched
continued fractions (BCF) with N-branches are establised [3, 10, 11]. But, the analog of Seidel’s
criterion in following statement is not obtained:
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14 BODNAR D.I., BILANYK I.B.

branched continued fraction by + )
k=1i=1 bi(k)

Z rrbzcgl bj(x) are divergent.
k=11
Establishing the analog of Seidel’s criterion for the BCF resulted into construction of differ-

ent types of BCF, in particular:

o Z‘kfl a: N a:
ik) _ i(1)
bo+ D Z,: by b+ Z, ho g ’ @)
k=1 ir=1 i1=1 bz(l) 4 Z - i(2)

where a;), b € C, i(k)y eZ, T ={i(k) =iqip...0 :1<ip <ip_1 <..<ip; k>1; iy = N}.

This fraction is called the BCF of the special form. There are different convergence ctiteria
for this fraction [1, 2, 5].

In the case b;(x) = 1, and a;(;, are replaced by 4;(;)z;,, this fraction is called a multidimen-
sional regular C-fraction with independent variables. This fraction is analog of the BCF for
multiple power series. The condition of the correspondence between multiple power series
and regular multidimensional C-fraction with independent variables is established in [7].

The analog of Seidel’s criterion for the fraction (1) when a3y = 1, by > 0, i(k) € Z,
and N = 2 can be found in [6, 11]. The aim of the paper is to establish the analog of Seidel’s
criterion for arbitrary natural N. Also, using this criterion, the technique of value and elements
sets [3, 9] and Stieltjes-Vitaly Theorem [3], to obtain the parabolic convergence region for the
following BCF

k-1 g. -1
(bo+D2 ) (2)

1 %

where by, a;() are complex numbers, i(k) € Z.

1 MAIN RESULTS

In this paper, it will be proved following lemmas for obtaining an analog of Seidel’s crite-
rion for the BCF

bo+D2b 3)

=1 =

Lemma 1.1. Let the BCF (3) with positive elements converges and € be an arbitrary real positive
number. Then exists a natural m, depended of ¢, such that for each BCF with positive elements

DZE 4)

k=1 ix ()

where Ei(k) = by foralli(k) € Z,k < m, the following estimate holds

/
<

for alln, k > m and f,i be a kth approximant of BCF (4).
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Proof. If fi be a kth approximant of BCF (3) and the fraction converges, then for all € > 0 exists

m>2:|fu1 —me,z\ <&
Since fy = f,k = 1,2,..,m — 1, using the monotonicity properties of approximants of a
BCF with positive elements, we have that foralle > O foralln,k € IN,n > m, k > m,

!
1 2| = f1— fu2| <e

O

Lemma 1.2. Let Ay, Ay be absolute errors of by and by, i i(k) € Z, respectively. If by >

0, bi(k) > 0 are approximants of by and b;), respectively, then the absolute value of relative
error of f,,, mth approximant of the BCF (3), is less or equal to the value

max  max 4209 Sieen) | ©)
0s<[y] i@s+1)eT | bi(s)” byjassn)

where Ajj = Ao, Ajoxq1) = 0, if m = 2k.

x—n o —
Proof. Let 6; = — On =

[X, where @ is approximate value of w. If a > 0,2 > 0,b > 0,
i1 o

144,
m is—1

Let (51((’:)) is the relative error of calculation of the BCF b; ) + D
s=k+1,=1 "i(s)
value of relative error of f, is less or equal to:

b > 0, then: |6,,5| < max{|64],10|}, |6

| < max {|5;],

- 1521, 16 = \

. Then the absolute

mffx{ 2} < o { wl 50} < ’1"2”2{ o] o5 |} <
Y A; A;
< ...< max max (Si(zs) , ﬂ = max max ﬁ’ A1(25+1) .
0<s< %] i(25+1)eT 1+ di2541) 0<s<[g] i(2s+1)eT | Di(as) bi(2s+1)
U
Let Z0" = {i(n) = irig...in :m <iy <iy1 <..<ip; n>1;ip=N},m = 2,N. Let the

continued fractions are determined recurrently as follows

o™ _b’“+D g5 bl +]f°°) , m=1N, (6)

k=1 m[k] k=1 b )m[k]

mlk] = mm..m, i(n) € T"*+1), with the initial conditions béo) = by, bf(ok)) = by, i(k) € Z,

k
where b;; are partial denominators of BCF (3).

Theorem 2 (The multidimensional analog of Seidel’s criterion). BCF (3) with positive partial
denominators converges if and only if for each m,1 < m < N, and each i(n),i(n) € z(m+1)
the following series diverge

Z b / kzl bz( m[k (7)

that elements are determined by (6).
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Proof. Necessity. Let the fraction (3) is convergent, then the following sth tail of this fraction
converges:
= e
T’i(s) = bi(S) —+ D Z ‘—,Z(S) - I
k=s+1i=1"i(k)

The proof of this fact is analogous to the proof of the Theorem 2.1 [3]. In particular, if is = 1,
then the following continued fractions are convergent

o0 1 oo

7@, (8)

1= bk e

According to Seidel’s criterion, the series Z by o Z bty i(n) € 7@ diverge. Let
k=1

bé ) = by + r_' bf(’z) = bjn) + . ! ,i(n) € T(®. Consider the BCF of the special form with
1 i(n)1
(N — 1)-branches:
p) + ]3 - L )
0 —= )
k=1 ix=2 i(k)

We shall show that the convergence of BCF (9) follows from convergence of the fraction (3). Let
fn be the nth approximant of the BCF (3). The approximants of the BCF (9), f,, are the figured
approximants of the fraction (3).

B j bi(k), ifk<nork=mn,i, #1;
fn:bo+D = ik = bi(n)+6%, ifk=ni, =1.
- p=1"i(n)1[p]

Applying the method suggested in [3], we can show that the following relation for differ-
ence f, — f, is valid:

p=1
where
(n) (n) = = <) = |
Qi(n) = bi(i’l)r Qi(s) = D Z b = bi(i’l)’ Qi(s) - bi(s) + D Z Nb—. ’
r=s+1ir=1"i(r) r=s+1i,=1Yi(r)

n=12..,s=1n-1;i(n) € Z; i(p) € Z. Obviously bin) — Ei(n) =0, ifi, # 1, and
bi(n) _Ei(n) <0,ifi, = 1. Thus, (—1)n+1 <fn _ﬁl> > 0, thatis fo, < Ey < ]’Zprl < fory1
That is to say, the convergence of the fraction (9) follows from the convergence of the frac-

toin (3). Analogically as for BCF (3), we conclude that series Z b k]' Z b ,i(n) € 709,

2[’4

e |

diverge,

k=1 ii=3 Dig)”
i(k) € IO converges.
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(m—1)

Using the same arguments by (N — 2) times, we conclude that the series ). bm[k] ,
k=1

Z b m[k] are divergence foreachm : 1 <m < N—1,i(n) € I(erl), also the continued

fraction b D i(k) € T(N) is convergent. It's equivalent by Seidel’s criterion to
k= bi(k)
the divergence of the series Z b N
k=1
Sufficiency. By mathematical induction on N, we prove the fact that from diverdgence of

the series (7) follows the convergence of the BCF (3).

—1)

. Thus, series (7) diverge.

(9]

1
N = 1, the continued fraction with positive elements by + Db— converges by Seidel’s
171K

criterion, if the series ). by is divergent.
i=1
00 k1
N = 2, the BCF with positive elements by + [) Y. B,
k= 11k 1 ( )

Theorem 2.8 [11] if series Z by k], Z bitny1x/ Z b k] diverge.

,i(k) € Z,iy = 2, converges by the

We suppose that for all N N < p, from the dlvergence of series (7) follows the convergence
of the BCF (3). Consider the convergence of the BCF (3) in the case N = p.

oo Zk 1
bo + ) €ZL,ip= 10
0 Dli ™ 0=p. (10)
If koé b1[k} = o, koZ_oﬁl bi(n)l[k] =o00,i(n) €T (2) then continued fractions

b —i—f.j ! (11)

0 A

=1 D1k
D ) eI, (12)

k=

converge to the values bél) and bf(z), respectively. We replace, the continued fractions (11) and
(12) by it’s values, and obtaine BCF of the special form with (p — 1)-branches

OOlk1

+D Z e 1?,iy = p. (13)

S by

Since, the series (7) diverge, for each m, 2 < m < N, the fraction (13) converges by the hy-
potesis of induction. We shall show that the fraction (10) is convergent. Consider the difference
between the nth approximant of BCF (10) and (13).

Let bél’”), bl((ln';) be the nth approximant of continued fractions (11) and (12) respectively.
Then the nth approximant of BCF (10) may be written as

nzkl

1" +DZ R k) e 1.

1Zk Zb()
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It's the BCF with (p — 1)-branches. The nth approximant of BCF (13) may be written as

n lk 1 1
fu =0 +D2 7 i(k) € 7.
=1 =2 bigg

According to the Lemma 1, form the convergence of the fraction (13) follows that for all

e > 0 exists m € IN such that for all n,k € IN, n > 2m + 2 takes place An < ¢, where
p i i2m I2m+1 In—1

) 1 1 1 1 1

gn=by + ),y T L (Ln—2m-2) (10)°
=2 byq) = bi) T F iy biam+1) T2 b; i(2m+2) L= biny

Next we estimate the value ‘ fn— ﬁl) : ) fn— fn < |fn — gn Qn — fn . Using the Lemma

2, we estimate the first term in the right of inequality:

(Ln—=2s) b(l) b(l,n—Zs—l) _ b(l) ‘
I < max max i(2s) i2s)| |Yi(2s+1) ies+1)| |
— 8n 0<s<m i(2s+1) b(l) ! b(l,n—Zs—l) 8n:
i(2s) i(2s+1)

Since the continued fractions (11) converge, we may choose n, n > 2m + 2, such that for all

(n-29) _ (1) €

& |y (Ln—2s—-1)
i(25) i(25)] < St

: 2
i(2s+1) € 7%, i(25+1) 2s+1

P
)< whereA:bo+Z%.

Thus, ’ fn — ]?n‘ < &. From the convergence of the fraction (13) follows the convergence of
the fraction (10). O

Since the elements of series (7) are difficult to calculate by the relation (6), it’s conviniently
to use the following sufficient condition for convergence.

Theorem 3. BCF (3) is divergent, if for each m, 1 < m < N, and each, i(n), i(n) € Z(m+1) the
following series are divergent

Y b Y biwymii- (14)
k=1 k=1

The divergence of the series (14) is suffisient for the divergence of the series (7). We shall
use the Theorem 3, to obtain the parabolic convergence domain for the BCF (2).

Lemma 1.3. Let { ik )} be the sequense of half-planes

Vigy = V—{ZEC Re< 7)>—21

i COS,Y}'k: L2,3,..., 1<y <igq, o =N,
k—1

and

Y 1
Eix = Ei = {z €C:|z| —Re <ze 217) < i 1cos ')/}

where 7'c< <7T
2 S35

Then {Vi(k)} and {Ei(k)} are the sequenses of value sets and element sets of the BCF (2).
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The proof of this Lemma is analogous to the proof of the corresponding Theorem 1.5 [3] for
the BCF with N-branches.

Theorem 4. Let the elements of the BCF (2) lie in the parabolic domains a;) € P, i(k) € Z,
where

Pi(k) (8) :Pik (8) = {ZEC: |Z| — Rez < ;—8}’ (15)
k-1
¢ be an arbitrary small real number, 0 < ¢ < 1.
Then
1) there exist a finite 11m1ts of even and odd approximants of the BCF (2);
2) BCF (2) converges if Z by = o0, Z bi(nymy) = o foreachm, 1 < m < N, and each,

i(n), i(n) € Z"+1), where bz( k) IS deﬁmtely determmed by the relations

a k)‘ = <bi(k)bi(k71))7l , ik €L, bpy=b=1

3) the value region of this fraction is the following circle

K={zeC:|z—-1] <1}.

Proof. Let ;) = e'it), where a;(r) be an argument of number 4;), —71 < a;) < 7, if

(k) # 0.

We determine the function

0, ifa; ) =0,
a0 (z) = ; i(k)
i(k) ai(k) elZlXi(k), if ai(k) 7& 0

(k)

in domain Q) = {z € C : |[Imz| < 6, |Rez| < 1+ 5}, where  is an arbitrary real number, such
that (1+6)%e™ < (1—¢) .

We shall show that a;)(z) € Pi) (0), i(k) € Z,if z € Q.

If i) = 0, then a;(y(z) € Py (0) . Let ajyy # 0 and z = x + iy. From a;) € Py (¢), we
obtain

1—¢ 1 —cosaj(x
— Rea. i ) 16
Z)’ eik) (z) < 20 _q 1 —cosa (16)
) ) 1 —cosa;(x
If we determine the extrema for the function M (ai(k),x) = ———, Where
1 —cosa;g

—7 < ajp < 7 ai) # 0, x| < 1+ 5, we obtain sup <./\/l <(xi(k),x)) = (1+ )% Thus,

1 ) .
z)‘ — Reaj(y (z) < T that is a;) (z) € P (0), i(k) € Z.
Consider the functional BCF

fk-1 aj -
(1 +) 2 ) ,i(k) € T. (17)

=1 ix=

According to the Lemma 3, where v = 0, we obtain that the value set of the reciprocal of the

1
fraction (17) is the half-plane Rez > 5 Therefore, all approximants of the BCF (17) depend on
the domain K = {ze€ C:|z—1| <1}.
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Thus, any nth approximant of the (17), f,(z), is the holomorphic function in domain ().
We use the Theorem 2.13 (Stieltjes-Vitali Therem [3]) for sequence { f,,(z) }, where in particular
a=-1,b=-2and A= {z€C : Rez=0, |Imz| < 6}.

If z € A, then we write the BCF (17) in the form

Tf_1 -1
(1+DZ > ,i(k) € T, (18)

1%

where
_ 0, ifa (k) 0,
Fi(k) = ai(k)‘ eI, if ay # 0.

By equivalence transformstion, we can write the fraction (18), into the form

. -1
00 Ig—1 1 ‘
(1 +D ) m) ,i(k) €T, (19)

-1
where b;(;) is determined by relations |a < (k=1)bi (k)) ,biy=1,i(k) € T.

The divergence of the series ). bm[k Z m[x) for each m, 1 < m < N, and each i(n),
k=1 k=1
i(n) € Tm+1), is equivalent to the divergence of the series Z byje” Y, Z bi(nympe" Y.

The convergence of the BCF (19) follows from the Theorem 2 Thus the fract1on (18) converges.
Therefore, according to Stieltjes-Vitali Therem, the BCF (17) converges on every compact
subset of (). In particular, it converges when z = 1. This is equivalent to the convergence of
the BCF (2).
Using the monotonicity properties of approximants of a BCF with positive elements, we
find that finite limits of even and odd approximants of the BCF (2) always exist. O

Analogously we can prove the following statement.

Theorem 5. Let the elements of the BCF (2) lie in the parabolic domains a;) € Py, i(k) € Z,
where

o 1—¢
Pitg (1) = P (1) = {2 € Clal = Re (2 27) < 1= costa |, 0)

e is an arbitrary small real number, 0 < & < 1.
Then
1) there exist a finite limits of even and odd approximants of BCF (2);

2) BCF (2) converges if Y by, = %, Y bi(y)mx) = o foreachm,1 < m < N, and eachi(n),
k=1 k=1

~1
i(n) € "+, where bi( is definitely determined by the relations |a k)‘ = <bi(k)bi(k71)) ,
l(k) €1, bi(()) = bo =1,

3) the value region of this fraction is the following circle

e 1

B 2(1 — 1cosy)

IC('y):{zeC: z

<! }
2(1 — 1cosy)
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AOCAiAXYETbCSI IMTaHHS 361KHOCTI BaXKAMBOTO KAACy 6araTOBMMIpHIX y3ararbHeHb HellepepB-
HIUX Apob6iB — TiAAsICTHX AaHIFOTOBUX ApobiB (TAA) 3 HepiBHO3HauHVMM 3MiHEMME. Lli Apobu €
edpeKTMBHMMY TP HabAVDKeHHi OYHKIIIN, 3apaHMX KpaTHMMM CTelleHeBUMM psiaamit. TTpm dixco-
BaHMX 3HAUEeHHSX 3MIHHVX BOHM OTPVMaAM Ha3BY TiAASICTHX AQHIIIOTOBUX APOOiB crelliaABHOTO BU-
TASIAY. 3HAUHO ITPOCTIIlIa CTPYKTYpa MOPIiBHSIHO i3 3aTaABHVMI TAASICTMMM AQHITIOTOBMMM APObaMu
AaAa MOXAMBICTb BCTAHOBUTY HEOOXiAHY i AOCTATHIO YMOBY IX 361KHOCTi Y BUITAAKY AOAATHMX eAe-
MeHTiB. OTpUMaHMIT pe3yAbTaT € 6araTOBMMIPHMM y3araAbHEHHSIM KpUTepifo 36iKHOCTI 3eliaenst
AAST HETIepepBHIMX APObiB. YMOBOIO 361KHOCTI AochiaxyBaHux I'AA € po3biXHICTD psSAiB ereMeH-
TaMIl SIKMX € HellepepBHi Apo6u. ToMy AOBOAUTBCS AOCTaTHSI edpeKTMBHA O3HaKa 30iXHOCTI, IO
dopMyAIOEThCSI Yepe3 po3biXKHICTD PSIAIB CKAAAEHNX 3 YaCTMHHMX 3HaMeHHVKIB paaHOro I'AA,. Bu-
KOPMCTOBYIOUM BCTAHOBAEHY AOCTATHIO O3HAKY 361>KHOCTI Ta Teopemy CTiaTheca-BiTani, Aocaiaxe-
HO mapaboaiusi ob6aacTi 36iXHOCTI AAsT AA, crieniaAbHOTO BUTASIAY 3 KOMITAEKCHUMY eAeMeHTaMIL.
BcTaHOBAEHA AOCTATHS O3HaKa AaAa MOXAUBICTb ocAabuTy ymoBu 36ixHOCTI [AA, eneMeHTH KO-
TPMX A€XaTh B apabOAIIHIIX 0OAACTSIX.

Kontouosi ciosa i ¢ppasu: TiAASICTi AQHIIIOTOBi APOGY CIIEITiaABHOTO BUTASIAY, 361KHICTb.



